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The nonstationary dynamics of rotating superfluid systems such as pulsars or a vessel with He-I1 
is considered with allowance for the spatial dependence of the friction of Feynman-Onsager 
vortices. Solutions are obtained that describe the relaxation of the angular velocity of rotation of 
the system and its derivative, after an initial jump of these quantities. It is shown that in the 
superfluid cores of neutron stars the limit of strong coupling between vortices and the normal 
component is realized. The relaxation times of the superfluid core, of the order of a few days to lo2 
days, are large enough for the core to be responsible for the relaxation of macrojumps of pulsars. 

1. INTRODUCTION 

The investigation of the dynamics of nonstationary ro- 
tation of superfluid systems is of special interest in connec- 
tion with the observed irregularities in the rotation of neu- 
tron stars-objects that contain a superfluid nuclear liquid 
in their interiors. A rotating vessel with helium-I1 is also a 
superfluid system analogous in many respects to a neutron 
star. The experiments of T~akadze ' .~  in a study of nonsta- 
tionary rotation of He-11, which aim to model the dynamics 
of a pulsar, have demonstrated convincingly that the tempo- 
ral behaviors of the angular velocity of rotation of neutron 
stars (pulsars) and of a vessel with superfluid helium have 
the same nature. To a considerable extent, this is due to the 
circumstance that in both systems the interaction of the nor- 
mal component and superfluid component is realized 
through Feynman-Onsager quantum vortices. 

At the same time, in the details there are substantial 
differences between these systems, these differences being 
manifested in the dynamics of their nonstationary rotation. 
For example, the curve arising from Tsak~dze's experiment 
on the relaxation of the rotational velocity of a vessel with 
He-I1 that had initially suffered a jump in the rotational an- 
gular velocity w(t) is parametrized well by the equations 
obtained by K r a ~ n o v . ~  The latter predict an initial fast expo- 
nential relaxation of the quantity w ( t ) ,  which then goes over 
into slow relaxation that is quasilinear in time (see also Refs. 
4 and 5) .  

On the other hand, the observational data on the relaxa- 
tion of the angular velocities R ( t )  of rotation of pulsars after 
so-called macrojumps shows that the time dependence of 
R ( t )  has, as a rule, an appreciably more complicated form.6 
In particular, in different stages the processes of relaxation 
of the jumps are described by different exponents. 

Thus, the model of a rotating vessel with He-II,3 while 
giving a generally correct picture of the relaxation of a jump, 
cannot be applied directly for an adequate analysis of the 
post-jump relaxation of pulsars. In view of this, the need 
arises to construct a correct model of pulsar dynamics that 
takes account of the specific properties of pulsars. This is the 
aim of this article. 

The most important difference between the indicated 
superfluid systems is the following. In the conditions of neu- 
tron stars the coefficient of friction between the quantum 
vortices and the normal component of the system depends in 
an essential way on the coordinates, and can change by sev- 
eral orders of magnitude as a function of the distance from 

the center of the star. In the case of the model with He-11, on 
the other hand, this coefficient of friction is a function that 
does not depend on the coordinates. We note also that in the 
process of relaxation of jumps of pulsars the superfluid com- 
ponent is involved with a moment of inertia amounting to 
-0.1 of the total moment of inertia of the star. This makes it 
possible to regard the ratio of the moment of inertia of the 
superfluid component to that of the normal component as a 
small parameter of the problem. Finally, in the conditions of 
neutron stars, the role of the normal component becomes 
that of a superdense plasma, since the density of the latter 
exceeds by several orders of magnitude the density of the 
elementary excitations of the superfluid liquid. (In the n-p-e 
phase of neutron stars the normal component is the relativis- 
tic electrons, while in the A-e-n phase the Coulomb lattice of 
the nuclei also comes into play.) 

Before proceeding to the equations of motion, we note 
the following circumstance. In neutron stars significant 
changes of the coefficient of viscous friction of the vortices 
occur over macroscopic length scales, much greater than the 
intervortex spacing, and this makes it possible to work with 
the averaged hydrodynamic equations of a superfluid liquid. 

Henceforth we shall assume that the normal compo- 
nent of the system rotates as a solid. In the case of pulsars 
this condition holds as a consequence of the ultrastrong 
magnetic field B- 10" G of the star, which ties the normal 
component of the superfluid regions to the solid core of the 
star with characteristic relaxation times of the order of se- 
conds. We shall also neglect the pinning of vortices to the 
surface of the core (or vessel), i.e., we shall assume complete 
slipping of the vortices along these surfaces, and also assume 
that during their motion the vortices retain their rectilinear 
form. The analysis is performed for a system with cylindrical 
symmetry, rotating about its symmetry axis. 

