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It is shown that the transition temperature T, of a superconductor oscillates as a function of the 
distanced between two planar defects present in it. The dependence of the oscillations on the 
amplitude for electron scattering by a planar defect is investigated. It is shown that the amplitude 
of the oscillations exhibits critical behavior near the Anderson transition, described in Ref. 8, at 
which the order parameter becomes localized at atomic distances near planar defects. 

1. INTRODUCTION 

Quantum oscillations of the superconducting transition 
temperature T, have often been observed in coated films,'-2 
sandwiches,' and super lattice^.^ One possible experimental 
geometry is shown in Fig. la: an interlayer B of thickness d is 
introduced into a superconductor A (consisting of a material 
different from 6 )  of thickness L 5 lo ,  where lo is the coher- 
ence length; the transition temperature T, oscillates as a 
function of d. This effect was studied theoretically by Kagan 
and Dubovskii4 Their approach was to reduce the problem 
to calculating T, for a thin film with a variable boundary 
condition. The material B was assumed to be nonsupercon- 
ducting and the proximity effect was completely ignored; the 
change in T, was then related to the change in the density of 
states of the superconductor A; the density of states depends, 
to order a/L (a  is the interatomic distance), on the bound- 
ary condition at the A and B interface; and this boundary 
condition, in turn, varies periodically as d changes, depend- 
ing on how commensurate d is with the electron wavelength. 
These considerations give a reasonable qualitative explana- 
tion of the effect, though a systematic analysis does not sub- 
stantiate them.5 

In this paper we predict that the transition temperature 
T, of the superconductor A, which contains two planar de- 

and similarly at the point z = - d /2. The parameter x has 
the dimension of a wave vector and characterizes the scatter- 
ing properties of the defect: For x > 0 the defect has the form 
of a potential barrier and for x < 0 the defect has the form of a 
potential well. 

The form of the quantum oscillations depends strongly 
on the ratio of x and k, (Fig. 2)  : For K % k, the oscillations 
have a sawtoothed form (Fig. 2a); for 0 < x <kF the oscilla- 
tions are nearly sinusoidal with amplitude - ( ~ / k , ) ~  and 
they occur against the background of a constant shift 
-x/k, (Fig. 2b); for x < 0, 1x1 < k ,  (Fig. 2c) the form of 
the oscillations is the same as in the preceding case, but due 
to the existence of bound states near the defects a smooth 
component, varying on the scale of the localization radius 
I x 1 - ' of the bound states, appears. For x < 0, I x 1 % kF the 
oscillations have a sawtoothed form, but in contrast to the 
case x k, these oscillations are damped (Fig. 2d). 

It is not difficult to give a physical interpretation of 
these results. For 1x1 % k, the transmission coefficient of a 
planar defect is small and there are two weakly bound sys- 
tems (Fig. 3b): a three-dimensional superconductor with a 
continuous spectrum for /z( > d /2 and a quasi-two-dimen- 

fects, oscillates as a function of the distance d (d < L  95,) 
between the defects (Fig. lb) .  Comparison with Fig. la 
shows that the materials A and B need not be different in 
order for quantum oscillations to exist, in contrast to Kagan 
and Dubovskii's p i c t ~ r e , ~  where this difference is important. a 
Actually, in both cases (Fig. l a  and b)  the oscillations of T, 
are a consequence of the coherent interaction of the two 
planar defects. 

2. BASIC RESULTS 

Let the superconductor A be a metal with a quadratic 
spectrum ~ ( k )  = k2/2m and Fermi momentum k,, and let 
the planar defects be 8-like in the transverse direction, along 
which we orient the z-axis (the point z = 0 lies midway be- 
tween the defects). Then the boundary condition for the sin- e & * #  

gle-particle wave function p (z )  of the transverse motion 
[the complete wave function is Y ( r )  = p(z)  exp(ikli rll ), 
where kll = (k, ,k, ) and ril = ( x ,y )  ] has the following form 
at the point z = d/2: 

FIG. 1.  Geometry of the experiment for observing quantum oscillations 
( cp(d12 -0 ) .  cp'(dl2+0) - c(l'(dl2-0) =xcC, (d /2 )  of T , ,  
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FIG. 2. Form of the quantum oscillationsfor the geometry in Fig. l b  with different ratiosof xand  k,: a )  x>k,:,b) O <  x< k,,c) x <O,  1x1 < k, ,d)x < O ,  
I~ i />k , . ;  here A =/l,,k,L/r, B=/l,,k,.L, and C =  ( ~ 1 1 6 ) ~  ( / ~ l / k ~ . ) ~ / l , , k ~ L .  

sional system for lzl < d /2, whose spectrum consists of a col- 
lection of two-dimensional bands of size-quantization levels, 
depending on the longitudinal momentum k,, . As d increases 
the splitting between the levels decreases, and when the bot- 
tom of the next two-dimensional band passes through the 
Fermi level the value of T, increases abruptly as a result of 
the abrupt increase in the density of states." As 1x1 de- 
creases the size-quantization levels broaden, and this results 
in smoothing of the oscillations. 

