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For the explanation of the nature of the radio-emission of strong cosmic burst H, Omasers we 
propose a new mechanism for the appearance of a generation regime; it is based upon the principle 
ofthe development of an absolute (global) wave instability in a three-dimensional 
nonequilibrium two-level quantum system. We give the conditions for generation and the 
Ginzburg-Landau type equation characterizing the radio-emission of masers in the generation 
regime. We note that in the case where a single-mode generator regime is realized one expects 
non-Gaussian statistics of the cosmic maser radiation and we explain, as in the single-mode 
regime, the strong dependence of the width of the line profile on the intensity which is observed 
for some strong cosmic burst H, 0 masers. 

1. INTRODUCTION 

The observed narrow-band radio-emission of cosmic 
masers shows electromagnetic wave instabilities in a non- 
equilibrium cosmic molecular medium. Electromagnetic 
waves which vary in their statistical properties may develop 
in such nonequilibrium two-level quantum systems. As a re- 
sult different radiative regimes can be realized, depending on 
the level of the inversion and other physical conditions. 

The common theoretical approach for the construction 
of a model of cosmic masers is the travelling wave amplifier 
model. For a long time such an approach made it possible 
satisfactorily to describe the basic characteristics of the ra- 
dio-emission of many of the observed maser sources. 

However, recently with the development of radio-inter- 
ference methods and the construction of very long baseline 
radio-interferometer systems which have a high resolution 
powerful burst H, 0 masers were observed. The radio-emis- 
sion of these strong cosmic masers showed new properties 
which differed markedly from the emission of previous H, 0 
masers. Attempts to explain them in the framework of the 
standard model of a cosmic maser as a travelling wave ampli- 
fier met with a number of practically insurmountable theo- 
retical difficulties. This all indicates that the strong nonsta- 
tionary radio-emission of nonequilibrium regions may be 
not only an interesting radiation because of its observational 
characteristics, but also, by all appearances, interesting and 
unique as regards the physical nature of the phenomenon. It 
is possible that these observations indicate the appearance of 
stationary and nonstationary cooperative coherent effects in 
a cosmic medium which is far from equilibrium. In  this con- 
nection it seems appropriate to consider again the possibility 
of the emission of cosmic masers in the generation regime. 

L e t h ~ k h o v ' . ~  was the first to consider a possible mecha- 
nism for the appearance of a generator radiation regime of 
cosmic masers in a nonequilibrium medium. The generation 
in Refs. 1 and 2 was determined by an inverse scattering 
process by the plasma, the dust, and the active molecules 
themselves (resonance scattering). In Refs. 1 and 2, and also 
in Ref. 3, which is a development of Refs. 1 and 2 for applica- 
tions to lasers in stellar atmospheres, it is shown that the 
generator regime is attractive because if it is realized one 
does not need a large amplification when passing through an 

active nonequilibrium region and the growth of the intensity 
of the maser radiation occurs more efficiently. In particular, 
it was also noted in Refs. 1 and 2 that the use of the maser 
generator model makes it possible to explain the occurrence 
of strong radio-emission at low pumping levels, presupposes 
a stronger narrowing of the spectrum, and removes the limi- 
tations on the causes for the appearance of a variation in the 
radiation intensity. In Ref. 3 an important analysis was also 
given of the behavior of the width of the spectrum as a func- 
tion of the radiation intensity for the case of single-mode 
generation due to the incoherent feedback in the case of reso- 
nance scattering by the active atoms (molecules) them- 
selves. 

However, when Refs. 1-3 appeared the astrophysicists 
had not yet observed a case of strong cosmic burst maser 
emission from nonequilibrium molecular clouds. The gener- 
ator radiation regime therefore was not further developed or 
applied to an interpretation of cosmic maser radiation. In  
our opinion, the statement of the problem of a generator 
radiation regime in a nonequilibrium cosmic medium has 
again become urgent because of the observation of strong 
cosmic burst H, 0  maser^.^-^ 

We consider in the present paper a more general mecha- 
nism for the appearance of a generation regime in a nonequi- 
librium cosmic medium-as a transition from a convectively 
unstable amplification regime to an absolute (global) insta- 
bility regime due to taking into account the spatial bounded- 
ness of the maser emission region and the differences in the 
dielectric characteristics of the medium inside and outside 
the source. We study the dynamics of the change in the radi- 
ation regime of a nonequilibrium medium from an incoher- 
ent noise (amplifier) regime to a cooperative, coherent re- 
gime. We determine some of the properties of the maser 
emission and its evolution in the generator regime indicating 
the reality of such a regime in the light of recent observa- 
tional data.4-9 

