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The uranium isomer 2"'"U in a silver lattice is used as an example for a first theoretical analysis of 
internal conversion accompanied by an interference (rescattering) of the conversion electrons by 
the nearest neighborhood of the isomer. It is found that these effects play a decisive role for 
essentially any configuration of the atoms of the medium around the isomer. The greatest effect is 
found in the case of a close packing (with 12 nearest atoms) corresponding to the geometry of an 
fcc lattice. The interference makes the conversion probability exceedingly sensitive to geometric 
factors-the arrangement of the atoms around the isomer and the distances between these 
atoms-and also to the binding energies of the electron orbitals in which the conversion occurs. 
As a result, the conversion rate may be either sharply higher ( + 47%) or sharply lower 
( - 21 % ) than for an isolated isomer. It is concluded that these effects must be taken into 
account in interpreting experimental data obtained from electron-conversion spectroscopy of the 
isomer 2'smU. The possible suppression of the conversion decay of 235'"Uin silver for which there 
are experimental indications might be a consequence of an interference of conversion electrons at 
the Ag atoms nearest the isomer. 

1. INTRODUCTION 

An internal conversion occurs in the uranium isomer 
2"'nU through a nuclear E 3 transition with a uniquely low 
energy k z 7 6 . 8  eV and a fairly long decay half-life T,,, 
~ 2 6  min. Since the conversion process is highly localized in 
space, information on the local electron density near the iso- 
mer nucleus can be extracted from corresponding experi- 
ments. This is the essence of conversion-electron spectrosco- 
py. This method has been used widely to study the electronic 
structure of the valence region of certain chemical com- 
pounds of uranium. ' 

However, in the interpretation of the experimental data 
in some published studies'-4 by 235mU conversion-electron 
spectroscopy, it has been assumed that the conversion elec- 
trons do not undergo a further scattering. In other words, 
the interference of electrons at the atoms of the medium con- 
taining the isomer has been completely ignored. For the iso- 
mer 235'nU the allowed kinetic energies of the conversion 
electrons are roughly in the range 25-72 eV, which corre- 
sponds to wavelengths A ~ 4 . 7 - 2 . 7  a.u. Since A turns out to 
be comparable in magnitude to the interatomic distances, 
one might expect interference effects to have a substantial 
influence on the probability for the conversion transition. 

In this paper we examine the effect of an interference of 
conversion electrons on transitions from the 6p,,, and 6p,,, 
atomic shells of uranium, using as examples systems consist- 
ing of the uranium isomer 235mU in various clusters of silver 
atoms. Silver was selected for the following two reasons. 

1. Because of the selectivity of the E 3 conversion transi- 
tion of the isomer 235'"U in terms of the angular momentum 
of the initial electron, this transition occurs primarily in the 
uranium 6p orbitals.' In order to separate an interference 
effect from effects of the chemical surroundings, we would 
like a situation in which there are no orbitals of the atoms of 
the medium near the binding energy of the uranium 6p shells 
E~ -24 eV and E,  p,;2 z 3 4  eV; Ref. 3) with which these 

shells might interact (hybridize, split, etc.). This favorable 
situation prevails in ~ i l v e r . ~  

2. Several experiments were recently carried out to mea- 
sure (indirectly) the decay half-life of a uranium isomer in 
the interior of a layer of silver."he results found in several 
cases were significantly different from the results found in 
measurements of the *j5"U decay rate on the surface of met- 
als (including silver) ,' for which the relative changes in the 
decay half-life of the isomer, AT,,,/T,,, , were less than 5%. 
These results led Kol'tsov et a1., to suggest that the 2'5mU 
decay half-life increases by a factor of several units in silver. 
It was shown theoretically in Ref. 5 that hybridization of the 
electron shells of uranium surrounded by silver atoms could 
not lead to any substantial slowing of the conversion process. 
While remaining in the one-electron model, we need to ex- 
amine the last of the possibilities which were cited, but not 
studied, in Ref. 5 for explaining the experimental data of 
Ref. 6. A pronounced slowing of the 235mU decay in silver 
might be caused by a decrease in the conversion-electron 
wave density near the isomer because of its scattering by the 
surrounding atoms. 