2. THE EQUATIONS OF MOTION 

Let the system rotate with angular velocity w(t) )a,, , 
where R,, is the critical angular velocity for vortex forma- 
tion. The quantization of the circulation of the averaged ve- 
locity of the superfluid component will have the form 

rot vB (r, t) =von (r, t )  , (1  

where n(r, t)  is the local density of vortex filaments, 
vo = 2 d / m  is the quantum of circulation, vo/vo is the unit 
vector along the axis of the vortex, and m is the mass of a 

395 Sov. Phys. JETP 75 (3), September 1992 0038-5646/92/090395-05$05.00 @ 1992 American Institute of Physics 395 



helium atom, or, in the case of pulsars, the mass of a Cooper 
pair of neutrons. 

We write the continuity equation for the density of vor- 
tices in the form 

an (r, t )  + div [n  (r,  t )  v ,  (r, t )  ] =0, 
at 

where v ,  ( r , t )  is the local velocity of the motion of a vortex. 
For uniform rotation of a homogeneous system the con- 

dition ( 1 )  leads to the Feynman formula n = 20/vo ,  which 
relates the equilibrium density of vortices to the angular ve- 
locity w of the rotation of the system. In this case all the 
components of the system rotate as a solid: v,  = v ,  = v, 
= [ o r ]  ( v ,  IS the velocity of the normal component). 

Any change in the rotational velocity of the vessel or 
core will lead to motion of the vortices and to the establish- 
ment of a new quasiequilibrium distribution of the vortices. 
The equation of the dynamics of the vortices is given by the 
condition that the sum of all the forces acting on each ele- 
ment of a vortex is equal to zero. For straight vortices we 
have7 

~ . ( r )  [vs-v,, vol-q ( r )  (v,-vn) +p ( r )  [v,-v,,, vo] =0, ( 3 )  

where the first term is the Magnus force and the second and 
third terms comprise the frictional force between the vortex 
and the normal component of the liquid. Here, p, is the den- 
sity of the superfluid component, v, ( r , t )  is the local velocity 
of the superfluid flux incident on the vortex, and ~ ( r )  and 
P ( r )  are the coefficients of longitudinal and transverse mu- 
tual friction. 

Finally, the equation of motion of the normal compo- 
nent is written as 

where I, and o ( t )  are the moment of inertia and angular 
velocity of rotation of the normal component, Kin, is the 
moment of the frictional forces between the superfluid com- 
ponent and normal component of the system, and K,,, is the 
external moment of the frictional forces: K,., = const .ok, 
where k=. 3 for pulsars and k = 1 for a vessel with He-I1 in 
the case of viscous friction of the vessel against an external 
medium. 

Equations ( 1 ) - ( 4 )  fully determine the dynamics of the 
superfluid system if the functions 77 ( r ) ,  P ( r ) ,  and p, ( r  ) and 
the time-independent parameters of the system itself are 
known. 

In view of the axial symmetry of the problem, the local 
velocity v,  ( r , t )  of the superfluid component and the density 
n(r ,  t )  of the vortex filaments will not have an azimuthal 
dependence. Writing the velocity of a vortex filament in cy- 
lindrical coordinates in the form v ,  = [ o r ]  + v,e, + v,e,, 
from Eqs. ( 1 ) - ( 3 )  in components we have 

v,= (0,-c,) sin 0 cos 0. ( 7 )  
v,=v, ctg 8, ( 8  

where tan 6 = v / p ,  vo ( 1 - P /p ,  ) . It can be seen from the 

relations ( 7 )  and ( 8 )  that 6 is the angle between the azi- 
muthal direction and the direction of motion of the vortex in 
the rotating coordinate frame. In the limit of weak coupling 
[ v < p , ~ ~ ( l  - P / p , ) ,  i.e., 8-01, we have u,-0 and 
v, -. v, - u, ,  whence v, - v,: the vortex moves together with 
the superfluid component. In the opposite limit 
[ ~ ) p S v O ( l  - P / p , ) ,  i.e., 6-90'],  we have v,-0,  u, -0, 
and v, -wr: the vortex is dragged by the normal component. 

