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In modern experiments on neutron scattering by deformed polymer networks unusual iso- 
intensity lines of the "butterfly" and "diamond" type have been obtained. A microscopic 
approach is used here to calculate the correlation functions of the network-density fluctuations, 
which determine the intensity of such scattering. It is shown that the observed scattering 
anisotropy, which differs from the prediction of the classical theory of high elasticity, is due to 
defects of the topological structure of the network. 

1. INTRODUCTION 

One of the most sensitive methods for studying the 
structure of polymer networks on microscopic scales is neu- 
tron scattering. In neutron-scattering experiments one ex- 
amines systems containing long deuterated chains cross- 
linked with chains of the matrix-the polymer network.' 
For visual observation of the scattering one uses a two-di- 
mensional multiple detector placed at an angle of 90" to the 
incident beam. In the case of uniaxially deformed networks 
the classical the~ry ,~ . '  based on the assumption that the 
stretching of the network is affine in character, predicts that 
the iso-intensity curves are elliptical in ~ h a p e . ~ - ~  

Experimentally, one observes curves of the "butterfly" 
and "diamond" type (see Fig. I ) ,  which differ substantially 
from this prediction.'.' An explanation of these effects can 
be given only on the basis of a microscopic approach that 
takes into account the nonaffine character of the stretching 
of the polymer networks. The study of these effects involving 
nonaffine character is also important for numerous practical 
applications of real polymer networks, which always have 
defects of the topological structure. The corresponding theo- 
ry, describing structurally inhomogeneous networks, has 
been developed in Refs. 8-10. 

In this article we shall give a theoretical description, on 
the basis of the replica approach of Refs. 8 and 9, of networks 
that are obtained by statistical cross-linking of long chains; 
such networks have been investigated experimentally in 
Refs. I and 7. We obtain the dependence of the intensity of 
the scattering of neutrons by deuterated chains on the vol- 
ume fraction @ of these chains. When the deuterated chains 
and the chains of the matrix are identical, this dependence 
has the form 

Here the form factor S, has the classical anisotropy of an 
ellipse with its long axis perpendicular to the stretching. The 
form factors G, and C, have the butterfly anisotropy, with 
their respective maxima in the directions perpendicular and 
parallel to the stretching. For finite values of @ the resulting 
scattering intensity ( I ) has the anisotropy of a rhombus. 

2. THE CHOICE OF MODEL 

Since the effects that we are discussing are due to struc- 
tural disorder, in describing them theoretically we should 

first of all determine the probability measure on the configu- 
ration space {G) of the system. Besides the topological 
structure T of the network, the configuration G = (T,D) 
should include the "marking out" D of the chains of the 
network into deuterated and undeuterated chains. Corre- 
spondingly, the probability measure of configuration G is 
defined by the expression 

where P ( r )  is the probability of synthesis of a network with 
the given topological structure T. In the case of networks 
obtained in conditions of equilibrium with respect to the for- 
mation and breaking of chemical bonds, we have 

zN w K  p(r) =-- 
NI K! 

zt0) (r, o) / NI KI Z'O) (r, o), 
( 3 )  

where N is the total number of monomer links of the chains 
of the network and K is the number of cross links of these 
chains in a network with the specified structure T. The pa- 
rameters z and w are, respectively, the activities of the links 
and cross links, and Z 'O' (l7,O) is the partition function of a 
network with structure T at the synthesis temperature T'O'. 

