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The critical behavior of the concentration dependences of the higher order moments of the 
current distribution in randomly inhomogeneous media near the percolation threshold is studied. 
The critical exponents of the higher order moments are expressed in terms of the well-known 
indices of percolation theory. Scaling functions are proposed on the basis of the similarity 
hypothesis. The values of the higher-order moments of the current distribution at the percolation 
threshold are determined. The results are in good agreement with numerical calculations. 

One of the main processes studied in randomly inhomo- 
geneous media is current flow. The theoretical study of the 
current distribution in an inhomogeneous medium can be 
used both to explain the experimental results (for example, 
the spectral density of l/f noise of inhomogeneous compos- 
ite materials) and to construct an adequate model of inho- 
mogeneous media that would make it possible to predict the 
experimental results and those obtained by numerical meth- 
ods. 

The main characteristic describing current flow in a 
randomly inhomogeneous medium is the effective conduc- 
tivity ue , which by definition relates the volume-averaged 
electric current density j and electric field intensity E: 

If the medium varies macroscopically (the characteristic 
size a, of an inhomogeneity is much greater than the charac- 
teristic microscopic free paths), then it is assumed that 
Ohm's law holds locally: j ( r )  = a ( r )E ( r ) .  It can be shown 
immediately that the effective conductivity does not equal 
the volume-averaged conductivity (a) ,  and in the general 
case it is impossible to obtain an analytical expression for the 
effective conductivity as a function of the phase concentra- 
tion with different values of the local conductivity. Maxwell' 
was one of the first to raise the problem of determining ue . 

In the last few years two-phase (a, > a,), strongly inho- 
mogeneous ( h  - ' = a,/a2 1 ) media near the percolation 
threshold (see, for example, Refs. 2 and 3) have been under 
intense study. In such media a, exhibits critical behavior: 

oe=otTt(Ao+Ath~-(t+q)+ . . .), T>O, T B A ,  (2)  

o,=~~ltJ-q(B~+B,h~-(~~q)+ . . .), ~ € 0 ,  J T I  >A, (3)  

oe= (o,q~2f)1'(t+'J) (Co+Ct~/h''(t+q)+ . . .), 1 %  A ,  (4) 

where 7 = (p - p, )/pc is the proximity to the percolation 
threshold, p is the concentration of the phase having good 
conductivity, p, is the percolation threshold, A = h ' '"+q' 

is the width of the critical region, and t and q are the critical 
exponents (CEs). The values of the critical exponents, as a 
rule, are obtained by numerical modeling on a network of 
random resistances r, = a; and r, = a,- I. 

The classical percolation problem-determination of 
the critical behavior of the conductivity of a network of ran- 
dom resistances-is much more complicated than previous- 

ly th~ught . "~  It turns out that the critical behavior of such a 
network is multifractal; i.e., it is described by an infinite col- 
lection of CEs. Each moment of the current or voltage distri- 
bution has its own CEs. From this viewpoint a, is only one, 
though a very important, characteristic of the critical behav- 
ior, associated with the first moment of the current distribu- 
tion. As is well known (see, for example, Ref. lo),  

( (Ej) > - (0 ' (r)  j- ( r ) )  or=--- - 
(E>? (E)" 

We define the moment of nth order as follows: 

where d is the dimension of the problem and C(n,r) is the 
local moment, whose physical meaning can be different for 
each n. For example, for n = 1 and any d we have C(n,r) = 1 
and C, ( 1 ) = 1, whence follows Eq. (5  ) . 

The second moment is an equally important character- 
istic ofinhomogenous media. As shown, for example, in Ref. 
11, C(2) is the relative spectral density of l/f noise of the 
entire medium. In this case C(2,r = {SaSo)/d is the Four- 
ier component of the mean-square fluctuation of the local 
conductivity and determines the l/f noise of a homogeneous 
material with conductivity a .  The more inhomogeneous the 
medium is the higher is the level of l/f noise in it.ll-l3 Mod- 
el, numerical, and experimental investigations of 1/f noise in 
media close to the percolation threshold have shown that its 
amplitude exhibits critical behavior-it increases according 
to a power law asp approaches p, from either side. 