In Sec. 2 we construct the wave function for the contin- 
uous spectrum in a muffin-tin ( M T )  potential. In Sec. 3 we 
write expressions for the conversion factors which incorpo- 
rate the scattering of conversion electrons. In Sec. 4 we de- 
scribe the model which we are using, and we analyze cases of 
the scattering of an electron by one atom. In Secs. 5 and 6, we 
present the results, discuss them, and draw some conclu- 
sions. The necessary definitions and theorems are gathered 
in the Appendix. 

2.CONTlNUUM WAVE FUNCTION 

An electron emitted in a conversion process is scattered 
by the atoms around the isomer. The electron has a positive 
kinetic energy and is thus in a state of the continuum. Find- 
ing a correct description of such a state in a multicenter po- 
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tential of a real substance is a rather complex problem. We 
restrict the discussion below to a very simple model: a finite 
cluster with an MT potential. This cluster consists of a U 
atom surrounded by one or several coordination spheres of 
silver atoms. Inside the MT spheres, the potential is spheri- 
cally symmetric, while outside these spheres (and, corre- 
spondingly, at infinity) the potential is constant and equal to 
that potential at the boundaries of the MT spheres which is 
smallest in absolute value. We denote this constant potential 
by V,, . We specify the particular atom in a cluster by the 
index a, and we specify its position by a corresponding vec- 
tor R, . 

Since uranium is a heavy element, relativistic effects are 
important for it. We accordingly assume that both the initial 
electrons and the final ones are described by bispinor wave 
functions and that we need to solve the Dirac equation in 
order to find these functions. The results of the calculations, 
which are presented in Sec. 4, verify that a relative descrip- 
tion of the electrons is necessary. 

Precisely the same problem, of constructing a continu- 
um wave function, arises in a description of photoabsorption 
by electrons of a medium at y-ray energies close to a thresh- 
old. Theories for these effects (EXAFS, XANES, etc. ) have 
been developed well. However, several important features 
distinguish the conversion transition in the isomer 235'"U 
from photoabsorption. ( 1 ) The conversion process is spa- 
tially localized. (2)  The transition is of multipolarity E 3. 
(3) A relativistic description of the electrons is necessary. 

For this reason, and also for reference, we will write out 
all the equations required for calculating conversion proba- 
bilities in cases in which the conversion electrons undergo an 
interference. 

To find the continuum wave function, we use a relativis- 
tic analog of the scattered-wave m e t h ~ d . ~  A similar analysis 
was carried out in Ref. 9 for bound states (the wave func- 
tions of the discrete spectrum) in a cluster. 

In the potential which we are considering here, the solu- 
tion of the Dirac equation for a continuum state (E > mcZ) 
can be written out explicitly. For a wave function whose 
asymptotic behavior far from the cluster can be described as 
"a plane wave plus an incoming spherical wave," we have 
the following expansion in bispinors: 

for r outside the MT spheres, 

, for r inside MT sphere a. 

Here r, = r - R,, k = p/?i is the wave vector, 
k = (fic) ' ( & I 2  - m2c4) 'I2, the shifted energy is 
E' = E - VMT, and A specifies the polarization of the elec- 
tron at infinity. 

Inside sphere a, the solution of the Dirac equation (in 
the standard representationiu) with the angular quantum 
numbers j, I, and m is 

We normalize this function in such a way that the following 
condition holds at the boundaries of the MT spheres (a, is 
the radius of the corresponding sphere) : 

The phase shifts S,,, introduced in this manner correspond 
to the scattering of an electron by an individual MT sphere, 

( H ' ~ ' )  namely, the sphere a .  The bispinors $i;.::,, , $:;A, and t,bkjrm 
are defined in the Appendix [see (A  1 ) 1. 

The expansion coefficients A , ,  (k,A) and 
A h?:"(k,A) are found from the condition that the bispinor 
wave function in (2.1 ) is continuous at the boundaries of the 
MT spheres. Using the plane-wave expansion 

and the theorem for combining spherical bispinors [see 
(A4b) in the Appendix], we find a system of linear algebraic 
equations with a nonvanishing right side: 

For brevity we have introduced the generalized index 
n = {aj,l,m). We will also use this index for the phase shifts 
S,, to simplify the equations, but with the understanding 
that the phase shifts are independent of the angular momen- 
tum projection m in the case of a spherically symmetric po- 
tential. 