Integrating (5)  and ( 6 ) ,  taking it into account that 
v, = dr/dt, we have 

os ( r ,  0) =o, (r,  t )  f"t)lr" ( 0 ) :  

n (r ,  0 )  = n  (rl t )  r2 (i) /P ( 0 )  , 

where w, (r,O), r ( 0 )  and w, ( r , t ) ,  r ( t )  are, respectively, the 
angular velocity of the superfluid liquid and the distance of 
the vortex from the axis of rotation at times t = 0 and t = t .  
Substituting these relations into ( 7 ) ,  we obtain 

where 

h7(r, t )=n(r:  t ) / n ( r ,  0 ) ;  

a(r)=2m,(r,  O)sinOcos8/(1-Plp,) 

We note that Eq. ( 1 1  ) coincides with the analogous 
equation of K r a ~ n o v , ~  except that in the case under consi- 
deration it has a local meaning in view of the spatial depend- 
ence of the quantity a. In other words, the function N ( r , t )  is 
no longer the universal function, independent of the spatial 
coordinates of the vortex, that was assumed in Ref. 3. From 
this, in particular, it follows that when the vortices move 
through distances of the order of the characteristic length 
scale L of the variation of the quantity a gradients of the 
density of vortex filaments arise. 

In the case of pulsars, over the time scales that are char- 
acteristic for the irregularities of their rotation, the external 
torque K,,, is, to high accuracy, constant. 

The expression for the internal torque, 

where F, ( r )  is the force of viscous friction per unit length of 
the vortex, can be transformed by considering a cylindrical 
layer of thickness -dr<L.  Taking it into account that 
F, .e, = vu, =psvov , ,  we have 

where 1, is the length of a vortex filament and 
dIs = 2n;o,I,r3dr is the moment of inertia of the superfluid 
component of the layer under consideration. The equation of 
motion (4)  of the normal component takes the form 

where R is the radius of the system. 
The second term in the square brackets in Eq. ( 1 4 )  

should coincide in its meaning with the angular momentum 
of the superfluid component. We shall prove this: 
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where R, is the radius of the boundary of the irrotational 
region (R, ( t )  < R). Since 

we have 
HI 

l J , = p J L j  ws ( r ,  O)N(r,  t )  (R2-r2) (2zrdr). 
0 

Taking into account that w, (r,O) =us (0)  and 
<R, and introducing the integration variable IRi -R  I <  

x2 = R - ?, we have 
0 

L.=p.l,w, ( 0 )  ~ ( l ,  r )  (H2-P) nd ( R 2 - i )  
R 

R R 

= p,l.,o; ( 0 )  ~ ( t ,  r ) r2(2nr  dz)= w. (0) N ( t ,  r)dI,. 
0 0 

This is what we had to prove. 
For a given function a ( r )  and given time-independent 

parameters, the system of equations ( 11 ) and ( 14) fully de- 
termines the dynamics of the superfluid system. 

3. DYNAMICS OFTHE RELAXATION OF A JUMP IN THE 
ANGULAR VELOCITY OF ROTATION OF THE SYSTEM 

We shall consider the problem of the determination of 
the temporal behavior of the angular velocity of rotation of 
the system after an initial jump Sw of the angular velocity of 
its normal component. We shall assume that the relative 
magnitude of the jump is small: Sw/o 4 1. If we also assume 
that the relative moment of inertia of the superfluid region is 
small and that the external torque is constant (see Secs. 1 
and 2),  the problem can be solved analytically. 

In Eqs. ( 1 1 ) and ( 14) we shall go over to reduced quan- 
tities: 

Integrating ( 14), we have the system of equations 

with the initial conditions N(t)  = R ( t )  = 1 at t = 0. Next, 
in accordance with what has been said above, considering 
small deviations from the initial density distribution 
N(r,t) = 1 + Gn(r,t), Sn(r,t) < 1, welinearizeEq. (15). We 
obtain 

Substituting ( 18) into ( 17), we seek the solution of the re- 
sulting equation in the form of an expansion in powers of the 
small parameter p, = I,/I,, : 

where the coefficients Sn, of the expansion are determined 
from the equations 

We shall confine ourselves to the first two terms of the 
expansion ( 19); this corresponds to keeping terms of order 
pg in the expression for R( t ) .  Equation (20) gives 

where Q = q( 1 + y/a) - 1. Substituting the solution (22) 
into (21) (k  = l ) ,  we find the solution Sn, : 

4 Y a (I-e-"1') -a, (I-e-"') 
sn,=qrr - -( l -e-u-Q 1 dy, 

(I a-a, 
(23) 

Here, a ,  ( r ,  ) is a function of y, , since the variable y, itself 
depends on r, . Finally, the solution ( 19) is written in the 
form 

6n=Sno+pobrr,=gyl ( p ,  1)- 

a(1-e-'lt) --a, (4-e-Ot) 
- QP.J d l l  - a-n, 

(24) 

For the reduced angular velocity R ( t)  we obtain 

Q ( t )  =I- (I-po+po2) y t  - 

a(l--e-alt) -a, (i-e-Ot) 
a-a, . (25) 