In order to determine the critical behavior of the rno- 
ment C, (n,d) for any n it is necessary to know, as follows 
from Eq. (6),  at least approximately, the distribution of the 
fields and currents. In randomly inhomogeneous media this 
is possible either by performing numerical modeling or by 
using a model of the medium for which an analytical calcula- 
tion can be performed. The zeroth-order approximation in h 
is sufficient for calculating a, in the simplest case and the 
basic behavior of a, above and below the percolation thresh- 
old remains unchanged [the first terms in Eqs. (2)-(3) ], 
but this approximation is no longer applicable for n = 2. In 
Ref. 14 it was pointed out that above the percolation thresh- 
old, when current flows primarily along the phase with good 
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conductivity, taking into account the poorly conducting 
phase (a,) when calculating l/f noise (n = 2) can result in a 
different critical exponent. In Ref. 15 the critical indices of 
l/f noise were obtained above, below, and at the percolation 
threshold and the conditions under which the CEs change 
(crossover) were determined on the basis of the weak-link 
model (WLM), which takes into account current flow 
through both phases simultaneously. In Ref. 16 the h de- 
pendence of C, (2)  at the percolation threshold was checked 
ford = 2.3 by numerical simulation. In Refs. 6 and 7, on the 
basis of numerical modeling, numerical values were found 
for the CEs of the nth moments (n = 1,2,3) and a scaling 
form was proposed for C, (n,d). In Ref. 9 scaling of the mo- 
ments was examined and crossover above the percolation 
threshold was proved numerically ford = 2. 

In the present work, analytical expressions are obtained 
for the CEs, making it possible to describe the critical behav- 
ior of C, (n)  above, below, and at the percolation threshold 
for any n and d, on the basis of a hierarchical weak-link 
model. A comparison was made with the published results of 
numerical modeling. We note immediately that the numeri- 
cal values of the analytical expressions obtained for the CEs 
on the basis of the WLM agree satisfactorily with all numeri- 
cal results known to us and they thereby make it possible to 
express the infinite set of CEs, obtained by numerical model- 
ing for n = 1,2, ... in terms of only the three main CEs-two 
CEs for the conductivity ( t  and q)  and one CE for the corre- 
lation length (v) .  At the end of this paper it is shown that 
instead ofpartially summing the terms in C, (n )  over powers 
of h, an "exact" expression, an analog of the Dyson equation, 
can be written down for C, (n,d). 

1. HIERARCHICAL WEAK-LINK MODEL 

The first model of a percolation medium above the per- 
colation threshold (T  > 0)  was the model constructed by 
Skal and Shklovskii (Ref. 17) and de Gennes (Ref. 18). This 
model, though it makes it possible to describe the most im- 
portant aspect of such systems, their critical behavior, leads 
to a contradiction in the case d = 2. An analogous model, 
but for the case T < 0, was proposed in Ref. 19. The Skal- 
Shklovskii-de Gennes model was extended in a number of 
papers, where, for example, in the "colored" ad- 
ditional CEs, which in turn must be found numerically, are 
introduced. In order to describe the kinetic properties, for 
example, a,, more accurately it was necessary to employ 
more complicated, fractal (self-similar) models, in particu- 
lar, the drop model2' for the case r > 0. 

We note that in all of the models indicated above, first, 
the main problem is to determine the conductivity exponents 
t and q in terms of, for example, the critical exponents of the 
correlation length v and, second, the case h = aJa, = 0 is 
studied. In the process it is assumed that in the case r > 0 the 
poorly conducting phase does not conduct current at all 
(a2 = 0)  while in the case r < 0 the voltage drop across the 
phase with good conductivity can be neglected (a, = a, ) . 

In Ref. 15 the so-called weak-link model was proposed. 
In this model, first, it is assumed that the critical exponents t 
and q are known and are used to determine the geometry of 
the model and, second, current flow through both phases 
simultaneously is taken into account. We examine this mod- 
el in detail, since all of the numerical data can be described 
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by calculating the critical exponents on the basis of this mod- 
el. 