2. BASIC EQUATIONS 

For a consistent analysis of possible radiation regimes 
of cosmic masers and their statistical properties we need 
study the self-consistent set of Maxwell equations for the 
electromagnetic field and the quantum equations for the 
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density matrix of the active molecules. As a result the evolu- 
tion of electromagnetic wave instabilities in a nonequilibri- 
um two-level medium is determined by the following set of 
equationsI0 for the electric and magnetic fields: 

and for the polarization density P and the population differ- 
ence AN: 

Here J is the conduction current in the surrounding medium 
(the plasma, and so on) which takes into account the change 
in the dielectric permittivity and the presence of distributed 
dissipative processes in the surrounding medium, 
wf = - 877d 'ANw0/3fi is the square of the cooperative fre- 
quency, T, and T, are the longitudinal and transverse relax- 
ation times of the two-level system of active molecules, d is 
the quantum transition dipole moment, AN,, is the popula- 
tion difference caused by the pumping and other relaxation 
processes, W, is the resonance frequency, and c is the speed 
of light. 

One must solve this system with boundary conditions 
determined by the continuity of the tangential components 
of the electric and magnetic fields and their derivatives on 
the boundary of the active molecular medium with a dielec- 
tric permittivity E, (w) and the surrounding medium with 
E~ (w) . When analyzing these equations we shall assume that 
the nonuniform broadening effects are small, i.e., we shall 
neglect spatial dispersion. These equations must also be sup- 
plemented with fluctuation (noise) terms caused by the var- 
ious radiation processes in the active medium itself or in the 
surrounding space. The theory of cosmic masers in its most 
general form is thus given by equations describing physical 
processes in continuously distributed systems with fluctu- 
ations. 

3. SELF-EXCITATION (GENERATION) OF RADIATION IN A 
NONEQUlLlBRlUM BOUNDED COSMIC MEDIUM 

Many studies of the set of equations given above have 
shown that in them various kinds of (convective and abso- 
lute) wave instabilities can develop and that these can pro- 
duce the amplification and generation of electromagnetic 
waves. We consider here the appearance of an absolute (glo- 
bal) in~tability"~" in cosmic masers due to the difference in 
the dielectric characteristics of the active region and the sur- 
rounding space. Under cosmic maser conditions such a re- 
gime may arise when we take into account the boundaries of 
the active region and the difference between the dielectric 
characteristics of the emitting region and the surrounding 
space. The appearance of standing (eigen) waves in the me- 
dium due to the presence of boundaries and wave amplifica- 
tion produces conditions for a transition from an amplifier to 
a generator regime. 

It is well known that in a bounded space the spectrum of 
the oscillations has a discrete structure. The boundary con- 
ditions for the values of the electric and magnetic fields and 
their derivatives at the boundary surface determine a dis- 

crete set of wave numbers. As a result the fields which arise 
are in the form of spatial harmonics and the active molecules 
interact strongly only with resonant harmonics and transfer 
their energy to those. One has then the growth of well de- 
fined modes, which depend on the boundary and physical 
conditions, and separated angular directions for the energy 
propagation are produced. 

One can obtain exact or sufficiently simple analytical 
solutions for the spatial structure of the wave instabilities for 
a nonequilibrium medium with configurations which have 
the simplest geometry, such as a plane-parallel layer, a cylin- 
der, or a sphere. For the analytical discussion of the possibil- 
ity of the appearance of generation we therefore analyze it 
using the example of a maser source in the shape of a sphere 
of radius R. To solve the problem of the instability leading to 
the appearance of oscillations in a bounded nonequilibrium 
medium we need solve the set of Eqs. ( 1)-(3) for arbitrary 
initial conditions and appropriate boundary conditions. In 
the problem considered the boundary conditions will be non- 
uniform since the electromagnetic fields outside the non- 
equilibrium system also need to be determined. The bound- 
ary conditions reduce then in the given geometry (a sphere) 
to conditions for the continuity of the tangential compo- 
nents of the electric and the magnetic field and their deriva- 
tives for r = R. If we use the asymptotic solutions of the 
boundary value problem when the solutions inside the 
sphere are Bessel functions with half-odd-integral index n, 
and outside the sphere Hankel functions, the characteristic 
equation takes for R )A ( A  is the wavelength of the maser 
radiation) the form 

where we have 4 = E,'/* (W)/E;/' (w) and 4 = E:" (w)/ 
E,"*(w), respectively, for the electric and magnetic modes 
and the dielectric permittivity E, (w) is defined as the sum of 
the dielectric permittivity of the surrounding medium E, (w) 
and a contribution x of the active molecules in the source: 

