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This paper studies the instability of a two-dimensional system of interacting particles in a strong 
magnetic field in relation to the transition to a nonuniform state. The instability is caused by a 
pole at the zero-sound vertex. In view of this equations are derived for vertices in the "parquet" 
approximation. Special attention is paid to the case of a Landau level with a small occupation 
factor, v& 1. Analysis suggests that charge density waves may form when the wave vector is small, 
and the corresponding criterion is derived. 

1. INTRODUCTION 

This paper continues the study, started in Refs. 1-3, of 
properties of a two-dimensional (20 )  system of interacting 
particles in a strong magnetic field B by the diagrammatic 
technique. The model is based on the widely used condition 
that the Coulomb energy E, = e2/x1,, where x is the dielec- 
tric constant, and I, = (efi/eB) is the magnetic length, 
be much smaller than the distance between Landau levels; 
that is, the interaction conserves the number of particles on a 
Landau level. The system is assumed polarized, so that in 
what follows all spin indices are omitted. 

The analysis carried out in Refs. '1 and 2 has shown that 
in a given order of perturbation theory some topologically 
distinct diagrams are equal to each other. This makes it pos- 
sible to sum an entire class of diagrams by introducing an 
effective interaction potential. Another important result of 
Ref. 2 is that the instability with respect to the transition to a 
nonuniform state (i.e., the formation of charge density 
waves) is determined by the pole at the zero-sound vertex. 
The transition of a 2 0  system in a strong magnetic field to a 
nonuniform state is of interest because rich experimental evi- 
dence has appeared in recent years concerning phenomena 
caused, apparently, by such a transition. This is true of work 
on transport phen~mena ,~ .~  radio-frequency radiation ab- 
~orp t ion ,~  sound absorption,' and magneto-optical phenom- 
ena.8-'1 Hence the great importance of investigating the con- 
ditions for the transition of a 2 0  system to a nonuniform 
state. Some estimates for this transition were obtained in 
Ref. 3. The present paper uses the analysis of equations for 
vertices in the "parquet" approximation to show that when 
the occupation factor of a Landau level is small the transi- 
tion of a 2 0  system in a strong magnetic field to a nonuni- 
form state is in principle possible. The corresponding crite- 
rion is also derived. 

2. "PARQUET" EQUATIONS FOR VERTICES 

A previous paper by the present author2 shows that the 
instability of a 2 0  system connected with the formation of a 
charge density wave (CDW) appears in the form of a pole at 
the zero-sound vertex. If the initial renormalized interaction 
potential is substituted into zero-sound bubble diagrams 
(and equivalent diagrams), the resulting criterion for CDW 
formation agrees fully with the results of Fukuyama, Platz- 
man, and Anderson." An essential feature of this criterion 

is that it provides the lower bound on the magnitude q of the 
wave vector for CDW; that is, only waves with q>qo can 
exist (q,lB ~ 0 . 5  for the Coulomb potential). On the other 
hand, for a Wigner crystal one should, apparently, expect 
ql, = (27717) 'I2 to hold, where the occupation factor for the 
Landau level v = 2al in, , with n, the 2D-particle density. 
Hence in studying CDW with fairly low values of q we must 
go beyond the scope of the "ladder" approximation for the 
zero-sound vertex considered in Ref. 2. The analysis carried 
out below shows that when the occupation factor for the 
Landau level is low, v< 1, we can limit our discussion to the 
method of successive approximations for "parquet" dia- 
g r a m ~ . ' ~ , ' ~  Since the "parquet" approximation may in itself 
be of interest in studies of properties of 2 0  systems when 
v 5  1, we will discuss its derivation in detail for the model 
considered. 

Figure 1 depicts the simplest "parquet" diagrams. In 
the Landau gauge the two-dimensional momentum is 
P = (p,w), where p=p,,, and the frequency w 
= aT(  2n + 1 ), with T the temperature and n an integer. A 