The inverse scattering matrix S ' in (2.3a) is defined 
in terms of the structure matrix D'"'~'' [see (A3d) in the 
Appendix] and the phase shifts for the scattering by the indi- 
vidual atoms: 

- 1 (a'") 
S ,,,, =6 ,,,,, cos 6,,+iDn,,, sin 6,,, (2.4) 

where S,,,,, is the Kronecker delta. 
The problem of finding the continuum wave function in 

a multicenter MT potential has thus beer; reduced to one of 
solving the linear, inhomogeneous system of equations in 
(2.3). The problem has actually been reduced to one of cal- 
culating the scattering matrix S from its inverse, Eq. (2.4). 

We can work from the amplitudes A to construct a one- 
electron density matrix, which we define as follows: 

p ..., (6)s 5 dokAn,(k, h)A.,'(k. A). (2.5) 
X 

Various physical quantities, in particular, the conversion 
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probability (Sec. 3),  are expressed in terms of this matrix. 
Let us assume that we have found a solution of (2.3a) by 
inverting the matrix S -- I: A = sA'O). Substituting it into 
(2.5), we then find, in matrix form, 

Here p'O' is the corresponding matrix for the free electron: 

The structure matrix D'J' is derived in the Appendix [see 
(A3a) I .  

3. ELECTRON CONVERSION FACTORS 

Let us consider the internal-conversion process for an 
isomer in a medium in which an electric L-pole (EL) transi- 
tion of the isomer nucleus occurs, with the subsequent ejec- 
tion of an electron from a state of the discrete spectrum into 
the continuum. We assume that the initial and final states of 
the nucleus are characterized by definite values of the energy 
E, the spin I,  and the spin projection M. We assume that the 
discrete states of the electron are atomic states with a main 
quantum number n, a total angular momentum j, an angu- 
lar-momentum projection m, and a parity ( - 1)'. Such a 
state can be described by the bispinoriO 

We use an index n to specify quantities which refer to 
the nucleus, while e specifies quantities which refer to the 
electrons. We denote the initial and final states of the system 
by indices 1 and 2; the energy of the conversion transition is 
then fiw = E, - E,. 

The probability for a conversion process of this sort (for 
L #O), averaged over the initial states and summed over all 
the final states of the nucleus and the electron, is given by3s4 

e4m R,,, zL 1 
7 )  1 2 1 1 1 ( 1 2 .  (3.1) 

where R,,, is the radius of the nucleus, and a, is the first 
Bohr radius. The dimensionless reduced nuclear matrix ele- 
ments (I,IIEL 111,) ,,, are given by 

They do not depend on the electronic structure. All the in- 
formation on this structure is incorporated in the factor 
LO,,,, which is called the "electron conversion factor":' 

where k 'O' = w/c.  The conversion factors in Eq. (3.3) have 
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been defined in such a way that they are dimensionless. The 
operator b, , ,  (r)  in Eq. (3.2) represents the charge density 
of the nucleus. 

As in (3.1), a factorization of the expression for the 
conversion probability is possible under the condition 
OR,,, /c< 1. This condition clearly holds for the soft transi- 
tion with f i w ~ 7 6 . 8  eV in 2 3 5 m ~ .  In deriving Eq. (3.1) we 
also assumed that the electron does not penetrate into the 
nucleus. The reduced EL electron matrix elements in Eq. 
(3.3) are nonzero only if element 1, + L + I, is even; they 
are given by 

RMT 

X (jzlz~~LL-l~~j~~l')+if~'-'~-'gj,~,~ (r)fn,i,l, ( r )  

The reduced matrix elements (j,I,))L Jb,l ,)  and 
(j21211JL Iljlll) in (3.4) which arise upon an integration over 
the angular variables are derived in the Appendix [see 
(A2a) and (A2b) 1. The normalization of the continuum 
wave function is determined by Eq. (2.2) and corresponds to 
the asymptotic behavior 

Since the E 3 conversion transition is spatially localized 
and occurs in a region with a size smaller than the first Bohr 
radius,' it is a good approximation to use simply the MT 
sphere of the isomer atom in the calculation of the electron 
matrix elements (i,l,llEL Iljili) ,,, ; this is the approach 
which we have taken in (3.4). 