The quantity P (D  /T)  in (2)  determine the conditional 
probability of a given way D of marking out the chains of a 
network with structure I?. Regarding it as a Markovian pro- 
cess, we can set 

where the product is taken over all links i of the chains, and 

" a ~  is the conditional probability of finding that the next link 
along the chain is of a given type0 = H, D (H for nondeuter- 
ated, and D for deuterated) if the preceding link was of type 
a. The matrix v is normalized by the obvious condition 

and its nondiagonal elements determine the average length I 
of the deuterated chains and the fraction @ of their links: 

The scattering intensity ( 1 ) of interest to us is propor- 
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FIG. 1. Experimentally observed'.' iso-intensity curves for neutron scat- 
tering through small wave vectors q in networks subjected to uniaxial 
stretching (in the direction indicated by the arrows). ( a )  Scattering by 
fluctuations of the total density of the network ("butterfly"); (b) scatter- 
ing by deuterated fragments of chains of the network ("diamond"). 

tional to the Fourier component of the density-density cor- 
relation function 

where the angular brackets denote the Gibbs average and the 
bar denotes averaging over all configurations G with the 
weight ( 2 ) .  The quantity Z ( r , { h ) )  is the partition function 
of the polymer network under the experimental conditions 
at temperature T, and h ( x )  is the external field acting on the 
links of the deuterated chains of the polymer network. 

As shown in Ref. 1 1 ,  when effects of topological restric- 
tions are neglected the partition function of the polymer 
with allowance for the interaction between its links can be 
represented in the form of a functional integral over the fluc- 
tuating field u ( x )  : 

where we associate a factor A ( x ,  - xi + , ) with each bond 
between links with coordinates xi and x,  + , , and the prime 
indicates that the summation is only over the links of the 
deuterated chains. The functional R* in ( 8 )  takes account 
the way the interaction of the chain links in the network 
contributes. 

The free energy of the network under consideration is 
given by the expression3 

3. THE FIELDTHEORY 

To perform the averaging ( 7 ) ,  ( 9 )  over the configura- 
tions G, we make use of the method of replicas,'.* by means 
of which the correlator ( 7 )  can be represented in the form 

(p(x)p(x'))=!P 
6' 

6h'l) (x)6h(" (x') 
In Zm {h'"} (m=h=o, 

( 1 0 )  

where the functional Z ,  is given by the expression 

The free energy ( 9 )  of the network is also expressed in terms 
of the functional ( 1 1 ) : 

Substituting the expression ( 8 )  for the partition function 
into ( l l ) ,  we find 

The functional R ,  can be represented compactly in the form 
of a functional integral over the fields and p: 

the validity of which can be seen without difficulty by ex- 
panding the integral ( 15) in a perturbation-theory series in 
the parametersz and w. The integration in ( 15) is performed 
over the coordinates X = ( X ( ~ ' , X ' " ,  ..., x'"') of the replica 
space, and Y - and A  ' are the inverses, in the matrix sense, 
to the matrix Y and to the function 

The fields h  (XI  and u ( X ) ,  as in Ref. 1 1 too, are given by the 
expressions 

For h  = 0  the quadratic part of the effective action H 
( 15 ) is diagonalized by going over to the new variables 
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Performing the gradient expansion of the Hamiltonian ( 15) 
and confining ourselves to the terms linear in the fields h(X) 
and v(X) = Au(X), we find 

The function ~ ( x )  decreases rapidly as x - m : 

x (5 )  -x:la exp (-2xSh) ; (27) 

and we have calculated it numerically using Eq. (26). This 
function describes thermal fluctuations Sx, = xi - (x i )  of 
the positions of the monomer links. The moments of Sx, can 
be expressed in terms of the corresponding moments of the 
function X2 (x)  : 

Substituting the resulting solution (26) into ( 19) and ( 12), 
for the elastic contribution to the free energy we find the 
following expression from the classical theory: 

where the parameter 7 = 1 - z determines the average 
length N = 7 ' of a chain of the network between two cross- 
links, and a is the characteristic bond length. 