distinctive topological property of this class of diagrams is 
that they can always be divided into two parts by cutting 
only the two internal lines. We denote by y, (PlP2;P3 P4 ) 
the set of all such diagrams reducible in relation to the mo- 
mentum pairs (PIP2 ) and (P3P4 ), that is, can be divided 
into two parts by the above method, one part containing only 
the pair of momenta (PIP2 ) and the other the pair (P3P4). 
In the case at hand, the momenta PI and P2 correspond to 
"in" lines and P3 and P4 to "out" lines. The quantity 
yc (PlP2;P3P4) is known as the Cooper "brick." We can also 
introduce the zero-sound "bricks" y, (PlP3;P2P4) and 
yz (PlP4;P2P3), which are reducible in relation to the respec- 
tive momentum pairs. Note that the Cooper brick 
yc (P,P2;P3P4) is antisymmetric with respect to the inter- 
change within each pair of the in and out momenta. As a 
result we get a system of nonlinear equations for the various 
bricks, a situation depicted in Figs. 2 and 3. The internal 
lines represent the following Green's function: 

where K = (k,w), and there is summation over frequency w 
and integration over k. The other quantities in Eq. ( 1 ) have 
the following meaning. The initial vertex (IB = 1 ) is 
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FIG. 1. Diagram a corresponds to the insertion of a zero-sound bubble 
diagram into a Cooper vertex, and diagram b of a Cooper bubble diagram 
into a zero-sound vertex. 

where P, = (pi ,w, ), and the effective interaction potential 
isl,2 

Here the prime on the summation sign indicates that sum- 
mation is over odd values of the positive integer m, and 
L,  (x) is the Laguerre polynomial. For the Coulomb inter- 
action, the two-particle energy levels are 

where T (x )  is the gamma function. 
In view of Eqs. (2)  and (3) ,  the initial vertex T'O' is 

antisymmetric under the interchange of initial (or final) 
momenta. This makes it necessary to introduce the factor 
1/2 into the equation for the Cooper brick (see Fig. 2).  

The total vertex is 

Using the diagrammatic representation for "parquet" equa- 
tions, we can easily derive the respective analytical expres- 
sions. This gives us the following system of nonlinear equa- 
tions [allowing for condition (5 ) 1 : 

and 

yz (P,P3; P2P4) 

where K = ( k , w ) .  
The system of nonlinear equations (5)-(7) cannot be 

solved exactly. Hence the need to analyze the quantities en- 
tering into these equations. According to Ref. 2, the simplest 
Cooper bubble diagram is proportional to 

and the simplest zero-sound bubble diagram is proportional 
to 

The quantity 6, which enters into the Green's function ( 1 ) 
and expression (8),  is related to the dimensionless density in 
the following manner: 

E=T ln(v-'-1). (10) 

On the other hand, for the simplest "parquet" diagrams of 
Fig. 1 we can easily find that diagram a is proportional to the 
expression 

v( l -~)G(oi )G(oz) ,  (1  1) 

and diagram b to the expression 

1-2v 
v(i-v)[ G(m,)G(m3) - (12) 

The expressions obtained (8)-( 12) lead to the following 
conclusion concerning the case Y < 1. First, from (8) and (9)  

m 

FIG. 2. The diagram equation for a Cooper 
brick. The constituent zero-sound bricks are 
y, (P,,Pl + P2 - K;P2P,) and yz (PlP4;P2,P1 
+ P, - K ) .  

Pr P, P,+4-K 
6 4'4-K 4 K 
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FIG. 3. The diagrammatic equation for a 
zero-sound brick. The Cooper brick inside 
the parentheses is y, (PlK;P3,Pl + K - P,). 

it follows that the ratio of a zero-sound bubble diagram to a 
Cooper one is ? c ( q ; W = 4 n  exp(-qz/2)E4, 

m 

The ratio of the first term inside the square brackets in ( 12) 
to the second is of order 

On the other hand, comparison of the square of the Cooper 
bubble diagram ( 5 c- ) with ( 1 1 ),which is of the order of 
v(-' and corresponds to the substitution of a zero-sound 
bubble diagram into the Cooper vertex, shows that for v( 1 
in the first approximation for the "parquet" equations we 
can confine our discussion to the summation of ladder dia- 
grams for the Cooper "brick." With the next approximation, 
in the equation for the zero-bound "brick" (7)  with 
allowance for (5)  ( rc = I"" + yc ), 

from which it follows that in the limit v-rO there is a finite 
renormalization of the interaction potential (3 ) . 