Expression (3.3) for the electron conversion factors 
differs from the corresponding expression for the case of an 
isolated atom only in the appearance of a factor N,-,-, which 
is proportional to the probability for the conversion electron 
to be near the isomer nucleus (more precisely, inside its MT 
sphere), in a state with quantum numbers j, and I,. For the 
isolated atom we would have N,,, = 1. When we take the 
scattering of the conversion electron by the atoms of the 
medium into account, we find that N, , deviates from one. In 
our model, of a finite cluster with an MT potential, the quan- 
tity N,,,? is expressed in a simple way in terms of the density 
matrixp introduced above [see Eq. (2.5) 1. Specifically, this 
quantity is essentially the average of its diagonal part for the 
sphere a which corresponds to the isomer atom: 

22 

4. SCATTERING PHASE SHIFTS 

We turn now to a study of the "uranium-in-silver" sys- 
tem. We carry out the calculations in two steps. First, we use 
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the ASA-LMTO method to calculate a self-consistent M T  
potential in the model of an isolated impurity:" a uranium 
atom in an infinite, periodic, fcc lattice of Ag with a lattice 
constant a = 7.7217 a.u. The radius of the MT sphere of Ag 
is determined (as in the ASA approach) by equating the 
volume of the MT sphere to the volume of the Wigner-Seitz 
cell. This radius is found to be RA,  = 3.0176 a.u. In this 
model we first calculate the electronic structure and the 
potential of an ideal silver crystal. We next replace a Ag 
atom by a U atom at one lattice site. The U atom has the 
normal electronic configuration of valence electrons, 
5f :,, 6d :,, 7s:,, . We impose self-consistency under the as- 
sumption that the uranium does not affect the surrounding 
Ag atoms. The potential of the silver thus remains the same 
for all atoms. The radius of the MT sphere of uranium, R ,  
= 3.2324 a.u., is chosen in accordance with the same rule as 

for Ag, but we use the intrinsic uranium lattice in the y 
phase. The electrons of the 6d i,, , 7s:,, valence shells of 
uranium and those 4d :,, , 4d :,, , 5s:,, of silver are collecti- 
vized. The other shells are assumed to be "frozen," and their 
electrons do not participate in the imposition of self-consis- 
tency. This comment also applies to the 6p shells of U, which 
are treated as atomic. This approximation is completely jus- 
tified, since it was shown in Ref. 5 that the 6p shells of a U 
atom change only slightly in silver. 

All that was the first step. In the second step, the poten- 
tials found for the U and Ag atoms are used to calculate 
continuum wave functions and electron conversion factors 
for finite clusters. 

Before we derive the continuum wave functions for a 
cluster, let us analyze the scattering of electrons by individ- 
ual U and Ag atoms. We use the M T  potentials of these 
atoms which we calculated in the first step. 

Figure l a  (for U) and Fig. 1 b (for Ag ) show the phase 
shifts S,, and the partial scattering cross sections a, in the 
region of kinetic energies of the conversion electrons in 
which we are interested. The phase shifts are calculated in 
accordance with definition (2.2). In  this case we have 

where the angular momentum j takes on two values for non- 
zero I:  j = I + 1/2. For I = 0, we have j = 1/2. 

We should first point out that there are large differences 
between the phase shifts SP,/2 and SP1/2 ( -20 eV) and also 
between Sd3,2 and SdS/Z ( - 10 eV) in the case of uranium. 
These differences between the phase shifts with identical val- 
ues of I are due entirely to relativistic effects. The conversion 
electrons of the uranium isomer must therefore be 

ZOO 1 

FIG. 1. The phase shifts 6,, and the partial cross sections u, for scattering for (a)  uranium and (b)  silver versus the kinetic energy of the electron, 
E, = F - me2 - VMT. The phase shifts are corrected to the interval ( - ?r/2,?r/2). 
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TABLE I. The ratio u,/[n(R,,/2)'] for angular momenta l<7 for the scattering ofan electron by 
the potentials of U and Ag. 