Above the percolation threshold ( r  > 0) the first step in 
the hierarchy of the WLM is a long thin bridge between two 
bases-two sections of an infinite cluster, the voltage drop 
across which can be neglected. The difference between the 
WLM and the Skal-Shklovskii-de Gennes model and the 
NLB (node link-blob, where the bridge is called the link and 
the base is called the blob) model is fundamental and con- 
sists of the fact that the bridge length I is not sought on the 
basis of different probablistic considerations (as is the length 
of singly connected links), but rather it is postulated so as to 
have an expression for ue (r > 0)  in the zeroth-order approx- 
imation in h.  The area S of the thin interlayer consisting of 
the poorly conducting phase in the first step of the hierarchy 
of the WLM below the percolation threshold is also deter- 
mined similarly. Thus, equating the resistance of the section 
of the medium of size L -6 (6 is the correlation length) to 
the resistances of the bridge (p>p, ) and the interlayer 
(p <pc ) (see Fig. la) ,  i.e., assuming that 

and taking into account the fact that [-aolrl - ", we obtain 
the following basic conditions of the WLM: 

where 

and f, and f, are known exponents in percolation theory 
and are related to the average resistance and average con- 
ductance of the medium. 

The second step in the WLM hierarchy takes into ac- 
count the finite conductivity of the poorly conducting 
( a 2 # O )  and well conducting (u, # ) phases. This means 
that forp >p, not only the current in the bridge but also the 
current flowing through the interlayer oriented parallel to it 
(Fig. l c )  are taken into account. In the casep <p, the bridge 
is connected in series with the interlayer (Fig. Id) .  This step 
of the hierarchy corresponds to the first two terms in Eqs. 
(2 )  and (3) .  The next, third, step is shown in Figs. l e  and f. 
The equivalent electrical circuits of these steps (in the ab- 
sence of a magnetic field and thermo-emf) are presented in 
Fig. 2. Note that all bridges and interlayers have the same 
geometry [the same length and area (8)  ] ; i.e., for any step in 
the WLM hierarchy the geometry of the weak links is deter- 
mined by only two relations. 

2. MOMENTS OF THE CURRENT DISTRIBUTION IN A 
PERCOLATION SYSTEM 

We first study the current distribution forp >pc , using 
the second step of the WLM hierarchy (Fig. lc).  According 
to Eq. (61, 

where j ,  and El are the current and field in the bridge, j2 and 
E2 are the current and field in the interlayer; V,, =at-  ' I  and 
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V,,, =:a$,, are the volumes of the bridge and the interlayer, 
respectively; V- Ld ; and E=: Aq, /L, where Aq, is the voltage 
drop across the distance L. Turning to the equivalent circuit 
(Fig. 2 ) , we find 

Substituting Eqs. ( 11 ) into Eq. ( 10) and using Eqs. (8)  and 
(9 ) ,  after elementary transformations we obtain (n > 1 ) 

e f 

FIG. 2. Equivalent electrical circuits of the steps in the hierarchy. 

FIG. 1. Hierarchical weak-link model. The phase with good con- 
ductivity is hatched. 1-bridge, 2-interlayer, a,-minimum size 
of the structure (in the lattice model-the link length); a, c, c, (b, d, 
f)  are the first, second, and third steps in the hierarchy, which cor- 
respond to the first term, first two terms, and first three terms in 
Eqs. (2)  and ( 3 ) ,  respectively. 

C , (  n )  = C ,  ( n )  r -"+C,(n)hT T-'+. (12) 

and similarly for the case p < p ,  

Here 

We note that in order to determine the critical behavior 
it is likewise possible to use not Ce (n),  i.e., a specific charac- 
teristic, but rather Y e  (n),  characterizing the moment (for 
n = 2, l/f noise) of the entire sample with volume V,. In 
Ref. 13 analogs of Kirchhoffs laws were established for 
Y e  (n#2). These laws are easily extended to the case of 
arbitrary n: 

where the first and second relations refer to resistances R,  
connected in series and in parallel, respectively. 