For 1x1 < kF it is convenient to consider the electronic 
wave functions as being the result of repeated reflection of a 
plane wave from the defects. Interference of the incident 
wave A expikFz and the doubly reflected wave 

A ,  exp(2ikFd + ikFz) plays the main role (two reflections 
are necessary in order to gather information about the pres- 
ence of two defects). The result of interference is a periodic 
function of d, manifested in the form of the oscillations of T,. 
Since with each reflection the amplitude of the reflected 
wave is a fraction -x/kF of the incident wave, we have 
A ,  - A  (tc/kF ) 2  and the amplitude of the oscillations is found 
to be of second order in x/kF. 

For a single planar defect (inset in Fig. 4) ,  as x varies in 
the direction of negative values as Anderson quasiphase 
transition, described in detail in Refs. 8, 5, and 7-a transi- 
tion into a state in which the order parameter is localized at 
the atomic distance near a defect-occurs at the point 

FIG. 3. For x>k, there are two independent subsystems: the three-di- 
mensional system for lzl> d / 2  with a continuous spectrum (on the left) 
and a quasi-two-dimensional system for lzl < d / 2 ,  whose spectrum con- 
sists of a collection of two-dimensional bands (on the right). 
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FIG. 4. Form of quantum oscillations near transition Ix - x, ( < x, 
curve I-x > x , ,  curve 2-x < x,. The inset shows T' versus for a 
single defect; here D = /Z,k,L /n. 

a2 - 
0 - 

-42 - 

xc = - 4k,/n. Near the transition the oscillating part of T, arranged defects, then the Gor'kov equation can be solved 
has the following form for k,d> 1 (Fig. 4):  with minimum assumptions about the nature of the defect by 

using do/L as the small parameter. The simplest expression 
(6Td 03c i 7 (2kad)  for T, is obtained when there are no bound states near a - = - { 1 ( 2 k , d ) ~ ( ~ x ) + t ; o n s t - ) ,  T,, hok& (1)  

I A x ~  

where y ( x )  is a periodic function with period 27r and 
Ax = x - x ,  . As one can see from Eq. ( 1 ), the asymptotic 
form of the oscillations for large values of d changes at the 
point x,: The oscillations are periodic for x > xc and decay 
as l/d for x < x,. For small d the amplitude of the oscilla- 
tions diverges at the transition point [neglecting the broad- 
ening of the transition, which is of the order of 
Sx - x, (a/L) I"; see Ref. 81. 

The experimental results for twinning planes9 and the 
theoretical considerations in Ref. 8 indicate the possibility of 
increasing the superconducting transition temperature Tc 
by introducing planar defects into superconductors. The 
present analysis shows that the interaction of planar defects 
can increase Tc even in the case when one defect lowers T,; 
the relative increase in T, is of the order of a/L and can be 
significant at the limit of applicability of the theory 
(L-d -a). From this viewpoint the situation under discus- 
sion (Fig. lb)  is more advantageous than the case studied in 
Ref. 4 (Fig. la),  when oscillations of Tc with amplitude 
-a/L are superposed on a bulk contribution -d /L (Ref. 
5),  which in actual situations (T,  of the material B is lower 
than Tc of the material A )  is negative. 

3. INITIAL EQUATIONS 

A method for calculating Tc of a superconductor con- 
taining planar defects was devised in Refs. 5 and 8. If the 
transverse size do of a defect is small compared with L 
(L Sf, ) ,  where L is the thickness of the superconductor in 
the case of a single effect or the distance between periodically 

where N(z) is the local density of states at the Fermi level, 
V(z) is the coordinate-dependent four-fermion interaction 
constant of the BCS theory, No and V, are the values of N ( z )  
and V(z) in the absence of a defect, and A, = VdV,; the inte- 
gral extends over the neighborhood of the defect. The local 
density of states is expressed in terms of the eigenfunctions 
Y,, ( r )  and eigenvalues E ,  of the single-particle Hamilto- 
nian: 