Note. The electro~s are ejected from the 6p , , ,  shell ( E ,  = 33.94 eV) and the 6p,,,  shell ~ ~ ~ 2 2 . 3 0  
of uranium with kinetic energies E, = h - E~ - V,, . The energy of the nuclear transition is 
h = 766. eV. 

dealt with relativistically, even at low kinetic energies, 
E, <mc2. For Ag, the relativistic effects are much weaker. 

The scattering by the individual atoms in the crystal 
lattice is conveniently characterized by the ratios 
u,/[n-(Rd2)'I where R, = a/21/2 is the interatomic dis- 
tance (R, = 5.4601 a.u. ), and T ( R , / ~ ) ~  might be called the 
"area of an atom" in the lattice. Using the partial scattering 
cross sections in Fig. 1, a and b, we obtain Table I, where 
these ratios are written for the kinetic energies of the conver- 
sion electrons ejected from the 6p1,, and 6p3,, shells of uran- 
ium at h = 76.8 eV. 

It can be seen from Fig. 1 and also Table I that the 
scattering is extremely important (in the energy range of 
interest here) for angular momenta up to I,,, = 5 for U and 
I,,, = 4 for Ag. Since the partial cross sections for angular 
momenta (I,,, are comparable in magnitude to the "area of 
an atom" in the lattice, the rescattered waves cannot be 
treated as small perturbations in the main wave. For this 
reason, we cannot use the method which is ordinarily used to 
describe EXAFS. That method deals with the scattering of 
the electrons by the atoms of the medium as a sequence of 
single scattering, double scattering, etc. In the case at hand, 
multiple scattering must be taken into account comprehen- 
sively. Mathematically, this means that we have to exactly 
invert the inverse scattering matrix in Eq. (2.4). However, 
that matrix is always of infinite size (in terms of the angular 
momenta j lm),  even in a bounded cluster, and no explicit 
expression can be written for it in the general case. Neverthe- 
less, as we see from Table I, the scattering weakens rapidly 
with increasing I (at  a fixed energy). In real calculations it is 
thus assumed that at 1 > I,,, the phase shifts are zero 6,, = 0, 
and the matrix is "cut off' in this manner. In our calcula- 
tions we used I,,, = 7 for U and I,,, = 5 for Ag. 

5. RESULTS AND DISCUSSION 

Experimentally, the local surroundings of a U atom in 
silver are not known. They could apparently vary in terms of 
both the number of neighboring atoms and the distances be- 
tween them. To model this situation, we should look at var- 
ious configurations of the silver around a U atom. The chem- 
ical shifts of the uranium 6p levels, in particular, will vary 
with the local surroundings. There is also the possibility that 
the fourfold-degenerate 6p3,, level will be split into two sub- 
levels by the low-symmetry electrostatic field of the medi- 

um. To some extent, energy shifts of this sort can be simulat- 
ed by varying the nuclear transition energy h. All these 
factors should have a strong influence on the wave function 
of the conversion electrons and thus on the conversion prob- 
ability. 

The formalism described in the preceding sections of 
this paper has been used to calculate w,,,/~ and w,,,/>, the 
conversion factors per electron for transitions from the 6p,,, 
and 6p3,, atomic shells, respectively, of uranium in silver 
and also their partial sum: 

Here r z , p , j 2  =. 2 and n,p,/2 = 4 are the numbers of electrons in 
the corresponding subshells. The total conversion probabil- 
ity in the isomer 235mU is determined essentially completely 
by the factor w,, (Ref. 5) .  

Two calculations were carried out to investigate the ef- 
fect of the nearest neighborhood on the conversion probabil- 
ity. 

