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The cross section for the annihilation of ultraslow antiprotons (with energies on the order of or 
less than 10- eV) with atomic hydrogen is calculated. Effects which are nonadiabatic with 
respect to the relative motion of the heavy particles are taken into account. The inverse Auger 
process (Pr  + e -  H + JI) is also taken into account. The annihilation probability is found to be 
smaller by a factor of 10 or more than the values which have been calculated previously in the 
adiabatic approximation and under the assumption of a one-time production of protonium [B. R. 
Junkey and J. N. Bardsley, Phys. Rev. Lett. 28,1227 (1972) ]'and [D. L. Morgan, Jr. and V. W. 
Hughes, Phys. Rev. D 2,1389 (1970)17 and [W. Kolos, D. L. Morgan, Jr., D. M. Schrader, and 
L. Wolniewicz, Phys. Rev. A 11, 1792 ( 1975) ] .8 

1. INTRODUCTION 

Successful experiments on the synthesis of antihydro- 
gen which have been carried out at the low-energy antipro- 
ton storage ring (LEAR) at the European Center for Nu- 
clear Research (CERN) have attracted interest to several 
theoretical and practical problems in the physics of antimat- 
ter. Some ambitious programs of experiments with antihy- 
drogen have been proposed. A first step would be the con- 
struction of new installations ("factories") for the 
production and storage of antimatter.'.2 

In order to solve the problem of storing (and thus accu- 
mulating) antihydrogen we would obviously like to have 
some reliable theoretical calculations of the rate at which 
antiprotons,p, and antihydrogen, H, annihilate with residu- 
al-gas atoms in the interior of the trap at temperatures on the 
order of a fraction of 1 K, i.e., at energies on the order of and 
below eV (Refs. 3 and 4).  The reason for the latter 
condition is that synthesizing antihydrogen requires fairly 
cold beams of positrons and antiprotons. In addition, if H is 
to be effectively trapped in an rf or optical trap, the energy 
spread of the atoms which are synthesized must also be 
small. 

From the theoretical standpoint, solving the problem of 
JI or H annihilation with atoms of matter at low temperatures 
reduces to determining the dynamic properties of systems 
containing pairs of unlike charged heavy particles (p andp).  
A specific feature of such systems is that in the course of the 
collision (e.g., H + 3 or H + H )  there is a redistribution of 
the particles, accompanied by the formation of protonium 
(Pr) ,  which is a Coulomb atom consisting of a proton and an 
antiproton. Protonium is produced in highly excited states 
(with main quantum numbers n =130), so the distances be- 
tween the levels are comparable to the distances between the 
low-lying levels of hydrogen. As a result, the separation of 
electron and nuclear motions, which is a technique widely 
used in atomic physics, cannot be used in this case, and the 
problem becomes a definitely many-body problem. This cir- 
cumstance renders this problem one of purely theoretical 
interest. 

In the present paper we examine the annihilation of ul- 
traslow antiprotons with hydrogen. We actually wish to cal- 

culate the probability of production of free protonium with a 
transfer of the kinetic energy of the colliding JI and p to the 
atomic electron e: 

In free protonium, the proton and the antiproton annihilate 
essentially instantaneously (at the macroscopic relaxation- 
time scale). The basic difficulty in the quantum theory of 
such processes is in dealing with the virtual restructuring, 
i.e., with the possibility of reactions which are the inverse of 
(1)  and which lead to simply an elastic scattering of the 
colliding particles: 

It is shown below (and this is the basic result of this 
study) that the occurrence of processes (2 )  significantly re- 
duces the annihilation probability.5 The cross section for the 
annihilation of an antiproton with hydrogen has been calcu- 
lated in several papers6-' by the impact-parameter method. 
That method is based on the following assumptions: a )  The 
relative motion of the nuclei can be treated as classical. b )  
The effect of the motion of thep and thep on the motion of 
the electron is adiabatic. Correspondingly, one examines the 
quantum-mechanical states of the electron in the field of two 
Coulomb centers, which are fixed and unlike. 