If m local levels are present near a planar defect (for 
fixed k,, ), the transition temperature T, of the system is de- 
termined by the point at which a nontrivial solution of the 
linear system of (m + 1) equations for +(0) and A, (s = 1, 
2, ..., m) appears: 

where ilii is expressed in terms of V(z) , N(z) , the eigenfunc- 
tions p, (z), and the eigenvalues E,  (kl, ) of the bound states: 
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where N i, (0) is the two-dimensional density of states, cor- 
responding to the spectrum E, (kil  1, at the Fermi level. The 
expressions (4  )- (6)  follow from the formulas (25 ) of Ref. 5 
after K,o, (zz') in the form (4)  is substituted into it, where 
only terms with s = s', corresponding to local levels, are re- 
tained in the sum. The parameter d,, having the dimension of 
length, is introduced in order to make the quantities A,,. di- 
mensionless and actually does not appear in the equations; in 
the case at hand; it is convenient to take do-a, and then all 
A,,.-1. 

In what follows the formulas (2)-(6) are applied to a 
"planar defect," consisting of two elementary planar defects 
separated by a distanced (Fig. 1 c) . We considered the quan- 
tity V(z) to be constant and equal to V,, since the difference 
between V(z) and V, will not cause quantum oscillations, 
and the effect of such a difference can be easily taken into 
account qualitatively in the final results. 

4. FORM OF QUANTUM OSCILLATIONS FOR x g  kF 

In the case x > 0 there are no bound states near planar 
defects, and T, is given by the formula (2); the difference 
between N(z) and No is determined by the states of the con- 
tinuous spectrum (we shall designate this situation by the 
index ( ( c )  ) ) : 

Finding the eigenfunctions \y, ( r )  and eigenvalues E,  of the 
single-particle problem, substituting them into Eq. ( 3 ) ,  car- 
rying out the trivial integration over k l i ,  switching from 
summation over the transverse quantum number to integra- 
tion, and neglecting terms of order -d /L, we obtain for 
N, (z) for ( z I  - d /2 < 0 

N,(z) = --- - j dq{2cos2qz 
xy sin yd-x2 cos"qd/2) - 

(23~) '~  ut+ (9) 4- (!I) 

-xq sin qd-xz sin2 (qd/2) 
+2 sinZ qz 

uz+ (9)uz- (9) 
}, (gal 

andforx = lzl - d/2>O 

where we have introduced the following notation: 

u15(q) = (x*~q)cos(qd/2) - q  sin(qd/2), 

u2* (q)= ( Y . T ~ L Q ) S ~ J ~  (qd/2) + q  cos (qd/2). 

vl(q) =q2 cos2(qd/2) -[x cos(qdI2) -q sin (qd/2) I z ,  
U Z ( ~ )  =2y cos (qd/2) [x cos(qd12) -q sin(qd/2) 1, (9 )  

v3(q)=qZ sin2(qd/2)- [x sin(gdl2) +q cos (qd/2)IL, 

v, (q) =2q sin (qdI2) [ x  sin (qd/2) +q cos (qd/2) 1. 

For x ) k, the integrands in Eqs. ( 8 ) are localized near 
the points 

and can be approximated by set of delta functions [in order 
to simplify the computations it is convenient to add the frac- 
tions in Eqs. (8)  1. As a result we find 

where M = [k,d '/TI and [...I indicates the integer part of 
the enclosed number. Substituting the expression ( 1 1 ) into 
Eq. (2)  we obtain 

The oscillations have a sawtoothed form (Fig. 2a). 

5. QUANTUM OSCILLATIONS FOR 0 < x <kF 

We represent N, (z) in the form 

where F(z)  is determined by the expressions (8)  with the 
integration extending from 0 to m. It can be shown by the 
method of contour integration (see the Appendix) that for 
x > o  

F (z) =O. (14) 

The function G(z) is calculated by expanding the integrands 
in Eqs. (8)  in powers of x/q. Substitution into Eq. (2)  gives 
the result 

i.e., the oscillations are of second order in x/k,. The func- 
tion f(x),  determining the form ofthe oscillations (Fig. 2b), 
is given by the expression 

[Si(x) is the sine integral] and has the following asymptotic 
form: 

2n-x, z<l, 

n-sin x, x>>I. 
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6. OSCILLATIONS OF T, IN THE PRESENCE OF SHALLOW 
LEVELS(x<O,lxl q k F )  

For x  < 0 bound states with 

where 0, and 0, are solutions of the equations 

appear near the defects. The level E ,  exist only for ( x ( d  > 2, 
and for (x ld  < 2  it emerges into the continuous spectrum. 