If we introduce the notation 1 + A = q, then, by definition, 
A = Sw (O)/w (0)  is the relative magnitude of the jump. In 
the approximation under consideration the expression (25) 
is rewritten in the form 

7 P 2  a (1-e-"1') -a, (I-e-"1') + ( A  + _)+J a, j dyl a-a, 
(26) 

In the absence of the jump the dynamical behavior of 
the system is described by Eq. (26) if we set in it A = 0. For 
the difference R, ( t )  = R(t,A) - R(t,O), where R(t,A) 
and R(t,O) are, respectively, the angular velocities of the 
system in the presence of a jump at time t = 0 and in its 
absence, we obtain 

Next, we go back from the reduced to the initial quantities 
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and introduce the notation a - ' = T, a; ' = T, , and 
o = ~ 1 2 ~ .  Finally, in the approximation linear in the jump 
we have 

~ ~ ( t ) = - p ~ f i ~ ( o )  J d y ( ~ - ~ - ~ / ~ )  
~ ( l - e - ~ ~ ' ~ )  - T ~  (I-e-I/') 

+poZ6u(O) J dy Idyl 
T-TI 

. (28) 

In the analysis of post-jump relaxations of pulsars one usual- 
ly uses the quantity i.=dv/dt. Differentiating (28), we ob- 
tain 

e - t / ~  e-'/'+e-f/" 
t ( t )  =-p0bu (01Jdy ---- + (o) J dy J dy, 

T T-Ti 

The expressicn (29) solves the problem posed, if the param- 
eters Sv(0) and pa of the problem, and the functional de- 
pendence ~ ( y ) ,  are specified. 

In conclusion, we emphasize once again that the solu- 
tion has been obtained in the following approximation: 
So/o ( 1, pa = I,/I, ( 1, and y/a( 1. The latter condition, 
which is essential for the solution of the problem, is the re- 
quirement that the external torque be constant during the 
relaxation process. In fact, the ratio y / a r  r/rO is the ratio of 
the characteristic relaxation times to the time of the vari- 
ation of the external torque, which has the order of magni- 
tude of the pulsar lifetime T, z w / r j .  All the above conditions 
are satisfied for the processes that we have considered-pul- 
sar jumps and their relaxation. Thus, we have 

(see, e.g., Ref. 8).  

4. RELAXATION TIMES IN THE SUPERFLUID CORE OF A 
NEUTRON STAR 

According to the solutions (28) and (29) obtained 
above, the relaxation of the angular velocities of pulsars and 
their derivatives is characterized by relaxation times T deter- 
mined by" 

It is remarkable that the characteristic relaxation time takes 
on large values in the two limiting cases 7/p,v, > 1 and 
7/psvo 4 1, i.e., in cases of extremely strong and extremely 
weak coupling between the vortices and the normal compo- 
nent of the star. The physical meaning of this dependence of 
T on 7 is clear: The relaxation of the superfluid component 
occurs via a change of the density of the vortex filaments 
following radial compression and expansion of the vortex 
lattice. In both limits the radial velocity of the vortices is 
small, since in the former case the vortex is frozen into the 
normal component while in the latter case it is dragged by 
the superfluid liquid. 

An example of a system in which, depending on the 
physical conditions, different limits of the coupling of the 
vortices and the normal component are realized is the inner 
core (A-e-n phase) of a neutron star. In the regions of the 
A-e-n phase in which pinning of vortices to the lattice of 
nuclei occurs, so that radial motion of the vortices occurs by 
quantum tunneling between pinning centers, the strong-cou- 
pling limit is rea l i~ed .~  In those regions in which pinning is 

not effective, the vortices interact weakly with the electron- 
phonon system. We then have the weak-coupling limit." 

We shall discuss the dynamics of the superfluid core of a 
neutron star in more detail and calculate the characteristic 
times of the relaxation processes. As is well known, the su- 
perfluid core or n-p-e phase of a neutron star consists princi- 
pally of a superfluid neutron condensate with a small admix- 
ture (a  few percent) of superconducting protons and 
relativistic normal electrons. When considering the dynam- 
ics of the n-p-e phase it is necessary to take into account that 
the phenomenon of the drag of the proton condensate by the 
neutron condensate leads to important changes in the phys- 
ical properties of the system of neutron vortices: a )  The gen- 
eration of local magnetic fields by the currents arising from 
the drag of the protons by the neutrons leads to the forma- 
tion of a dense lattice of proton vortices about each neutron 
vortex at a radius r, < b ( b ,  is the radius of the neutron 
vortex); b) the neutron vortex acquires flux @, = ( k  I@, 
(a, is the quantum of magnetic flux and Ik I is the drag 
coefficient) and, via the electromagnetic interaction, inter- 
acts rigidly with the bundle of proton vortices associated 
with it.'1s12 