According to calculations based on these assumptions, 
if the distance between the Coulomb centers falls below a 
critical R ,  (R, = 0.64rB, where r, is the first Bohr radius of 
the hydrogen atom), the bound states of the electron in the 
field of the two unlike Coulomb centers disappear. The ener- 
gy levels of the electron, thought of as a function of the inter- 
nuclear distance, bunch together exponentially near the 
critical point9 According to an adiabatic theorem, the prob- 
abilities for inelastic processes are negligible as long as the 
distance between the nuclei is large, so that the distances 
between the electron levels are large. When the nuclei come 
to within the critical distance of each other, however, the 
problem is no longer adiabatic, and the probabilities for in- 
elastic processes increase. The probability for the emission of 
an electron and the formation of protonium is assumed to be 
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zero in this model if the internuclear distance is greater than 
R,, while this probability is assumed to be equal to one if this 
distance is less than R,. According to this assumption, the 
only trajectories of the antiproton which contribute to the 
cross section for reaction ( 1 ) are those which pass by the 
proton at a distance smaller than the critical distance. 

Objections could be raised to the assumption of the im- 
pact-parameter method that the probability for this reaction 
is one when the nuclei move close to each other. The reason 
is that in the language of steady-state scattering theory this 
assumption can be formulated in the following way: 

where S(E,L) is the S-matrix element which corresponds to 
the elastic scattering of the partial wave with angular mo- 
mentum L of the antiproton with respect to the hydrogen 
and with an energy E, and LC corresponds to the critical 
distance R,. Actually, there is no reason to assume at the 
outset that condition (3a)-a highly specific condition- 
holds at even a single value of the energy; to assume that this 
condition holds over a broad range of energies of the incident 
antiprotons is much bolder yet. We show below (Appendix 
A)  that, in fact, this condition does not hold in the problem 
at hand, particularly at small momenta of the antiprotons, 
such that the condition kr, 4 1 holds (here k is the momen- 
tum of the antiproton). 

Calculations carried out in the unitary coupled-channel 
model show that even if the angular momentum L of the 
incident antiproton is zero the probability for reaction ( 1 ) is 
smaller by a factor of several units than the estimate found 
by the impact parameter method. 

The impact-parameter method cannot deal with inverse 
Auger transitions from the state of protonium plus an elec- 
tron to the state of hydrogen plus an antiproton. As a partic- 
ular result, that method should lead to results for the proba- 
bility for protonium production reaction ( 1 ) which are too 
high. 

In Secs. 2-4 of this paper we examine the basic aspects 
of constructing a unitary coupled-channel model: the repre- 
sentation of the wave function of the three-body system, the 
choice of a convenient coordinate system, and the formula- 
tion of a system of equations. In Sec. 5 we discuss the quan- 
tum numbers of the channels which are most important in 
determining the amplitude for reaction ( 1 ) . In particular, 
we show that in the energy range of interest here the proton- 
ium forms primarily in states with a small angular momen- 
tum ( 0  or 1 ). In Sec. 6 we present some final remarks and our 
conclusions. The details of the calculations carried out in the 
coupled-channel model are in Appendices B and C. 

2. WAVE FUNCTION OF THE THREE-BODY SYSTEM 

We are interested in reaction ( 1 ) at energies of the inci- 
dent antiproton lower than l o p 4  eV. The only channels 
which are open at such energies are the elastic channel and 
channels in which protonium is formed in states with a main 
quantum number n less than or equal to 30. 

We start from an operator equation for a three-body 
vector function: 

where I@) is a three-body vector function, G, is the Cou- 
lomb Green's operator for the ep andpp pairs, Wis the e - p 
potential, and I@,) is the "free" wave function of the elastic 
channel. This free wave function is the product of the wave 
function of the hydrogen ground state and the Coulomb 
function of the continuous spectrum of the antiproton. 

The primary difficulty which arises in attempts to solve 
this equation stem from the presence of restructuring pro- 
cesses ( 1 ). The possibility that protonium will form gives 
rise to some additional singularities in the kernel of Eq. (4).  
These additional singularities correspond topp bound states. 
In the method suggested below, the wave function of the 
three-body system is represented as the sum of two compo- 
nents, one describing the elastic channel and the other con- 
taining the protonium wave functions explicitly. This choice 
of components leads to the correct asymptotic behavior of 
the three-body wave function in the elastic channel and also 
in the channels in which protonium is formed. In this sense, 
this choice of components is equivalent to breaking up the 
wave function into Faddeev  component^.'^^" No singulari- 
ties associated with the restructuring appear in the kernels of 
the model equations which are found. 