The transition temperature is determined by the expres- 
sions (4)  and ( 6 )  with m = 2. Neglecting effects of order 
- a / L  we obtain 

where T,, is the transition temperature in a system of Tamm 
levels neglecting their interaction with the volume: 

T2,=1.14mD eap ( - l !hzD) .  

For T, > T,, the order parameter propagates through the 
entire system; for T, < T2, the order parameter is localized 
on the atomic scale near The last condition is 
realized at x  < x ,  = - 4 k F / a  for large d  ( k F d ,  1 )  and for 
x  < x c / 2  for small d  (k,d < 1 ) . Neglecting terms - a / L  re- 
sults in smearing of the transition over a scale 

In the delocalized state ( T, > T2, ), neglecting terms 
- a / L  leads to the following result for T, in the presence of 
two local levels ( [ % I d >  2 ) :  

In the presence of one level ( 1 x  Id < 2  

6T, d 1 - 2 - ( a o o  + 
T c o  L Lo3 ho-hrl 

In the absence of levels only the term with Roo remains in 
Eqs. ( 2 1 )  and ( 2 2 ) ,  and we return to the formula ( 2 ) .  

For x  < 0 the local density of states can be represented 
in the form 

where Nc (z) and N,, ( z )  are determined by the expressions 
( 8 )  and ( 6 ) .  We now separate N, ( z )  as in Eq. ( 13).  For 
x < 0 the following result holds for F ( z )  (see the Appendix ) : 

Substituting Eqs. ( 2 3 ) ,  ( 13),  and ( 2 4 )  into Eq. (21 ) leads to 
the result 

The first term in parentheses coincides with the result for 
x > 0, the second term describes the smooth component of 
the function T, ( d )  and varies over the scale 1x1 - (it is 
written out to lowest order in x ) .  Substituting Eqs. ( 2 3 ) ,  
( 13) ,  and ( 2 4 )  into Eq. ( 2 2 )  gives a different result from Eq. 
( 2 5 )  in that the term A  io does not occur. The calculation of 
A,, and A,, does not present any difficulties, since / p l  ( z )  l 2  
and l p 2 ( z )  l 2  vary over the scale lxl-', while the function 

is localized on a scale k  ; ' near the planar defects. Taking 
into account the result ( 15) for x > 0, we arrive at the formu- 
la 

( 2 6 )  
where the function f ( x )  is the same function as in Eq. ( 15) 
and the functiong(x) (Fig. 2c)  is determined by the expres- 
sion 

[by virtue of Eq. ( 18) 0, and f12 are functions of ( x ( d ]  and 
has the following asymptotic forms: 

7. OSCiLLATiONS OF T, IN THE STRONG LOCALiZATlON 
REGIME(x<O,lxl +k,) 

In the case Ixl/k, ) 1 the scale 1x1 - ' is small com- 
pared with the period of the oscillations. Confining our at- 
tention to the region d )  I x  I - ', we neglect the overlapping of 
the wave functions of the bound states localized on the two 
defects. Then in Eqs. ( 4 )  and ( 5 )  

For x) k ,  the order parameter is localized near the planar 
defects, and for this reason T, in the zeroth-order approxi- 
mation is equal to T,, [see Eq. ( 2 0 )  1. To first order in a / L  
we have2' 

T,-TZo do  2hjohot -- -- - , k z ~ = 2 h I t .  ( 3 0 )  
T ~ D  T, hmY(hz~-ho) 

The integrals for A,, and A,, in Eq. ( 5 )  are easy to calculate 
because the wave functions of the bound states are strongly 
localized near z = f d  /2;  the oscillations of T, are deter- 
mined by the behavior of the quantity N, ( z ) ,  for which the 
expression ( 1 1  ) is valid, near the points z = f d  /2 .  As a 
result 
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where 

The oscillations have a sawtoothed form, but their am- 
plitude decreases as l/d (Fig. 2d). 

8. ASYMPTOTIC BEHAVIOR OF THE OSCILLATIONS FOR 
LARGE d AND THE NEIGHBORHOOD OF THE PHASE 
TRANSITION 

For jx Id$1, kFd) 1 the form of the oscillations can be 
determined for arbitrary ratio of k, and x. Since the overlap- 
ping of the wave functions of the bound states localized on 
different defects can be neglected, the relations (29) hold. 
For 0 > x > x, the formula (21 ) implies 

For x > 0 only the first term in parentheses remains in Eq. 
(32), while for x < x, the result (30) holds. 