4. MEAN-FIELD THEORY 
where V'O' is the volume of the system under the conditions 
under which the network is synthesized. When fluctuations of the fields $ and $ are neglected, 

the values of these fields can be found by minimizing the 
Hamiltonian ( 19). The polymer networks are described by a 
solution of these equations with spontaneously broken sym- 
metry-a solution characterized by a well-defined direction 
in the replica space8 (A, are the coefficients of stretching of 
the network along the axes p): 

5. GENERAL APPROACH 

To determine the correlation functions ( 10) of the den- 
sity fluctuations it is sufficient to find the solution of the 
equations for the minimum of the Hamiltonian ( 19) to with- 
in terms linear in h and v. For this we go over to the mixed, 
Fourier-coordinate, representation: 

the displacement along which corresponds to an affine de- 
formation of the network: 

where, by means of the equality (pR) = (qX), we have in- 
troduced new wave vectors p, corresponding to the coordi- 
nates (22) and (23). The quantitiesp?' = A,q, , which are 
the zeroth components of these vectors, are chosen to be the 
same for the fields h '" in all the replicas k = 0, 1, ..., m. It can 
be shown that, under this condition, the components p'per- 
pendicular to p"' are normalized, in the limit m -0, by the 
expressions 

It is convenient to introduce the components R'" of the 
vector X that are parallel to this direction: 

and perpendicular to it: 

Because of the conservation [for h (X)  = 0]  of the rotational 
symmetry about the direction of the vector e,, the solution 
$(X) of the equation for the minimum depends only on the 
quantity 

where S,, is the Kronecker symbol. The function h, (R1) in 
(30) is given by the expression 

As a result, we find 6, = $, = 0, and the equation for the 
function $, = $, -$ in the limit m -0 takes the form 

The formal solution of the equations for the minimum 
in the mixed representation (30) has the form 

Making Eq. (25) dimensionless, we find 
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where the "propagators" D, are determined by the equations vidual deuterated chains. The smallest eigenvalue 
A,, = I - ' + a2 (p"' ) of this operator is nondegenerate and 

Biq-IDiq(RL, RL') =G (RL-RL' 1, corresponds to the soft-mode eigenfunction 
~,q-1=l-L+T+a2 (p(O)) '-a2 v L2- w$'(z), 

+a2(p(0))2-azVLz-3~$2(~). a~q- -T (34) Q ( R )  I  $ ( z ) ,  JI* J~R&$' (Z)  =T/w, (37) 
-'b 

Substituting the solution (33) into the Hamiltonian ( 19), which describes deuterated-chain density fluctuations that 
we find are frozen in the process of preparation of the network. 

Se~aratinrr the contributions of the soft modes consid- - 
ered above in the expressions (33), we find 

6. GOLDSTONE MODES OF EXCITATION 

To describe the long-wavelength fluctuations we must 
substitute into (33) and (35) expansions of the functions 
h, (R1) and u, (RL) (32) in powers of the wave vector q. 
However, the limit q+O should be taken very carefully. At 
first sight, for this it is sufficient to retain only terms of ze- 
roth order in q in these expansions. However, terms linear in 
q also contribute to (35), even for q = 0. It is these terms 
that describe the effects of displacement deformations in 
polymer networks, and they owe their origin to the presence 
of soft modes in the spectrum of the elementary excitations 
of the system. 

We shall consider first the spectrum of the operator 
% ; ' (34), which describes fluctuations of the total density 
in the system. The eigenvalue A,, = ~ * ( p ' ~ ' ) ~  of this opera- 

Jor is 3m-fold degenerate, and corresponds to eigenfunctions 
of Goldstone soft modes: 

that describe translational displacements in the directions 
p = x, y, z in the replicas k = 1, ..., m. The presence of these 
modes is linked to the analysis of the ground state (26) of the 
system, with spontaneously broken symmetry (21 ). It is 
these translational modes that describe the loss of affine 
character upon deformation of the network, since they cor- 
respond to independent displacements u:' in each of the 
replicas. 

where u ,  are the Fourier components of the displacement 
vector for macroscopic deformations of the medium: 

and u, is the dimensionless amplitude of the statistical fluc- 
tuations of the density of the deuterated chains: 

7. FLUCTUATION MODES 

We now consider density fluctuations that do not re- 
duce to an elastic displacement, and also thermal excitations 
of the deuterated chains. These fluctuations are described by 
the terms *,, and *,,, respectively, which are induced (in 
accordance with the fluctuation-dissipation theorem) by the 
fields ,, and A,, : 