Let us examine this question in more detail. We write 
the wave function ofthe three-body system as the sum of two 
mutually orthogonal components, one describing the elastic 
channel and the other describing channels in which proton- 
ium is formed and channels which are closed. The compo- 
nent of the wave function which describes the elastic channel 
is 

where q,  ( r )  is the wave function of the hydrogen ground 
state, and the wave functionx(R) describes the scattering of 
the antiproton by the hydrogen. It is natural to introduce 
some projection operators which act in the space of three- 
body states: 

These two components of the wave function can be written in 
the form 

Equation (4)  can be rewritten as a system of coupled equa- 
tions for the components @, and @,: 

In order to write system of equations (8)  in the coordinate 
representation, we need to choose a coordinate system. 

3. THE COORDINATE SYSTEM 

The following system of Jacobi coordinates turns out to 
be convenient (Fig. 1 ) : 

Here r, is the coordinate of the electron, R, is the coordinate 
of the proton, Rp is the coordinate of the antiproton, m is the 
mass of the electron, and M is the mass of the proton. This 
coordinate system is related in a natural way to the elastic 
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FIG. 1. The coordinate system 

channel (H + p-H + p ) ,  since it explicitly contains the 
electron coordinate with respect to the proton, r. The wave 
function of the hydrogen atom depends on this coordinate. 
This coordinate system is convenient because it can also be 
used to describe the proton-production channel. The reason 
is that the coordinate p, of the antiproton with respect to the 
proton, which appears in the wave function of protonium, 
agrees within a ratio m / M -  1 0  ' with the coordinate R, of 
the antiproton with respect to the center of mass of the pro- 
ton-electron pair. I t  is this coordinate system that we will be 
using below. 

4. SYSTEM OF EQUATIONS FOR THE COUPLED CHANNELS 

Since the component Q2(r,R) of the three-body wave 
function describes channels in which protonium is formed, 
we expand this component in the complete set of protonium 
wave functions: 

Here f, ( R )  are the protonium eigenfunctions, g, ( r )  are un- 
known expansion coefficients, which represent the electron 
wave functions in the protonium-production channels, and k 
is the set of quantum number of protonium (the main quan- 
tum number, the angular momentum, and the magnetic 
quantum number). As a result we find a system of coupled- 
channel equations for the functionsx(R) and g ,  ( r ) :  

+ 1 G. (R. R') (PI (r) W (R' - r) 
I 

gs  ( r )  = 5 P2 (r, r') Gs (r', rr') Wsk (r") gk (r") dr'dr" 
R 

+ 5 P, (r, r') G, (r', r") f, (R) W (r" - R) 

x cp, (r") x (R) dr' dr" dR. 

Here G, (R,R1) is the Coulomb Green's function of the anti- 
proton, 

channel, G, ( r , r l )  is the Coulomb Green's function of the 
electron in the channel in which protonium is formed in a 
state with the set of quantum numbers s, 

An important property of Eqs. ( 11 ) is that they allow a 
correct description of the asymptotic behavior of the three- 
body wave function in both the elastic channel and the parti- 
cle-restructuring channels. A distinction between the cou- 
pled-channel model which we are using here and the exact 
Faddeev equations is that the number of channels consid- 
ered is limited. In the following section of this paper we show 
that this distinction is not of fundamental importance, since 
the form in which we write the equations makes it a simple 
matter to determine which channels dominate the reaction 
amplitude and to construct a model which incorporates the 
effect of specifically those channels. At the same time, the 
physical content of the equations which we are using turns 
out to be extremely transparent, so the events which occur 
can be analyzed at a qualitative level. In  Appendix B we 
present a detailed description of the transformation of sys- 
tem ( 1 1 ) to a form convenient for practical calculations. 

5. QUANTUM NUMBERS CHARACTERIZING THE COUPLED- 
CHANNEL MODEL 

A coupled-channel model suitable for actual calcula- 
tions can be obtained from Eqs. ( 1 1 ) by limiting the number 
of channels. We will examine the question of just which 
channels dominate the amplitude for reaction ( 1 ) and are 
the most important. 