Thus, the process of the dynamical response of the su- 
perfluid core of a neutron star involves the participation of 
clusters of vortex filaments, each of which is a neutron vor- 
tex with an induced flux @, , "dressed" by a lattice of proton 
vortices. The number of proton vortices in a cluster is of the 
order of B/@, - Ik (/47~/2 : - lo2', where is the average 
local magnetic field of the cluster and A, = ( 1 + lk 1 ) "2A, 
where R is the magnetic-field penetration depth.12 

Next, we note that the interaction of a cluster of vortices 
with an incident flux of superfluid liquid reduces to the inter- 
action of the central neutron vortex with the incident flux 
through the Magnus effect. No Lorentz-type force from the 
interaction of the circulation currents of the proton vortices 
with the neutron flux arises here, since the interaction of the 
neutron and proton condensates is exhausted by the drag 
effect. 

Thus, when one considers the dynamics of the n-p-e 
phase of a neutron star, it is necessary in the first term of Eq. 
(3)  to take p, to be the density of the superfluid neutron 
component, and the quantum of circulation to be 
vo = h / m ,  (m, is the neutron mass). 

We shall determine the magnitude of the viscous fric- 
tion 7. The most effective mechanism of interaction of the 
normal component of the n-p-e phase with the vortex clus- 
ters is the process of scattering of relativistic electrons by the 
nonuniform magnetic field of a cluster. The relaxation time 
of this process is determined in Ref. 13: 

where k ,  is the Fermi wave vector of the electrons, m, is the 
proton mass, A, /l is the Ginzburg-Landau parameter of 
the undragged proton condensate, and I k / = 1 - m,*/m,. 

By writing the force acting on unit volume of the super- 
fluid liquid in the relaxation-time approximation: 
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TABLE I. Dependence of the microscopic parameters of the problem and the dynamical-relaxa- 
tion time on the density of the superfluid core of a neutron star. 

Column l d e n s i t y  of the core layer; column 2-Fermi wave vector of the electrons; column 3- 
ratio of the effective proton mass to the "bare" proton mass; column klectron-relaxation time 
at clusters of proton vortices; column 5-coefficient of viscous friction of the vortices; column 
bdynamical-relaxation times. 

11 102' 
9, ro.4 g.cm-' / h,,fm-I 1 m;/mp I T ~ , ,  WJ4 sec / r,  days 

g.cm-'.set ' 

where n (p,v, ) is the distribution function of the relativistic 
electrons, for the viscosity coefficient we have 

. hk,  n, 
' I  = -- 

CT*, nr 

10.9 
61.3 

194 
676 
2.1. to3 

Here, n, and n, are the electron density and neutron-vortex 
density, respectively. 

In Table I we give the dependences of the microscopic 
parameters of the problem,I4 the quantity re,, the viscosity 
coefficient 7, and the relaxation time r for the pulsar "Vela" 
( Y  = 11.2 Hz) on the density p of the n-p-e phase of the 
neutron star. As we see, the relaxation times have values that 
agree in order of magnitude with the observed relaxation 
times of pulsar jumps. In the case under consideration the 
limit of strong coupling of the vortices and normal compo- 
nent is realized. 

To determine the dynamics of the relaxation of the n-p-e 
phase of a neutron star it is necessary next to choose a model 
of the star, i.e., to specify its central density and the equation 
of state of superdense nuclear matter. Then the relative mo- 
ment of inertiap, of the superfluid region and the profile of 
the distribution of the moment of inertia of the n-p-e phase 
are uniquely determined as a function of the density of the 
star, i.e., we have the dependence of y  onp. We recall that in 
(28 )  and ( 2 9 )  we have O<y< 1 and the reference surface is 
the outer boundary of the superfluid core. 

As a result, we have the function r ( y )  in parametric 

2.31 
2.85 
3.33 
3.88 
4.32 

form and, according to ( 2 8 )  and ( 2 9 ) ,  the problem of the 
dynamics of the relaxation of the n-p-e phase is thereby 
solved if the observational parameter Sv(0 )  is given. 

8 11 
?,13 
0,85 
0,32 
0.13 

'' Here and below we neglect the longitudinal friction, which is not impor- 
tant in the case of neutron stars, and set p ( r )  = 0. 

0.13 
0.9 
3,33 

13,6 
48.8 
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0,Gl 
0.63 
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