In the first calculation, we determined the effect of var- 
ious configurations of Ag atoms around the uranium isomer. 
For this purpose we calculated the electron conversion fac- 
tors in the following symmetric clusters: UAg, (a  tetrahe- 
dron), UAg, (an octahedron), UAg, ( a  cube), and UAg,, 
( a  cuboctahedron). The arrangement of atoms in the latter 
cluster (UAg,,) corresponds to the geometry of an fcc lat- 
tice. This calculation was carried out at a fixed distance 
R,_,, = R,, where R, is the distance between the atoms in 
the silver crystal. The energy of the nuclear transition, h, 
was varied. 

In the second calculation we studied the effect of a vari- 
ation in the distance between the atoms. In this case the elec- 
tron conversion factors were calculated for the experimental 
transition energy h, = 76.8 eV for the UAg,? cluster with 
distances R ,-,, ranging from 0.75Rn to 1.25R,,. 

The results of these calculations are shown in Figs. 2 
and 3. Figure 4 shows conversion factors for UAg,, for three 
distances R,,, as a function of the transition energy h. 
The labels on the curves specify the conversion factors: 1- 
w6,,,*; 2-w6,,,,; 3-w6, The dotted lines show the corre- 
sponding factors for the isolated U atom. The same poten- 
tials for U and Ag were used in all the calculations. These 
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FIG. 2. Electron conversion factors wl ( 1 ), w b  ,.,? ( 2 ) )  and w,, ( 3 )  
versus the energy of the conversion transition, h, for UAg, clusters, 
where x = 4,6, 8, and 12. The dotted lines show the corresponding con- 
version factors for the isolated U atom. 

FIG. 3. The electron conversion factors w,,, , , w,, , ,and w ,  for a UAg,? 
cluster versus thedistance between atoms, R, ,,.The notation is the same 
as in Fig. 2. 

sensitive to both (on the One hand) the arrangement of Ag FIG. 4. Theele~tronconversionfactors w,,,?,  and w, f0raUAgI2  
around the and the distances between these cluster as a function of the energy of the conversion transition, h, for 

and (on the other) the energies of the U shells in which the various distances between the atoms. a-R,,-,, = 0.9R0; b--R,; c- 

4 8  - 

potentials were calculated by the method described in Sec. 4 
for the normal state of the fcc lattice of silver. 

We wish to stress that, since we treated the 6p shells of 
U as atomic, the conversion probabilities for the uranium-in- 
silver system differ from those in the case of isolated U only U- 

by virtue of the change in the wave function of the conver- c 
sion electron. This approach allows us to single out the inter- 
ference effects in their pure form. 

It can be seen from Fig. 2 that the interference has only 4 4 8 1  6 
a minor effect in the case of the tetrahedral cluster with four - -_ _- 
silver atoms. When the number of neighboring atoms is 

conversion occurs. 1.1R0. The notation is the same as in Fig. 2. 

large, however, interference effects become extremely im- 
portant. They are seen most clearly in the case of the last 
cluster, which corresponds to the arrangement of atoms in 4 2  
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an fcc lattice. Analysis of the data in Figs. 2-4 shows that the ':* 25 

total conversion probability and, especially, the probabilities u 
45 65 85 1/73 I(w, eV 

for conversion at the individual shells of U are extremely 



TABLE 11. Nonzero reduced electron matrix elements 
(atomic units) for an E3 conversion transition from 
the 6p,,, and 6 ~ , , ~  shells of U. 

Nure. The energies of the 6p shells of U and the energy of the nuclear 
transition are the same as in Table I. 

We would like to call attention to one aspect of the E 3 
conversion electron for initial electrons with an angular mo- 
mentum 1 = 1 (the p shell). Table I1 shows the nonzero re- 
duced electron matrix elements in Eq. (3.4) for transitions 
from the 6p,, - and 6p,,, -shells of U. It follows from this 
table that the ejection of boundp electrons into a continuum 
state in the course of the E 3 conversion transition essentially 
occurs only with an angular momentum I = 2 with respect to 
the isomer atom. Interference effects are thus important 
only under conditions such that there is a strong scattering 
of the conversion electrons, which leads to a significant de- 
formation of their d waves near the isomer atom. 