We note first that we can restrict the discussion to the 
case in which the total angular momentum of the three-body 
system is zero. Since the momentum of the incident antipro- 
tons is small, so the relation kr,  < 1 holds, it will be primarily 
antiprotons with a zero angular momentum (with respect to 
the hydrogen) which penetrate to the reaction zone. In the 
entrance channel, the antiproton in the s state is incident on 
the hydrogen in its ground state, and the total angular mo- 
mentum of the three-body system is zero (we are talking 
about only the angular momentum; we are not considering 
effects related to the spin of the particles). We would like to 
know which values of the angular momentum of the proton- 
ium which is produced in the reaction are characteristic of 
our problem. Channels in which protonium is formed open 
up when the main quantum number is equal to 30. The val- 
ues of the angular momentum possible for this value of the 
main quantum number are from 0 to 29. I t  nevertheless turns 
out that the probability for reaction ( 1 ) in this case is domi- 
nated by those channels in which the protonium and the 
electron are in states with small angular momenta. 

To  see that this is the case, we go back to Eqs. ( 1 1 ), 
separating the angular variables: 

x o ( R )  is the free function of the antiproton in the entrance 

418 Sov. Phys. JETP 75 (3), September 1992 

Here 

A. Yu. Voronin 41 8 



is the angular part of the wave function, which corresponds 
to a zero total angular momentum of the system, constructed 
from harmonics with an angular momentum of I ,  and 

Yo,"" Yo,- (SZ,) Yo0 ( 5 2 , )  

is the angular part of the wave function of the entrance chan- 
nel, which corresponds to a zero total angular momentum of 
the system, constructed from harmonics with an angular 
momentum of 0.  

Using ( 1 2 )  and ( 1 3 ) ,  we can put system ( 1 1 )  in the 
form 

x w,,, ( f f ,  R )  cp,,, ( f ? )  x ( R )  dr' d f f  dR. ( 1 4 )  

Here 

We use the standard expansion of 1/I R - r 1 in partial waves: 

Integrating over the angular variables, and summing over 
the magnetic quantum number, we find 

We see that the potentials W,,, , which couple the entrance 
channel with channels in which the protonium is in a state 
with an angular momentum I, contain a normalization factor 
l/JZ+1, which reduces the contribution of channels with 
large angular momenta. We wish to stress that this factor 
arises because the system is in a state in which the total angu- 

lar momentum is zero. However, purely dynamic factors are 
the primary reason why channels with large angular mo- 
menta make only a small contribution. Let us consider a very 
simple coupled-channel model which is nevertheless suffi- 
cient to draw a qualitative picture of how channels with large 
angular momenta play a role. We assume that the motion of 
the electrons in the channels in which protonium is formed is 
free. We also assume that the channels in which protonium is 
formed are coupled only with the elastic channel-not with 
each other. The system of equations describing this model is 
then 

Here GE,, ( r , r l )  is the free Green's function of an electron in 
a channel in which protonium is formed, in a state with a 
main quantum number n and an angular momentum I .  The 
energy of the electron in this channel is given by 
E, = (M /mn2 - 1 ) E, + EF, where E, is the Bohr energy 
of the hydrogen atom, and EF is the energy of the incident 
antiproton. It is a simple matter to reduce this system of 
equations to a single integral equation for the wave function 
of the incident antiproton. This equation contains a nonlocal 
complex potential which describes the effect of the inelastic 
channels on the scattering of the antiproton in the entrance 
channel: 

+ V ( R f ,  R") I X  (Rn)dR"+xo ( R ) .  

The complex optical potential is 

For channels with main quantum numbers n from 24 to 
30, the momentum of the outgoing electron, 

turns out to be small, so the condition k,r, < 1 holds. The 
free Green's function of the electron can thus be written in 
the formI2 
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We thus find the following result for the optical potential: 

( k rB )  z l + Z  
Im V ( R )  a 

[(21+1)!!12(21+1) ' 

The additional factor of 1/(21+ 1 )  here arises because of 
dependence ( 16). We see that the real and imaginary parts 
of the optical potential fall off with increasing angular mo- 
mentum I. The imaginary part of the optical potential, which 
describes the absorption of antiprotons in the entrance chan- 
nel, falls off particularly rapidly with increasing I.  The ob- 
vious reason for this dependence of the optical potential on 
the angular momentum of channels with a small momentum 
of the outgoing electrons is the presence of a centrifugal bar- 
rier, which sharply reduces the probability that a slow elec- 
tron with a high angular momentum will be in the reaction 
zone. 