It is easy to find the relation between the notations 
adopted in Ref. 13 and Ce : 

368 Sov. Phys. JETP 75 (2), August 1992 A. E. Morozovskii and A. A. Snarskii 368 



Taking into account the first nonzero in h terms makes 
it possible to establish the behavior of the moments C, (n)  at 
the percolation threshold. These moments can be obtained 
by equating rand  A, i.e., the width of the critical region. In 
so doing, we obtain from both Eqs. ( 12) and (13) 

C,  (n) -C, (n) h-'+ C,, ( I L )  h-zr,, h = = o L / ~ l r  (17) 

where the critical exponents s, and z, are as follows: 

Substituting into Eq. ( 18 ) the numerical values of the criti- 
cal exponents t, q, and Y for any d, we can easily show that s, 
andz, are positive and therefore at the percolation threshold 
l/f noise and other moments increase with increasing in- 
homogeneity of the medium, i.e., with increasing h - ' . We 
also note that for all d, except d = 2, the relation 
s, - z, ~ 0 . 3  (n - 1) is satisfied.As for 5the two-dimension- 
al case, it is shown in Ref. 10 that at the percolation thresh- 
old the average values of the nth powers of the dissipated 
energies are the same in both phases and hence the difference 
in the terms in Eq. ( 17) is determined only by the difference 
between C ,  (n)  and C, (n) .  Indeed, for d = 2 we obtain from 
Eqs. (18) 

3. ANALYSIS OF RESULTS 

We now compare the resulting critical exponents with 
the known results of numerical modeling. It follows from 
Eqs. (12), (13), and (17) that the second terms, which 
originate from the additional elements of the structure (par- 
allel interlayer forp >p, and series bridge forp <p, ), can be 
comparable to and even greater than the first terms, depend- 
ing on the value of the ratio C, (n)  /C, (n ). For the case n = 2 
(l/f noise) this fact was first noted in Refs. 14 and 15. In 
Ref. 15 the critical indices k,, k ; , w, and w; were also found. 
Detailed numerical investigations of the behavior of the nth 
moments were performed in Refs. 7 and 8. Thus, for exam- 
ple, for the percolating regions ( r  > 0) the nth moment is 
defined as 

where 4 = - (x, + y,) r ( t  + q)/v is the so-caIled cross- 
over exponent. 

With the help of the Monte Carlo method the functions 

and similar expressions for GNpand I,, as a function of 
log(hL9 were obtained for n = 1,2, 3 and d = 2,3. One of 
these functions is shown in Fig. 3. Numerical values of x, 
and y, were established on the basis of these cal~ulations.~~" 

In order to compare with the results of Refs. 7 and 8 it is 
necessary to find a relation between G p  , G N p ,  ... and C, . It is 
easy to show that this relation has the form 

It is understood that the summation or integration on both 
the left- and right-hand sides of Eq. (21) extends only over 
one of the phases. Comparing Eqs. ( 12) and ( 13) with Eq. 
(20), we find on the basis of Eq. (21 ) the following expres- 
sions for x, and y, : 

where 

The values of - vx, and - ~ y ,  obtained in Refs. 7 and 8 
and with the help of the WLM (22) are presented in Table I. 
The agreement between these values is satisfactory in spite of 
the simplicity of the WLM. Using the E = 6 - d expansion 
(d, = 6 is the critical dimension23 ) and taking the critical 
exponents t = 3 - 0 . 2 4 ~  and Y = 0.5 + 0 . 0 6 ~  we obtain 
k n z 2 ( n - 1 ) - 0 . 1 6 ( n - 1 ) ~ a n d  -~x,=: l+O.O2~.For 
the critical dimension d, = 6 we obtain for these critical ex- 
ponents k, = 2 ( n -  I ) ,  k: = n -  1, -YX, = 1, and 
-vy, =2(2n - 1). 

We note that using the analytical relations for the criti- 
cal exponents y, and x, and the crossover exponent 
4 = - (x, + u,), we obtain from Eq. (22) for any dimen- 
sion of the problem 

and in addition the summation in G,, extends over the well- 
conducting phase and the summation in I,, extends over the 
poorly conducting phase; i, is the current flowing through 
the a th  link; and a unit current is assumed to flow through 
the sample as a whole. The moment for the nonpercolating 
samples (r < 0) G ,  is written similarly. In the same work a 
scaling transformation is proposed for G , , I p ,  G,, and INp, 
for example, 

G P ( ~ ,  L, AP, h)=l-"nGp(n, Llh, Aplh-I", hl*), 
(20) 

I,(n, L, Ap, h)=hk(nhP)"b(n, Llh, Aplh-'Iq, hap), 

FIG. 3. Multifractal moment of a percolation sample for n = 3, d = 2: 
Monte Carlo results from Ref. 7.The straight lines correspond to the 
weak-link model. 
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TABLE I. 