A 
The smallest eigenvalue of the Hermitian operator 

D , ' is always nondegenerate. Therefore, it should be nega- Substituting the expressions ( 3 8 )  into (35), we separate out 
tive for  mall q. The presence of this negative eigenvalue is the contribution of the Goldstone modes to the quantity AH: 
connected with instability of the system under the condi- 
tions in which the network is prepared in the absence of 
interactions between its links. Allowance for interactions of A H = - j  1 - 
the excluded-volume type eliminates this instability. 

dq (I*q+Zzq), 
 LA,^, ( 2 n ~  

The spectrum of the remaining excitations of the opera- 
tor % ; ' has (besides the excitations discussed above) a gap, I I ~ = c ~ ~ ~ ~ - ~ / L ~ ~ - ~  dRL$gq (RL)&-q ( R L ) $ ( z ) ,  
and the excitations describe density fluctuations that are not 
related to displacement and torsion effects. 

A z ~ ~ = L - ~  ~ c 2 q , , c l - q P -  j d ~ ~ $ ~ ~  ( R ~ ) z ~ - ~  ( R L ) ~ ( z ) .  
We now consider the spectrum of the operator D ; ' 

(34), which describes fluctuations of the density of indi- (42) 
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The field A , ,  makes a contribution to I , ,  that is small in the 
parameter q2 and will not be taken into account in what 
follows. To determine the contribution of the field A,, to 
the quantity I,, we expand this field in powers of the wave 
vector q. The contribution of the zeroth-order terms of this 
expansion to I,, is equal to 

pand the functionals Q* given by ( 8 ) ,  which describe the 
interaction of the monomer links, in powers of the fields dk ' :  

where B 'k '  = B ( k  = 1 ,  ..., m )  and B 'O' are the effective vir- 
ial coefficients in the conditions of the experiment and the 
synthesis, respectively. 

Substituting the expressions ( 4 7 )  and ( 4 8 )  into ( 1 3 )  
and calculating the correlation function ( l o ) ,  we find an 
expression for its Fourier component: The expression ( 4 3 )  describes statistical fluctuations of the 

network-link density that are "frozen" in the process of 
preparation of the network, and these exhaust the contribu- 
tion of the field h,, for q = 0 .  

We now calculate the terms of second order in q in I,, . 
We note that the term -q2 in the expansion of the field A,, 
( 3 2 )  in powers of q does not make a contribution to ( 4 2 ) :  
I : ,  = 0 .  Therefore, it is sufficient to consider only the linear 
terms of this expansion, for which where the parameters ?c and Bare related to the coefficients a 

and p by 

The function S@(z)  can be represented in the form 

To find a and p we substitute the expressions ( 3 9 ) ,  (43), 
and ( 4 6 )  into ( 4 2 ) .  As a result, for the coefficient a we find 
the expression 

where f ( x )  is a certain dimensionless function, an equation 
for which can be oktained by "pulling" the factor Ri 
through the operator D ,  ' ( 3 4 ) .  Actually, the only quantity 
we need is the constant c that appears after substitution of 
the expressions ( 4 4 )  and ( 4 5 )  into ( 4 2 ) :  

where n is the unit vector in the direction of the wave vector 
q.  This coefficient determines the amplitude of the thermo- 
dynamic fluctuations of the density of the monomer links in 
the absence of steric interactions. According to ( 2 8 ) ,  in the 
phantom networks it does not depend on A,. Therefore, the 
corresponding dependence of the Goldstone contribution to 
( 5  1 )  should cancel with the contribution of ordinary fluctu- 
ations, giving 

In the next section we shall obtain the magnitude of this 
constant c by means of simple physical considerations. 