For channels with main quantum numbers n less than 
23, the momentum of the outgoing electrons is not small. 
Such electrons can penetrate through the centrifugal barrier 
into the reaction zone. Nevertheless, the contribution of 
such channels is small. The reason is that the expression for 
the optical potential contains the wave function of a proton- 
ium bound state, f,,, . This function decays over a distance on 
the order of R,,, - ( n2m/M)  r, . The contribution of such 
channels, with main quantum numbers n<23, is determined 
by the value of (R,,,,/r, )2'. That this is so can be verified by 
expanding the wave function of the incident antiproton, X, 
and also the Green's function G, (R ,R  ') in a complete set of 
Coulomb functions, 

G . ( R . R ~ ) = ~  - f k , ~  ( R )  fk,O (RO 
E-E,  

k 

and by writing an equation for the expansion coefficients B, ,  

= - J  I ! , , ~ ( R ) W ~ ~ ( R ) ~ . . ~ ( R ) ~ R  
E-E, 

x f,,, (R') dR dr dR' dr'. (21 

To find the estimate written above, we need to replace 
W,, in the second term in ( 2  1 ) by its partial-wave expansion 
in ( 16) and carry out an integration over the variables R and 
r. For n < 23, the ratio R , , / r ,  is smaller than 0.6 (for any I ) ,  
and the quantity (R,,,/r, )2' is a small quantity on the order 
of 10 ' at an I value as low as 2. 

The reason why the channels with small values of the 
main quantum number (less than 23) make only a small 
contribution is thus that the protonium wave function corre- 
sponding to these channels decays over distances small in 

comparison with the Bohr radius of hydrogen, and the over- 
lap of such channel wave functions with the wave function of 
the entrance channel is only slight. These arguments lead to 
the conclusion that the protonium forms in states with a 
small angular momentum ( 0  or 1 ) . 

What are the main quantum numbers of the channels 
which dominate the reaction amplitude? It was shown above 
that the contribution of channels with main quantum 
numbers n below 23 is determined by the expression 
(n2m/M)". Accordingly, channels with main quantum 
numbers n < 10 are ignored in concrete calculations. All 
channels with n > 30 are closed. Detailed numerical calcula- 
tion show that is it sufficient to restrict the discussion to 
channels with n < 40. We also note that our model ignores 
states of the continuous spectrum of thepp pair. These states 
obviously do not describe inelastic channels in which pro- 
tonium forms; in other words, incorporating such states 
leads to merely corrections to the real part of the optical 
potential in ( 19). An estimate of the contribution of the con- 
tinuous spectrum to the optical potential on the basis of sim- 
ple models yields a value on the order of 10%. 

Our coupled-channel model is thus a system of equa- 
tions which describes the entrance channel and channels in 
which protonium is formed in states with main quantum 
numbers from 10 to 40 and with an angular momentum of 0 
or 1.  Calculations show that protonium forms with the high- 
est probability in states with main quantum numbers from 
18 to 27. The details of the calculations are presented in 
Appendix B. 

6. RESULTS OF THE CALCULATIONS AND FINAL 
COMMENTS 

The results of the numerical calculations show that at 
incident-antiproton energies below l o p 4  eV the probability 
for reaction ( 1 )  is proportional to the momentum of the 
antiproton, with a proportionality factor of 0.41: 

Following the logic of an adiabatic description of reaction 
( 1 ), we would assume that the probability for the formation 
of protonium in an ultraslow head-on collision of hydrogen 
and an antiproton is one. We see that for energies of the 
incident antiprotons from 0 to 10 eV the probability for 
the inelastic reaction is considerably less than one, according 
to calculations in the coupled-channel model. For example, 
at an energy of eV ( l o 4  eV corresponds to the mo- 
mentum of an antiproton with k = 0.3r, I ) ,  the probability 
for this reaction is 0.12. There will evidently be a substantial 
difference in the results for the cross section for reaction ( 1 ) 
also. The reaction cross section calculated in the coupled- 
channel model is 

In the adiabatic appro~ imat ion ,~-~  the reaction cross 
section has a l /u2 behavior in the limit of a low relative veloc- 
ity of the colliding particles. In the coupled-channel model, 
in contrast, the behavior of the cross section is l / v  [see 
( 23 )  1. The reason why the calculations by the impact-pa- 
rameter method lead to a large probability for protonium 
production is that those calculations ignore the actual dy- 
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namics of the production of protonium, in particular, the 
inverse Auger effect. 