It can be seen from Figs. 2-4 that the spectra for w ~ ~ , / ~  
and w,,,,, are very similar in shape, with only a relative shift 
equal to the difference between the binding energies of the 6p 
shells of uranium. The slight difference is explained on the 
basis that (as can be seen from Table 11) ap,,, +d,,, transi- 
tion is possible (it does not occur in the case of the 6pI,, 
shell) and makes an additional contribution to w6p,/2. 

Since the reduced electron matrix elements in Eq. (3.4) 
remain essentially constant over the energy range under con- 
sideration here, and since they are naturally independent of 
the distance between atoms, according to Table 11, the spec- 
tra for w,,~,~ in Figs. 2-4 correspond completely to the be- 
havior of the density of the d,,, wave of a conversion elec- 
tron near an isomer atom. The spectra for w,,,,~, on the other 
hand, contain a mixture of d,,, and d,,, waves. 

The resultant spectrum, 3, in Figs. 2-4 was found by 
adding spectra 1 and 2 with appropriate weights. Because of 
the oscillatory structure of the spectra for w,~~ , ,  and w,,,,,~, 
the resultant spectrum for w,, could in principle be anything 
between two extreme cases. First, the maxima of one spec- 
trum might fall on the maxima of the other (and the minima 
on the minima), and we would see a maximum manifesta- 
tion of the interference. Second, the maxima of one spectrum 
might fall on minima of the other, and the interference 
would be at its weakest. The result might be either a slowing 
or an acceleration of the conversion decay of 235mU in silver 
in comparison with the isolated isomer. In our model, we 
have an "intermediate" situation, in which the minima of 
one spectrum basically fall on maxima of the other, so the 
changes cancel out to some extent. As a result, the change in 
the total conversion probability due to the interference is 
much weaker than for transitions from the individual shells 
of U. It follows from our calculations that interference ef- 

fects should be seen particularly clearly in the spectra of the 
conversion electrons. As can be seen from Figs. 2-4, the in- 
tensities of the transitions from the 6pI,, and 6p,,, shells of 
uranium would be greatly different from those for the isolat- 
ed isomer, depending on the number of nearest atoms 
around the isomer, the arrangement of these atoms, and the 
distances between them. 

The crudeness of our theoretical model, on the one 
hand, and the uncertainty on the experimental side, on the 
other, rule out any accurate predictions of the conversion 
probabilities. Nevertheless, our model can be used for a 
qualitative study of how an interference of conversion elec- 
trons affects the conversion probability, and we can estimate 
the scale of this effect. Working from the results in Figs. 2-4, 
we can find the maximum changes in the conversion proba- 
bility for a UAg,, cluster as the corresponding parameters 
are varied. We find the magnitude of the changes for a transi- 
tion from shell n from the ratio A, = (w, - w ~ ' ) / w ~ ' ,  
where w?' corresponds to the isolated atom. We then find 

In the experiments6 on indirect measurements of the 
decay rate of 2 3 5 ' n ~  deep in the interior of a silver layer, 
which we mentioned back in the introduction, the activity of 
a portion of material prepared by a definite procedure was 
studied. Kol'tsov and Rimskii-Korsakovh interpreted their 
data as indicating a suppression of the isomer transi- 
tion under these conditions, but they did not explain the 
nature of this suppression. 

The results of the present study suggest that a situation 
such that the d-wave density of conversion electrons is great- 
ly reduced near the isomer because of an interference of these 
electrons at the silver atoms around the isomer might prevail 
in the uranium-in-silver system. As we mentioned above, a 
decrease in the d-wave density of conversion electrons clear- 
ly leads to a decrease in the conversion probability. 

Experimental conversion spectra of the 235'nU isomer in 
silver could apparently shed some light on the situation. We 
wish to stress that the calculated spectra of conversion elec- 
trons should be averaged over the various configurations of 
the surroundings of U in the silver for an appropriate com- 
parison with the experimental data. 

Significant effects of an interference of electrons in the 
course of a conversion decay of the isomer, similar to 
the effects which we have been discussing here for the uran- 
ium-in-silver system, could be expected when is insert- 
ed in the lattices of other elements (not necessarily metals). 
As a criterion for selecting these elements one might use the 
requirement that the scattering of the conversion electrons 
by the atoms around the isomer lead to a significant change 
in the density of their d waves with respect to the isomer. 