As a result we obtain 

where q, = (c/R) artanh .$ characterizes the nonuniformi- 
ty of the field of the mode and determines the magnitude of 
the energy loss by the radiation through the surface of the 
sphere. The roots of Eq. (4)  enable us to find the values of 
the wave numbers k, = k :, + ik in the bounded medium. 
The values of these roots enable us to determine the complex 
frequencies w = w' + iw" from the dispersion equation 

The solution of the characteristic equation ( 6 )  then deter- 
mines the frequencies w' and the value of the instability 
growth rate w" for which generation arises (w" > 0): 

Here we have 
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We have thus shown the conditions when the linearized 
set of Eqs. (1)-(3) becomes absolutely unstable and its 
wave solutions can increase without bounds with time. How- 
ever, because of the nonlinearity of the system of initial equa- 
tions (1)-(3) these solutions may leave the stationary re- 
gime. Qualitatively this follows already from the fact that 
increasing E leads [according to Eq. ( 3 )  ] to a decrease (sat- 
uration) of AN and hence to a discontinuation of the growth 
of E. 

The relations (7) and (8)  which we have obtained are 
on the whole valid for any source geometry, if we assume 
that the values of 7, and 8, are known for the given source 
geometry. 

4. DYNAMICS OFTHE GENERATOR RADIATION REGIME OF 
A NONEQUlLlBRlUM COSMIC MASER MEDIUM 

We have shown above that a nonequilibrium cosmic 
maser medium can change its radiation regime. It is clear 
that the dynamics (evolution) of the change in regime and of 
the radiation characteristics must also follow from the set of 
Eqs. ( 1 )-(3) and we must thus be interested in such solu- 
tions for which the system described by (1)-(3) suddenly 
changes its properties and loses those that existed earlier, 
acquiring some qualitatively new characteristics. From that 
point of view the following will in all likelihood occur in the 
case considered by us. For small pumping levels when condi- 
tion (8 )  is not yet satisfied and (or) there is no electrody- 
namic resonance [condition (7) 1 the fields connected with 
the emission by the molecules cannot be added coherently. 
In that case the fields of the radiation by separate molecules 
are added randomly and only the fluctuations, which are 
amplified through induction by the excited molecules, re- 
main of these fields. On the other hand, in the case where 
conditions (7)  and (8)  are satisfied the fields are added in 
phase and the excited molecules interact coherently with 
these fields and emit cooperatively. From a mathematical 
point of view this can be expressed as follows: up to the ap- 
pearance of generation in the framework of Eqs. ( 1)-(3) we 
have a solution with ( E  ) = ( P  ) = 0. From the appearance of 
generation Eqs. ( 1 )-(3) have regular solutions, i.e., ( E  ) # O  
and ( P  ) # 0. 

The electromagnetic field, the polarization, and the 
population difference satisfy the nonlinear equations ( 1 )- 
(3) which depend on the nonequilibrium parameters 
(AN,, Ti,, ,a), and for well defined values of these param- 
eters we have up to the appearance of the generation regime 
in the framework of these equations a solution of the form 
( E  ) r ( P  ) = 0. One can by appropriate methods show the 
existence and stability of such solutions which are damped 
waves. For other values of the parameters the wave solutions 
of these equations become unstable and growing. In the gen- 
eral case such solutions can be defined by a set of modes. The 
field resulting in reality is a superposition of these modes 
with the appropriate amplitudes. We can for these unknown 
mode amplitudes obtain a nonlinear equation which reminds 
us strongly of the equation from the theory of phase transi- 
tions. 

Using standard methods'3si4 we can arrive near the first 
critical point of the set of Eqs. ( 1)-(3) at an equation for a 

single variable (the order parameter). Since near the critical 
point the solution ofthe form ( E  ) - ( P  ) = 0 becomes unsta- 
ble, all terms except a single variable, are relatively small and 
add only small corrections. As a result the structure arising 
there (the new solution) is near this point determined by the 
superposition of a finite number of spatial harmonics which 
are solutions of the Helmholtz equation 

( V  '+kmZ) Um=O, (9 )  

where U,  ( r )  describes the spatial structure of the maser 
field determined by the geometry and the boundary condi- 
tions. The structure of the finite solution E(r,r) depends 
therefore both on the internal (dynamic) parameters and on 
the external (boundary) conditions. 

