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The effect of statistical fluctuations of the built-in charge density on the surface conductivity of 
inversion layers in MIS structures is investigated. The charge fluctuations considered induce in 
the boundary layer of the semiconductor a random potential relief, near whose minima bound 
(localized) electronic states form. Some electrons in the inversion layer are trapped in the states 
and form localized charge. The mobile, delocalized charge consists of electrons whose energies lie 
above the percolation level-the average surface potential. The dependences of the bound and 
free charges on the temperature and bending of the bands were calculated in the quasiclassical 
approximation by averaging over fluctuations of the potential. It is shown that, for temperatures 
T g  A (the characteristic energy of the fluctuations), as the total charge in the inversion layer 
increases, first the bound states and then the free states are filled. This gives rise to a 
corresponding shift in the threshold of the dependence of the surface conductivity on the 
controlling voltage on the electrode of the MIS structure. Conversely, at high temperatures 
almost all of the inversion charge is mobile. It was determined that at intermediate temperatures 
2A > T >  A/2 (this range can constitute several hundreds of degrees) the mobile and bound 
components of the total charge of the inversion layer change in proportion to one another. This is 
manifested experimentally as an appreciable decrease in the effective surface mobility of electrons 
as compared with the values in the bulk. 

1. It is well known that a semiconductor-insulator interface 
always contains a certain number of electrically charged 
points defects-so-called built-in (or fixed) charge. I.' It was 
previously believed that the effect of the built-in charge on 
the basic electrical characteristics of MIS structures [vol- 
tage dependence of the differential capacitance ( C- Vcharac- 
teristic) and the dependence of the conductivity of the inver- 
sion layer on the same voltage on the controlling electrode 
(gate of the MIS structure)] reduces to an additive shift in 
these characteristics along the voltage axis by an amount 
proportional to the average surface density of this charge.' It 
turns out, however, that the effective influence of the built-in 
charge on the mobile carriers (electrons or holes) appearing 
in the part of the semiconductor adjoining theinsulator with 
voltages on the electrode which correspond to the inversion 
regime is associated not so much with the average surface 
density of the built-in charge as with fluctuations of this den- 
sity in the plane of the charged centers, i.e., at the semicon- 
ductor-insulator interface. The point is that the statistical 
fluctuations of the built-in charge density induce in the sur- 
face part of the semiconductor of the MIS-structure a ran- 
dom potential relief, near whose minima localized (bound) 
states with energy less than the so-called percolation level 
are formed. In accordance with the theory of electronic 
states in disordered system~,~.Qhe electrons filling these lo- 
calized states can undergo only finite motion and therefore 
they do not contribute to the surface electric conductivity of 
the inversion layer. The latter quantity is determined by de- 
localized electrons in states whose energies lie above the per- 
colation level. Thus the total electronic surface charge Q, at 
the interface with the corresponding voltage on the elec- 
trodes of the MIS-structure [Q, = C, ( V - V, ), where 
C, = ~;/4z-d is the capacitance of an insulator layer of 
thickness d and E~ is the permittivity of the insulator] con- 

sists of two parts: the mobile part Q, and the immobile 
(bound) part Q,. 

In order to find the relation between the delocalized Q, 
and localized Q, charge (or the total charge Q, = Q, + Q, ) 
each component considered must be expressed in terms of 
the quantity t+h = 9, - p, which determines how closely the 
percolation level-the average position of the edge of the 
conduction band of the semiconductor at the boundary with 
the insulator-approaches the Fermi level ,u [p, is the aver- 
age surface potential or bending of the bands (see Fig. 1 ) ]. 
This problem has already been studied in Ref. 6, where the 
following simple expression was obtained for the charge as a 
function of the average surface potential in the limit of low 
temperatures, taking into account the nonlinear electronic 
screening of the fluctuation potential: 

Q,=Qlma" exp {-$/2A). (1) 