6. CONCLUSION 

The basic conclusion which follows from the results of 
the present study is that the interference (rescattering) of 
conversion electrons with the atoms around the isomer must 
be taken into account in order to find a satisfactory descrip- 
tion of the soft ( f h ~ 7 6 . 8  eV) E 3 conversion transition in 
the 235mU isomer in a silver lattice. Interference effects are 
amplified as the number of atoms in the first coordination 
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sphere increases. The interference effects turn out to be at 
their greatest in the case of the dense packing corresponding 
to the geometry of an fcc lattice. The probability for conver- 
sion in the individual shells of the isomer atom and also the 
total probability for the conversion transition are exceeding- 
ly sensitive to geometric factors-the number and arrange- 
ment of the atoms of the medium around the isomer and the 
distances between these atoms-and also to the binding en- 
ergies of the atomic orbitals in which the conversion occurs. 
As a result, the rate of the conversion decay of the isomer 
may either decrease or increase. The scale of the changes in 
the resultant conversion probability in the 6p shells of U 
turns out to be on the order of ( 1 ;y ) % in comparison with 
the isolated uranium isomer according to our model. The 
magnitude of the interference effect (for transitions from 
atomic p shells) turns out to depend directly on the d-wave 
density of conversion electrons near the isomer atom. 

We have examined only the simplest, high-symmetry 
clusters, with a single coordination sphere of silver atoms. 
The actual surroundings of a U atom in silver may instead 
turn out to be extremely arbitrary, with a much lower sym- 
metry. On the other hand, since multiple scattering (Sec. 4 )  
is important in this system, it is generally necessary to con- 
sider the second, third, etc., coordination spheres. Because 
of all these factors, there might be significant changes in the 
quantitative conclusions. Nevertheless, the qualitative re- 
sults of the present paper would remain the same, in our 
opinion. 

I am particularly indebted to D. P. Grechukhin for con- 
stant support, stimulating discussions, and critical com- 
ments and to M. M. Vsevolodov for interest in this study and 
critical comments. I also thank A. A. Soldatov, A. D. Panov, 
A. V. Lomonosov, and D. V. Grebennikov for useful discus- 
sions. 

Finally, I thank G. D. Samolyuk for furnishing the pro- 
gram for calculating the self-consistent potential in the mod- 
el of an isolated impurity. 

APPENDIX 

1. Spherical bispinors 

We assume that the index Z takes on one of the values J, 
N, H"' , H C 2 ' ,  corresponding to the spherical Bessel func- 
tions z, = j,, n,, h : I ) ,  h j 2 ' .  The spherical bispinor 
$ ( r )  for the functions z, and the energy 
E = [(fikc12 + ( r n ~ ~ ) ~  ] ' I2  is then given by 

where 1' = 2j - I. For z, = j,, the wave function $% de- 
scribes a free relativistic electron with an energy E in a state 
with definite values of the angular momentum j, the angular- 
momentum projection m, and the parity, specified by 1 (Ref. 
10). These states are orthonormalized by 

2. Reduced matrix elements 

The reduced matrix elements are given by the Wigner- 
Eckart theorem 

Definitions of the spherical function Y,,, the spherical 
spinor a,,,, , and the spherical vector Y,, are given in Ref. 
10. 

3. Structure matrices 

We introduce the definitions 

HereRa,,! = R e ,  -Re? andnu,,> = Ru,u,/IRa,,2 I .  
We note one property of the structure matrices in the 

case a ,  = a, = a: 

for any a t h  muffin-tin sphere. 
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4. Theorem for combining spherical bispinors 

The theorem for combining spherical harmonics is well 
known (Refs. 8, for example). A corresponding theorem can 
be found for the spherical bispinors in Eq. ( A l )  (see also 
Ref. 9): 

The expansion matrices are the same as structure matrices 
Eq. (A3). 

We can use this theorem to decompose spherical bispin- 
ors specified with respect to different centers in terms of each 
other: 

wherer,, =r -R, ,  =r,? +Ra2 -R,,,andr,, =r -R,? ,  

with Ira? I < IR,> - R,, I. 
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