Assuming that the zero-sound vertex has a form similar 
to ( 14) (with appropriate replacement of indices), we final- 
ly find that Eq. ( 13) transforms into 

T 
+ - ~ ' Y c ( q ; w + w 1 ) ~ 2 ( w ) y , ( q ;  w+w2)  

?'r '0  

(16) 

where (q = (q: + qi)"2) is the wave vector of the CDW. 
The homogeneous equation that follows from ( 16), 

[ rc + - p3, p,; KP4) + yz + - P,, P2P4) determines the instability in connection with the formation 
of a CDW with a given wave vector q. Note that when we go 
over to Eq. ( 17), the frequency 01, can be considered a pa- 

- r, (PI + K - P3, P4; P2K) ] (7') 
rameter and omitted. From Eq. ( 17) it follows that if in ( 15) 
the renormalization of the interaction potential caused by 

we can keep only terms with wl = w,, that is, leave the first 
summation of Cooper diagrams is ignored (i.e., if formally 

two terms inside the square brackets. As a result we get the we set = in the denominator), the frequency depend- 
following equation for the zero-sound vertex 

ence vanishes and the resulting condition that Eq. ( 17) have 
(PI +P2 =P3 +p4): a solution is 

and the Cooper vertex calculated in the ladder approxima- 
tion is 

J "" 
r c  (PIP2;  P3p4)  = -2  - exp[iq,(p,-p,) I 

2n 

x ? c ( ~ = ,  P,-~3; ol+o,), (14) 

where 

which coincides with the results obtained in Ref. 12, that is, 
forbids the existence of a CDW with q<qo. The analysis done 
below shows that the renormalized potential in the form 
( 15) allows for the formation of a CDW with an arbitrarily 
small wave vector q. 

3. CDW FOR SMALL OCCUPATION FACTORS 

Since it is impossible to find an exact criterion for solv- 
ability of Eq. (17), an attempt was made3 to qualitatively 
establish the criterion for the formation of a nonuniform 
state. Hence the importance of first studying the general 
properties of Eq. ( 17). We can represent this equation dif- 
ferently by introducing a new function 
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instead of Fz (a). As a result we get the equation 

where 

with - l /T<r< l/T, and the function 

whose kernel is a symmetric function of the variables w and 
o,. Another important property o f f ,  (q,w) that follows 
from Eq. (20) is the condition 

If we write Eq. (20) in the form 

then, allowing for (21), we can easily verify that the qua- 
dratic form 

is Hermitian. This implies that the eigenvalues of Eq. (20) 
are real and the criterion for CDW formation can be found 
from the condition 

det[l-K(q; fib, 0,) ]=0. (24) 

Since the frequencies w and w, are expressed in terms of 
integers [see Eq. ( 1) I ,  the kernel K(q;w,,w,) is a symmetric 
matrix. Note that the left-hand side of this equation is a func- 
tion of the variables T, v, and q. Equation (24) can serve as a 
basis for numerical calculations of the criterion for CDW 
formation, and (23) for applications of the variational prin- 
ciple. On the other hand, we can make direct use of the fact 
that Eq. ( 17) has been obtained for the case v< I .  In view of 
this we write this equation explicitly: 

whereJm = 26+ E m ,  and [seeEq. (15)] 

(pm (q)=4 exp ( (-qZ12) E,L, ( q Z )  . (26) 

It is convenient to shift from the frequency representation to 
the complex-time representation. l5 To this end we introduce 
the following function of variable r: 

As a result of very simple transformations Eq. (25) becomes 

determines the number of particle pairs. 
The structure of Eq. (28) makes it possible to assert 

that the problem does not allow for an exact analytical solu- 
tion. The idea of an approximate solution is based on the fact 
that the number of particle pairs is very low, since 

The approximation discussed below assumes that particle 
pairs can be ignored; that is, they contribute very little to the 
criterion of CDW formation. In view of this we ignore the 
terms containing 2 in Eq. (28); that is, we put 
n(6, /T) = 0. This means that for r < 0 the solution to Eq. 
(28) is 

7 (z) =e-E" ( I f  az) . (31) 

Substituting this expression into Eq. (28) for r > 0 makes it 
possible to find y ( r )  in this range of variation of v, too. 
Subsequent calculations are fairly simple but cumbersome. 
Hence, we will discuss the transformations only in principle. 
First, the term with S ( r )  in Eq. (28) makes it possible to 
partially match y ( r )  for positive and negative r .  Another 
very important relation follows from the definition of y ( r )  
in the form (27), which implies (see Ref. 15) that the fol- 
lowing condition must be met: 

This functional relation allows for complete solution of the 
problem of finding the criterion of CDW formation. As a 
result of fairly involved calculations we find the criterion of 
the following form: 

x [ 1 + 2 v ~  x ..(q) 
exp ( -E, lT)  - I  

Em2 m m 

We note immediately that as Em 4 0 ,  Eq. (33) transforms 
into condition ( 18), where the term with 2 must be ignored. 
Also, the terms with 9 that appear in criterion (33) are not 
related to the number of particle pairs and must be retained, 
since in this expression the smallness of the occupation fac- 
tor Y is compensated for by the condition that q+O (see 
below). 