Here Q y x  = (2a)-314(o/z-)51X, a = xfi2/me2 is the Bohr 
radius, o + + o - is the sum of the average surface densities 
of the positively and negatively charged components of the 
built-in charge, A = e2(n-o)'12/x is the characteristic ener- 
gy scale of the fluctuations of the potential, x = ( E ~  + E ,  )/2 
is the effective permittivity, and E, is the permittivity of the 
semiconductor. This expression is valid when the bending of 
the bands Ips I is not too large, so long as 11 = p, - p > 0 
holds, i.e., so long as the average position of the conduction- 
band edge at the boundary with the insulator has still not 
crossed the Fermi level.'' Then, correspondingly, Q, 
= Q, < Q yX, where Q is the so-called maximum local- 

ized charge. For Q, > Q Fax, we have Q, = Q and Q, = Q, 
- Q ;l.., and therefore the desired dependence has a pro- 

nounced threshold character. 
By analogy to the corresponding concept in semicon- 
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FIG. 1. Portion of the band scheme of an MOS structure in the inversion 
regime. 

ductor physics, the situation described by the formula ( 1 ) 
can be called freezing-out of the electrons of the inversion 
layer onto the fluctuation surface states. It is obvious that as 
the temperature increases an increasingly large fraction of 
the electrons of the inversion layer will leave the bound, lo- 
calized states and occupy delocalized, mobile states, thereby 
giving rise to an increase in the surface conductivity. It is of 
great interest and important to investigate in detail the cor- 
responding temperature dependence in order to determine 
the following: a )  the temperature limit T, of the freezing-out 
region (where the formula ( 1 ) holds); b) the characteristic 
temperature T2 at which virtually all inversion electrons be- 
come delocalized; and, most importantly, c) the change in 
the ratio of the localized and delocalized charge components 
of the inversion layer at intermediate temperatures 
T,  < T <  T2, which, as will be shown below, is found to be 
quite extended and corresponds to many experimental re- 
sults and working characteristics of real MOS transistors. 

2. In order to evaluate the total charge Q, and its deloca- 
lized part Qd we start from the general considerations pre- 
sented in Ref. 6: 

Here the total charge satisfies Q, - p, = p, the delocalized 
charge satisfies Qd - p, = max(p,p,); and 

is the distribution function of the random potential. The for- 
mula (2 ) corresponds to averaging of the quasiclassical vol- 
ume density of the electrons over fluctuations of the poten- 
tial followed by integration of this density over the depth of 
the inversion layer z (z > 0 is the semiconductor region of the 
MIS structure). The order of integration employed in Eq. 2 
is necessary, since both the average value of the potential 
p = ps + Ez ( E  is the average electric field pressing elec- 
trons to the interface) and the variance of its distribution 

where R = (u/.rr) lJ2/Q, is the nonlinear electron screening 
r a d i ~ s , ~ . ~  are functions of z. 

We normalize all energy characteristics of the problem 
to the characteristic fluctuation energy A. Then Eq. (2)  can 
be rewritten as follows: 
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2 
Q, =- (2)''' J 

3n"T na' I, [ ~ W Z )  " 1 ' I 2  -_ I 

l o "  dz J del(e l ) t iz  J 
~ d = ~ ( ~ )  I [2nu(r)]7"0 0 

In deriving the formula (4)  for the total charge the integral 
over the energy E was rewritten in a more convenient form 
with the help of integration by parts. As a result, the inte- 
grand is represented in the (p,~)-plane as a product of two 
functions with delta-function-like behavior: the function 
P(p,z) with an extremum at the point p = p, + Ezand half- 
width 2u1" and the function 

with extremum at the point p = p - E and half-width T. The 
value of the integral over p depends on the ratio of these 
widths (as will be shown below, it depends on the parameter 
f l =  2 u 1 " / ~ ) .  

The expression (5)  was obtained from Eq. (2)  by the 
substitution of variables E' = E - q, and p ' = q, - p, and by 
changing the order of integration over p ' and E' .  