8. THE CORRELATION FUNCTIONS 

As a consequence of the symmetry of the functional R, 
( 1 4 )  under permutations of the replicas k  = 1 ,  ..., m, its ex- 
pansion in powers of the fields hi should have the form 

Using the result ( 5 2 ) ,  we find, in analogy with ( 5  1 ), 

where the vector Aq has components {A,q,). We also ex- where the amplitude R of the thermodynamic fluctuations of 
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the links is determined in (28). In the approximation under 
consideration we also find 

9. CONCLUSION 

In this paper we have calculated correlation functions 
of deuterated chains that appear with volume fraction @ in 
the composition of a polymer network. According to the 
results (49), (50) and (53), (54), the form factors appear- 
ing in the expression ( 1 ) have the form 

where p =p'o'/A,A,A, is the density of the links of the 
network, and we have set 

2-a%-' (hq)' 
A,=l  + B -  . 2 

3 f.1 +R2 (hq) 2+R2q2] ' - 1+R2(hq) 2f Rag 

According to their definitions, N = l / r  is the average length 
of the chains in the network and the vector Aq has compo- 
nents {A, q, ). 

We note that the functions G, and C, depend on the 
direction of the wave vector q even in the limit q-0. They 
determine the intensity of the static scattering by fluctu- 
ations of the density of the polymer network, corresponding 
to the case @ = 1: 

Here G, is equal to the correlation function ofthe thermody- 
namic (temporal) density fluctuations, and C, is equal to 
the correlation function of the statistical (spatial) fluctu- 
ations of the density of the monomer links of the n e t w ~ r k . ~  
The function G, determines the dynamic-scattering intensi- 
ty, and, in agreement with the experiment of Ref. 12, de- 
creases in the direction of the stretching of the network. The 
correlation length depends on the direction of the wave vec- 
tor, and, in agreement with the experiment of Ref. 7, is 
greater in the direction of stretching. The correlation func- 
tion C, of the statistical fluctuations describes iso-intensity 
patterns of the butterfly type, with maxima in the direction 
of stretching of the network (see Fig. la) .  

According to Eqs. (49) and (55), the correlator C, of 
the frozen density fluctuations is proportional to the correla- 
tion function 

of the density fluctuations under the conditions in which the 
network is prepared with affine extension of the network by 
factors ofA, along the axesp = x, y, x. It  is this factor that is 

predicted in the framework of the classical theory of high 

In reality, in the preparation of a network it is not the 
density of the links that is frozen but the topological struc- 
ture of the network. The conditions of the experiment differ, 
generally speaking, from the conditions under which the 
network is synthesized. In the new conditions, defects of the 
topological structure of the network, together with affine 
stretching of the network, give rise to displacement and tor- 
sional deformations. It  is these which lead to contributions 
in addition to (58) to the function C, , and also to the anoma- 
lous dependence of the correlation functions G, and C,  on 
the direction of the wave vector q in the limit q-0. In our 
formalism, such deformations are described by Goldstone 
modes of excitation of the system. 

The neutron experiments performed in Refs. 1, 7, and 
13 have made it possible to make these excitations visible in 
the form of unusual figures for the iso-intensity lines-but- 
terflies and diamonds. We note that in these experiments 
strongly deformed networks (A,/A, = 1.3-5) have been in- 
vestigated, for which the deformation tensor satisfies 
u,,,, k 1. Therefore, the classical approach of Landau, based 
on expansion of the free energy in powers of u,,, is, in princi- 
ple, not applicable for the description of the systems under 
consideration. Allowance for nonlinear effects takes the 
classical theory of elasticity on to a higher level of complex- 
ity. 

The approach developed in our paper does not come up 
against these difficulties, since it is essentially a generaliza- 
tion of the density-functional method to the case of solids- 
polymer networks. Displacement and torsional deforma- 
tions are described in the framework of this approach by 
Goldstone density-fluctuation modes that owe their origin 
to the spontaneous breaking of the translational symmetry 
of the system in the solid state. On the basis of this approach 
we have calculated for the first time, by using mean-field 
theory, the correlation functions of the density of topologi- 
cally disordered networks and also of probe deuterated 
chains cross-linked with them. As shown in Refs. 9 and 10, 
the results obtained can be carried over directly to the scal- 
ing regime by the renormalization of the system parameters 
that is found in these papers. 
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