I - vxn - VV, 

WLM 111) 1 W L ~  (z) Data from Refs. 
16 and 7 

The equation (23) agrees well with the numerical results of I 
Refs. 7 and 8. 

4. SCALING OF HIGHER-ORDER MOMENTS 

The series expansion of a' (2)-(4) is based on the simi- 
larity hypothe~is,~ according to which 

wheres = t / ( t  + q),  m = s/t, and F(z) = 1 for Z = 0 and is 
a power-law function as Z-P + co . The function F(z) is cus- 
tomarily called a scaling function. 

In the study of the critical behavior of the moments of 
the current distribution there naturally arises the question of 
how to write a relation Ce ( n )  similar to Eq. (24) and the 
question of the asymptotic behavior of functions similar to 
F(r/hm ). In order to answer these questions we turn to the 
WLM and we examine first the case r > 0. The equivalent 
circuits presented in Figs. 2a, b, and e can be interpreted as 
partial sums of an infinite series. According to the WLM, the 
structure of the medium, i.e., the arrangement of the bridges 
and interlayers with respect to one another, is self-similar. 
For this reason, it is possible to write in the language of Fig. 2 
a closed equation for the conductance 8, ,  the analog of the 
Dyson equation (see, for example, Ref. 24), to which there 
corresponds the quadratic equation 

Since, according to Eqs. (7)  and (8),  

whence, according to Eq. ( 15), 

We note that Eq. (29), in contrast to Eq. (25), is a linear 
equation. The equation (29) answers the question of scaling, 
since, rewriting Eq. (29) in the form 

we can express Y e  in terms of Y ,  and Y, and the scaling 
functions 8, which are now known. 

Switching to specific quantities and performing calcula- 
tions similar to those performed above, we obtain for the 
case T < 0 

the solution of Eq. (25) can be expanded in a series of the 
small parameter h ~ - ( ' + ~ ) ,  whence Eq. (2)  follows. A ~ ~ ( n ) = . % ( . ) ~ ( l  +$)l" + y,($)" 

2, -1 I 
(31) 

closed equation can also be written down for ue in the case 
r < O :  We designate the terms in parentheses in Eqs. (2)  and (3) as 

I I 
g +  ( h )  andg- (A), whereh = h ~ -  ( t  + q ,  , i.e., 

(27) The functions g + ( h )  determine the scaling corrections and 
are related as follows to F(r/hm ): 

The analog of the Dyson equation can be obtained for g-(li)= ( l~ l lh" ' )~ l . ' (q lh" ' ) ,  t < O .  (32) 
C, ( n  ) in a manner similar to the closed equation for ue . For 
example, for r > 0 In terms of g +  ( h )  and g -  (h) the specific characteristics 
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C, ( n ) ,  as follows from Eqs. (30) and (3  1 ), substituting Eq. 
( 16), have the form 

C, ( n )  =C,(n) ~ - ~ r ' f ~  (gc) + C ? ( I L ) E " T - ~ ~ , ' ~ ~  (g+). T>O? 

( 3 3 )  
C,(IL) =C2(n) I ~ l - ~ ~ ' f , ( ~ - ) + C , ~ " j ~ 1 - ~ ~ f , . ( g - ) ~  6 0 ,  

where the small corrections (multipliers of order unity) A 
are expressed as follows in terms of g , : 

Thus the relations (33) answer the question of the scal- 
ing of the higher-order moments, since the correctionsA are 
expressed in terms of the known scaling function P(r /hm ). 

In conclusion we note that it would be interesting to 
investigate the higher-order moments of the current distri- 
bution for media with no minimum size, for example, for the 
so-called "swiss cheese" media.25 These investigations were 
initiated in Ref. 26. We hope that elaboration of the ap- 
proach proposed here will help obtain results for this case 
also. 
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