Finally we can obtain the following nonlinear equation 
describing the slowly varying amplitude g( r , t )  of the maser 
field, once the instability has occurred: 

where 

It follows from the form of this equation that it is simi- 
lar to the Ginzburg-Landau equation and differs from the 
latter by the "diffusion" term. It is thus rather complicated 
for an analysis in three-dimensional space, like the Ginz- 
burg-Landau equation, and one must expectI5 that Eq. ( 10) 
also predicts a very broad spectrum of processes-from the 
appearance of space-time coherent structures to various bi- 
furcations, nonstationary pulses, and the development of 
chaos in three-dimensional space. We note that although 
such a generalized Ginzburg-Landau equation, obtained 
after the first instability (bifurcation), can describe also oth- 
er processes, nonetheless when the degree of nonequilibrium 
increases Eq. (10) cannot sufficiently accurately reflect the 
dynamics of the wave instabilities. To do this we need go 
beyond the confines of the first critical region and consider a 
strongly nonlinear equation. It is also clear that to obtain a 
particular result we must use approximate methods or per- 
form the appropriate calculations on a computer. 

5. STATISTICAL AND SPECTRAL PROPERTIES OF THE 
EMISSION BY COSMIC MASERS IN THE GENERATION 
REGIME 

To elucidate the problem of what are the consequences 
of the generator model of the emission we consider the prob- 
lem of the statistical and spectral properties of the maser 
emission. The emission by a cosmic maser is, like most elec- 
trodynamic phenomena, a nonstationary random process. 
Not only the fluctuations in the phase, but also those in the 
amplitude of the maser emission are such processes. In a 
single-mode radiation regime when the different modes are 
statistically independent the statistics of the field of a cosmic 
maser must be Ga~ss i an .~  

However, if a single-mode stationary generation regime 
is realized in cosmic masers one can expect for the observa- 
tions" that the statistics of the radiation will differ from 
being Gaussian. Since just this case is the most interesting 
one as an indication of the actual occurrence of a cooperative 
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coherent effect in the Universe and therefore will differ from 
all traditional noisy astrophysical sources we consider it in 
detail. 

The simplest possibility for the occurrence of a single- 
mode stationary regime is the case when the pumping power 
is sufficient only for the generation of a single mode. In that 
case the realization of one of the solutions of spatial harmon- 
ics in (9) is possible and this is possible for the solution 
having the smallest threshold value of w z  > 0 in (8).  Under 
well defined conditions the self-excitation of a single mode 
cannot make the occurrence of another form of spatial 
modes possible.3 

Another possibility for the appearance of a single-mode 
regime is when the following condition is satisfied for the 
distance between the modes: Aw z 1/T2 < c / R .  If we bear in 
mind that the minimum value of T; ' is bounded by the 
natural broadening this is for H, 0 masers (the 6,, -5,, tran- 

, so that the value of the critical size R sition) =:10-9s-' l6 

of the generation region can vary within rather reasonable 
limits from the point of view of the occurrence of the maser 
effect in interstellar clouds ( 1018 cm and less). However, it is 
clear that increasing the value of the uniform broadening 
dictates a decrease in the value of the possible radius of the 
generation region. 

And, finally, a third case for the consideration of the 
single-mode regime may be connected with the observation 
of a single separate spatial mode since in the case of cosmic 
masers the spatial structure of the modes differs from one- 
dimensional radiation (laboratory lasers and masers). In 
the case of cosmic masers the emission takes place in differ- 
ent directions with a complex directivity diagram and (be- 
cause of the complexity of the geometric structure of the 
source) it may happen that in the direction to the observer 
only one of the spatial modes dominates. 

In the case of a single-mode regime one can give a sim- 
ple analysis of the statistical and spectral properties of the 
maser radiation within the framework of Eq. ( 10). The evo- 
lution equation for a single spatial mode will then have the 
form 

dE," 
-= (aw,-p,. IEm 1 ')E,+F,,(r.  t), 
a L 

(11) 

where 2, (r,t) takes into account the existence of 6-correlat- 
ed fluctuation processes in the source. 

For an analysis of the statistical and spectral properties 
of the maser field we consider the corresponding Maxwell- 
Langevin Eq. ( 11) and the Fokker-Planck equation for the 
probability distribution for the field amplitude.I7 Express- 
ing the complex amplitude in terms of the amplitude and 
phase variables, = E exp(ip), and assuming statistical in- 
dependence of their fluctuations we can obtain the following 
equations for the distribution of the amplitude Wof the ma- 
ser field: 

and its phase @: 

where q = D,/E and D, and D, are the strengths of the 
amplitude and phase noise. 