We went through the following calculations to deter- 
mine just how important the inverse Auger effect is. We 
write the optical potential of the coupled-channel model, 
found in intermediate calculations, in the form 

V(R,  R') =U(R,. R')+iaZ(H, R') , (24) 

where U(R,R ') is the real part of the optical potential, 
I ( R , R  ') is its imaginary part, and the parameter a takes on 
values from 0 to 1. 

By varying the parameter a ,  we varied the extent to 
which the inelastic channels affect the scattering of the anti- 
proton in the entrance channel. For example, the value 
a = 0 corresponds to purely elastic scattering, while a = 1 
corresponds to the actual value of the extent of channel cou- 
pling. 

Figure 2 shows the probability for reaction ( 1 ) as a 
function of the parameter a for the energy E = 10 - 4 .  The 
nonmonotonic behavior of the probability for the inelastic 
reaction as a function of the depth of the imaginary part of 
the optical potential is attributed to a competition between 
the forward and inverse Auger effects. At first, IS, l 2  in- 
creases with increasing a ,  since forward Auger transitions 
are predominant. As the channel coupling becomes strong- 
er, inverse Auger transitions make a progressively larger 
contribution to the probability for elastic scattering and 
thereby reduce the probability for the reaction, IS, 1'. We see 
from Fig. 2 that the true value of the reaction probability 
( a  = 1) lies on the descending branch of the plot, well to the 
right of the peak. The decrease in the reaction probability in 
comparison with the peak is therefore due specifically to the 
inverse Auger effect. 

Interestingly, the true value of the imaginary part of the 
optical potential is larger by a factor of nearly 30 than the 
value of I,,, at which the reaction probability reaches its 
maximum. This fact can be explained quite simply. Let us 
examine the requirements which the optical potential must 
meet for the reaction probability to be at its maximum value. 
Since the momentum of the antiproton is small (kr, & l ) ,  
the reaction probability can reach a value close to one only if 
the S-matrix, thought of as a function of the momentum of 
the antiproton, has a pole near the origin in the complex 
plane. (In the opposite case, the element of the S-matrix 
corresponding to elastic scattering could be written in the 
form S = 1 - 2ikrBa, where a is complex: a = a ,  + ia,. The 

probability for the inelastic reaction would then be 
IS, l 2  = 4krBa2 < 1.) If the S-matrix has a pole near the ori- 
gin in the complex momentum plane, we can write the fol- 
lowing expression for an element S: S cc ( y - ik) /( y + ik). 
Since inelastic processes are possible in this case, y is com- 
plex: y = y, + iy2. 

From the condition that the probability for the reaction 
be at a maximum (S = 0, IS, l 2  = l ) ,  we find the following 
values for y, and y2: 

Clearly, y, is determined completely by the complex poten- 
tial: y2 = y2(V). Equation (25) thus means that the com- 
plex potential must be a fairly "lively7' function of the mo- 
mentum of the incident antiproton. It is not difficult to see 
that in this case the complex potential is a very weak func- 
tion of the antiproton momentum. Specifically, the depend- 
ence of potential ( 19) on the momentum (or energy) of the 
antiproton is determined by the energy dependence of the 
channel Green's functions G ( E  where 
En = ( ~ / m n ~  - 1) E, + Er,, E, is the Bohr energy of the 
hydrogen atom, and Er, < 10 - 'E,. For arbitrary values of 
the main quantum number n corresponding to open chan- 
nels, we have ( M  /mn2 - 1 ) E, $ Ep.  The dependence of the 
channel Green's functions and of the complex potential Von 
the antiproton momentum thus turns out to be weak because 
the energy of the antiprotons is small. This conclusions 
means that condition (25) and thus the condition S = 0, 
IS, l 2  = 1 definitely do not hold at low energies of the inci- 
dent antiproton. The reason is that the imaginary part of the 
complex potential does not have the small factor kr, , and at 
small antiproton momenta the imaginary part of the optical 
potential, I, turns out to be much larger than I,,,,, (the value 
at which the reaction probability reaches its maximum). In 
Appendix A this circumstance is examined analytically in 
the example of an exactly solvable problem with a separable 
complex potential. 

In summary, the reason why the inverse Auger effect is 
important is that the motion of the antiproton is slow. 

In conclusion I wish to thank I. S. Shapiro for suggest- 
ing the problem and for numerous useful discussions. I also 
thank L. P. Presnyakov for several useful comments. 