It can be shown that in the case of a short-range interac- 
tion potential Eq. ( 17) has no solution for ql, ( 1, as expect- 
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ed. In view of this the remaining calculations are performed 
for the Coulomb potential. A fairly simple analysis of the 
sums entering into (33) suggests that in the limit ql, ( 1 the 
terms with large values of m play the main role, and summa- 
tion over m can be replaced with integration. To explain the 
nature of the following calculations we employ, by way of an 
example, one of the terms in Eq. (33). For one thing, we find 
that the following approximations hold: 

where J ,  (x)  is a Bessel function. A few more words about 
this transition. The approximation 

follows from the fact that the terms in the sum that contain 
the factor ( - 1 )" converge well and the sum acquires no 
singularity as q + 0. On the other hand, in (34) we employed 
(26), where one must go over to the asymptotic values of the 
Laguerre  polynomial^'^ and the energy levels Em [Eq. (4)  ] 
for m% 1. The last integral in (34) can be evaluated if we 
write it as 

VEC ve J J ~xP(-Y/x) - j J .  (x) exp (-xo/x) dx = -2. dy 10 (x) - dx, 
Tq  0 T q %  0 x 

with x, = &,q/T. Using well-known formulas for integrals 
containing Bessel functions,I6 we find that the final expres- 
sion for ( 35 ) has the following form: 

where x = (2x,) and K, (x) is a modified Bessel func- 
tion. All the other sums in Eq. (33) can be represented in a 
similar manner. As a result this equation assumes the form 

where x = (2~ ,q /T)  
Analyzing Eq. (37), we see that in the limit x <  1 it 

becomes 

which means that in the range of x considered here there is 
no instability related to CDW formation. This condition cor- 
responds to criterion ( 18) for ql, < 1. On the other hand, we 
see that there is such an instability for x >  1. In this range it 
suffices to limit oneself to the third term on the right-hand 
side of Eq. (37), which term may be of both signs (this is 
easily verified). But in this range the CDW wave vector sat- 
isfies the condition ql, <vl''. 

4. CONCLUSION 

We have thus studied the instability of a two-dimen- 
sional system of particles in a strong magnetic field with 
respect to the transition to a nonuniform state. The case con- 
sidered referred to a Landau level with a small occupation 
factor, Y <  1. The analysis shows that such a transition is 
possible for small values of the wave vector q, and the crite- 
rion for this transition is possible for small values of the wave 
vector q, and the criterion for this transition is Eq. (37). An 
important feature of this criterion is that it contains two in- 
dependent parameters, v(qlB ) ' and E, qlB/T. A detailed 
analysis of the resulting criterion (37) requires numerical 
calculations. If we assume that the instability has to do with 
the formation of a Wigner crystal, it is natural to assume 
ql, - v ' / ~ ,  that is, to fix one of the parameters in the crite- 
rion. Then the second parameter becomes a function of the 
dimensionless density v and temperature. As a result, the 
fact that the right-hand side of (37) changes its sign shows 
that there are certain ranges of variation of parameter 
E, v'l2 / T  where a transition to a nonuniform state does oc- 
cur; that is, for a fixed occupation factor (or fixed tempera- 
ture) the nonuniform state first appears and then disappears 
under temperature (or density) variations. This fact has 
been observed in  experiment^.^^" At the same time experi- 
ments state in Refs. 4-1 1 that the observed phenomena are 
related to the transition of a 2 0  system to the crystalline 
state (the Wigner crystal). The results of the present study 
do not permit the unambiguous conclusion that the instabil- 
ity considered corresponds to the formation of a Wigner 
crystal, since the structure of the nonuniform state that 
forms as a result of the instability has yet to be studied. A 
promising fact, however, is the qualitative agreement with 
the experimental data; note above. On the whole, the nature 
of the instability investigated here is still an open question. 

I am grateful to G. M. Eliashberg for the extremely 
valuable comments made during a discussion of this paper. 
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