The stationary solution of Eq. ( 12) has the form 

from which it follows that when a, < 0 the value of the prob- 
ability distribution for the field amplitude is a maximum and 
(E ) = 0, i.e., up to the threshold of generation the coherent 
average value of the field amplitude is equal to zero. In such a 
case the behavior of the emission by the active molecules is 
mainly determined by fluctuations and the radiation turns 
out to be uncorrelated, with Gaussian statistics. However, 
for a, > 0 the structure of the solution undergoes a serious 
change. A solution is now possible for which the probability 
distribution reaches its maximum value when 
( E m )  = (a,/P, which indicates the appearance of a 
regular coherent component of the maser radiation. The sta- 
tistics of the maser radiation are then different from Gaus- 
sian. 

Equation ( 13) for the phase distribution function is a 
diffusion equation with a diffusion constant inversely pro- 
portional to the radiation strength ( a E - 2 ) .  The solution 
of this equation is well known:'* 

For the complete solution of the problem one must calculate 
not only the distribution function of the maser field, but also 
its correlation function and spectrum. In the general case 
one needs nonstationary solutions of Eqs. ( 12) and ( 13) for 
the calculation of the correlation function and the spectrum. 
Since there are for the general case no analytical expressions 
which are solutions of the Fokker-Planck equation we must 
for the calculation of the correlation functions have recourse 
to either approximate (for instance, variational) methods or 
to computer calculations. However, if we restrict ourselves 
merely to a consideration of phase fluctuations, the calcula- 
tion of the correlation function 

( E  ( t )  E' (0) >a elAo (16) 

with the distribution function ( 15) leads to the expression" 

( E  (t) E' (0) > a - - [ c p  (t)-rp, (0)l 1, 
x cxp{i[(p ( t )  -cpo (I)) 1 }d~cp=e'q'. (17) 

Through measuring the correlation function ( 17) one can 
obtain information about the width Aw of the ~pec t rum.~  
For instance, the spectrum obtained from ( 17) by a Fourier 
transformation gives a contour with a line width 
Aw = D,/E 2.  

If we now change from the magnitude of the total 
strength of the electromagnetic radiation to its value I, at 
the center of the spectrum (the observed intensity depend- 
ence of the width of the spectrum is normalized by the inten- 
sity at the center of the line profile) we find that 

Such a behavior of the width of the spectrum has been ob- 
served for some strong H,O maser ~ources"~ and corre- 
sponds to the Schawlow-Townes formula, well known in the 
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theory of quantum generators, and it also agrees in the form 
of its intensity dependence with the expression found earlier 
for the spectra of stellar lasers.' 

A large number of spatial harmonics with frequencies 
w,  = mc/R can be coherently excited simultaneously in a 
cosmic maser in the case where the generation condition (8)  
can be satisfied for a number of modes. In that case the distri- 
bution of the power between the modes is determined by 
complicated nonlinear processes. Both competition (sup- 
pression) of the modes and coexistence of different modes 
are then possible. In the latter case multiple-mode3 and non- 
stationary radiation with complex statistical and spectral 
properties can then occur. 

6. CONCLUSION 

In the framework of the approach considered above we 
find that a nonequilibrium bounded cosmic medium may 
change to a generation regime in which a number of prob- 
lems which arise in the interpretation of the radiation from 
strong burst H,O masers in the travelling wave amplifier 
model may find their most natural explanation. The level of 
nonequilibrium effects in strong burst H, 0 masers can by all 
accounts be expressed so strongly that properties which are 
specific for the astrophysical medium start to manifest them- 
selves: cooperative, coherent effects in the radiation. In  that 
case the model of a cosmic maser as a standing wave amplifi- 
er is inapplicable for the explanation of the observed phe- 
nomena since it is based upon the assumption of the absence 
of phase and frequency correlations. As a result it is unable 
to explain such important effects as the strong dependence of 
the width of the spectrum on the magnitude of the intensity, 
the high degree of directionality of the maser radiation (spa- 
tial discrimination of modes), and also the nonstationarity 
of the regime of the cosmic maser radiation, and so on. All 
this requires that one takes into account new effects such as 
the possibility of the occurrence of a generator regime for the 
radiation in natural cosmic masers. 

I t  is possible that the existing mechanisms1-3 and the 

one proposed here for the occurrence of a generator regime 
in the nonequilibrium cosmic medium and the recently ob- 
served strong burst H,O masers4-%ay be one of the first 
examples of the manifestation of cooperative coherent pro- 
cesses under astrophysical conditions. 

"This is possible, of course, provided the coherence of the signal is not 
lost due to scattering by the inhomogeneities of the interstellar medium 
during the propagation from the source to the observer. 
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