APPENDIX A 

Let us analyze the condition for the maximum probabil- 
ity of inelastic processes, using as an example the exactly 
solvable problem of the scattering by a complex separable 
potential whose imaginary part describes an absorption. 
Such a potential can be thought of as a crude approximation 
of the complex potential of the actual problem. This separa- 
ble potential is 

For the S-matrix element corresponding to elastic scattering 
we find the expression 

FIG. 2. Reaction probability versus the depth of the imaginary part of the 
optical potential, for an energy of eV. The condition that S be equal to zero leads to the following 
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expressions for the real and imaginary parts of the complex 
potential: 

We see that a necessary condition for the value S = 0 is that 
the imaginary part of the complex potential be proportional 
to the velocity of the scattered antiproton. As was shown 
above, this condition does not hold in the real problem in the 
energy range under consideration. 

APPENDIX B 

Let us examine the details of the calculation in the cou- 
pled-channel model. We first transform the system of cou- 
pled-channel equations, ( 14), to a more convenient form. 
The idea of this transformation is to eliminate the explicit 
appearance of the diagonal interaction W, , (R)  and W,,,, ( r )  
from the equations, through the introduction of some new 
Green's functions. Equations ( 14) then become 

h 

The Green's functicns of the antiproton y,, (R,R ') 
and that of the electron 9 ,,, (r,r,'), are defined by 

Here1 = O,l, j,(z) = sin(z), j, (z) = sin(z)/z - cos(z), and 
k, = 0.3/rB. In this approximation, k, is a parameter. Nu- 
merical calculations show that the result depends weakly on 
k, if k,rB < 1. Once the potentials Wff; ( r )  have been re- 
placed by separable potentials, that part of the system of 
coupled-channel equations which describes channels in 
which protonium is formed reduces to algebraic form. Equa- 
tions (B l ) then become 

Substituting the expressions for the electron functions 
g,,, ( r )  into the equation for the antiproton function x ( R ) ,  
we find a single integral equation for x ( R ) ,  which can be 
solved numeric ally."^" We will not reproduce that lengthy 
equation here. 

APPENDIX C 

Let us examine the validity of replacing a local short- 
range potential by a separable potential in a scattering prob- 
lem. For simplicity we restrict the discussion to the one- 
channel, one-dimensional case. We consider the Lippmann- 
Schwinger equation describing scattering by a potential W: 

h 

Here Go is a free Green's function, p, is a plane wave, and W 
is the short-range potential. By "short-range" here we mean 
that the effective range of the potential is small in compari- 
son with the wavelength of the scattered particle. We expand 
the wave function in plane waves: 

To simplify the calculations, we have approximated the where g,,, satisfies the equation 
potentials Wff,, ( r ) ,  which describe the coupling of the var- 
ious channels in which protonium is formed, by separable ( P ' W P ' ~ ) ~ P ~ . ~  d p ,  +a ( p - k , .  

g..1=2m I k'-p,z 
potentials. In Appendix C we analyze the validity of this 
approximation." We find that replacing the local potential 
by a separable one in the scattering problem leads to satisfac- Here m and k are the mass and momentum, respectively, of 
tory results if the condition ka,, < 1 holds, where a, is the the scattered particle. 
effective range of the potential, and k is the momentum of Since the condition r,k< 1 holds (r, is the range of the 
the scattered particle. The model separable potential is potential), in the region with p, p' - k the matrix element 
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(pWpl) turns out to be proportional to the product 
pi+ ' (p ' ) '  + ' (as is easily verified) : 

( p l  W p ' l )  .c (ppl) '+'  , ((21) 

The integral equation is dominated by momentapt-- k. The 
matrix element (pl Wp'l ) can thus be approximated by 

(~lWp'l)--(plWkl><klWp'l>/(/clWk'l) . 

This replacement is equivalent to introducing a separable 
potential. In the coordinate representation, this potential is 

U ( r , r ' ) = ~ ( r ) ~ ~ ( k r ) ~ ~ ( k r ' ) ~ ~ ( r ' ) /  Jj12(kr)w(r)dr.  

Here j, (kr) is a Bessel function describing free motion with 
an angular momentum I. 

It is not difficult to see that the arguments above also 
apply to the multichannel case. The only necessary condi- 
tion is that the products of the channel momenta and the 
ranges of the corresponding potentials be small. 
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