Oscillations which are undamped for large d are related 
to the quantity A,,, they are related to the integral appearing 
in it: 

(33) 
where 

I 1  (q. x )  = 
Y': -- 

y2-r.q sin x+x2 cos2 (2/2) 

T ---. 4: 
q+xq sin x+x2 sin"x/2) 

[for large d the integral of Nf (z) becomes constant]. We 
now expand the function H(q ,x )  in a Fourier series in the 
variable x. Then in Eq. (33) there appears a sum of integrals 
of products of rapidly oscillating exponentials by slowly 
varying functions, whose asymptotic behavior is determined 
by the upper limit of integration.'' The leading term in the 
asymptotic expansion contains the small parameter l/d, 
which cancels the factor of d in front of the integral (33); in 
view of the power-law character of the Fourier coefficients, 
the series arising in Eq. (33) is the expansion of a logarithm 
and sums to a finite expression, so that the expression in the 
braces in Eq. (33) can be put into the form 

sin (2kFd42q) 
y (2kFd) = arct.g 

1+4kF2/x2-cos (2kFd+2cp) ' 

As a result, the oscillations of Tc for x > xC have the asymp- 
totic form 

For x < x, the parameter A, is absent in the expression for 
T, (30). The oscillating part is contained in the quantities 
A,, and A,, and is related to the integral 

where the function H(q,x) is the same function as in Eq. 
(33). Since Eq. (36) does not contain a compensating factor 
of d, the oscillations for x < x, decay as l/d: 

Near the phase transition x z x ,  the results (30) and 
(32) can be combined into the form 

T,-T,,  6h 
-=- 

do do MtoAol 
e(6h) + - AooO(-6h) + 

T,o A,' Ao3L h,,L 1 (?A I , (38) 

where SA = A,, - A,, and 

Keeping the damped oscillations superposed on the periodic 
component is justified because of the l/ISA ) divergence. 
Substituting the asymptotic forms of the integrals (33) and 
(36) gives for the oscillations of Tc the result (1)  with the 
constant 

APPENDIX. CALCULATION OF F(z)  

The poles of the integrands in Eq. (8)  are determined 
by the roots of the equations 

u,* (p) =o, u," (q) =O. ( A l )  

The arrangement of the poles for x < 0, lxld > 2 is shown in 
Fig. 5: The poles corresponding to the upper and lower sign 
in ( A l )  (light and dark colored circles) lie, respectively, in 
the upper and lower half-planes; the poles on the imaginary 
axis, which correspond to bound states [see Eq. ( 18) 1 and 
lie in the "outside" half-plane, are exceptions. Representing 
the integrals in (8a) and (8b), respectively, as 

L X ~  e'q" - x5  2 2 (zz/2) e"'' + z sinL (/z - } , u2+ ((1) U? ( 9 )  

1 1 ~  (q) eL'q"-iu, ( y )  e""' 
t ---- 

u,+ (q )u?.- (9) 

and moving the integration contour into the upper half- 
plane, it is not difficult to show that the contributions of the 
"familiar" poles (dark circles in Fig. 5) vanish because of 
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FIG. 5. Arrangement ofthe poles for the integrals (8)  with x < 0, ( x l d  > 2: 
the light and dark colored circles designate the poles corresponding to the 
upper and lower signs, respectively, in Eq. (A1 ). 

Eq. ( A l ) .  The contribution of the two "unfamiliar" poles 
can be expressed in terms of normalized wave functions of 
the bound states and written in the form (24). 

As 1x1 decreases the quantity 8, changes sign at 
1xld = 2 and the corresponding dark and light colored cir- 
cles in Fig. 5 switch places; the contribution of the pole 
ilx1D2 vanishes, but at the same time the contribution of the 
upper level to N,,, (z) vanishes, so that the result (24) re- 
mains valid. 
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For x > 0 the "unfamiliar" poles in the upper half-plane 
are absent and the result ( 14) holds. 

I '  In the limit x- m ,  T, is determined by the la~.gest of two quantities: the 
volume transition temperature T, and the transition temperature of a 
size-quantized film:' The amplitude of the oscillations is of order a/d 
and decreases with increasing d. This limit is not described by the theory 
presented, since for x 2 k,- ( L  /d) the starting expressions (see Sec. 
3) are no longer applicable because the structure of the superconducting 
core changes significantly.',' Thus in the situation under study the in- 
teraction between the subsystems is significant. 

"For T,, - T, Z T,  corrections to the starting formulas (4)  and (5) 
appear, but taking them into account is analogous to taking into account 
the dependence Y(z) .  
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