3. In order to calculate the total charge Q, as a function 
of the temperature T and other parameters ($ ,E,R)  it is 
convenient to rewrite (4) ,  by changing the order of integra- 
tion, as follows: 

Q!=C I dc 8% dz J(E,  z) .  
0 0 

where 

&+@+EZ 2u" 
a= 

T ' 
@=-. 

T 

We evaluate the integral over t by the saddle-point method. 
The result is 

I ( & ,  z)= [2nlfit"(to)l" exp(-f(t,)). (7)  

Here the saddle point to is found from the equation 
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and the second derivative f :; (to) has the form 

At sufficiently low temperatures ( T< 1, P &  1 ) the hy- 
perbolic tangent in Eq. (8)  can be approximated by the 
first term of its series expansion. Here to 
= ( - a/P) ( 1 - T2/u + T4/u2), and the subsequent inte- 
gration can be performed analytically, which gives the 
expression 

which differs by the factor exp(T2/2), demonstrating the 
tendency for the charge Q, to increase with temperature for 
fixed $, from Eq. ( 1 ) obtained in Ref. 6. 

In the general case of arbitrary temperatures the tran- 
scendental equation (8)  must be solved numerically. Substi- 
tuting Eq. ( 7 )  into Eq. (6)  and transforming from z to 
u = ln(R /z), we evaluate the resulting integral over u by the 
saddle-point method. As a result, only the integration over E 

remains: 

rn 

Qf=2nCR - ~ E E ~  exp{-f (uor t o ) )  exp ( -up)  
{fit" (uo, t o ) fuZ  (ao,  to))"* {1-e-2u~)"* ' 

(10) 

where the saddle point uo satisfies the equation 

In Eqs. ( 10) and ( 1 1 ) the dependence u (z) in the form (3)  
was employed. Since for $> 1 small values of E make the 
main contribution to the integral over E, we obtain finally for 
the normalized charge density 

Here u, = 4 ln ( 1 + (ERx/( 1 - x2 ) ) 2),  and the variable 
x = t,,/~,"~ satisfies the equation 

$+ (1-x2)/x-x ln[l+{ERx/(1--~~)-)~] 
fanh {------ 2T 

obtained from the system of equations (8)  and (11) for to 
and u,. In Eq. ( 12) Q, is normalized so that at low tempera- 
tures D, - exp( - $). 

The results of a series of calculations, performed using 
the formula ( 12), are presented on a semilogarithmic scale 
in Fig. 2. We set ER = 1, since for not too small values of Q, 
the normalized electric field is equal to6 

and therefore ER = 1 + E ~ / E ,  =: 1. The solid lines in Fig. 2 
correspond to different values of the parameter $. We note 
that for T = 1 ( T = A in dimensional units) the quantity Q, 
is three to five times greater than its asymptotic value at zero 
temperature. 

4. We now consider the delocalized charge (5),  i.e., we 
determine the average number of electrons which for fixed T 
and $ have energies lying above the percolation level. For 
simplicity we assume $ > T, in order to be able to approxi- 
mate the distribution function with a Boltzmann distribu- 
tion. This immediately enables us to separate the character- 
istic exponential factor exp( - $/T) in the formula for Q,. 
Evaluating the integral over q, exactly (this integral can be 
expressed in terms of the error function), we evaluate the 
integral over the energy E and the variable u by the saddle- 
point method. The result for the normalized delocalized 
charge is 

where the function q,( Po) is determined in terms of the er- 
ror function @(x)  and elementary functions: 

In the limit of high temperatures we have p( Po) = 2512/e 
and Q, = Q,, calculated according to the formula ( 12). At 
low temperatures q,( Po) - ( ~ u , ' / ~ / T ) ~ ' ~  and the tempera- 
ture dependence of Q, is similar to that obtained in Ref. 6: 

The computational results obtained using the formula 
( 13) correspond to the dashed lines in Fig. 2, which corre- 
spond to the same values of the parameter $. 

5. Now the values of the charges Q, and Q, calculated 
according to Eqs. ( 12) and ( 13) must be grouped together 
so as to construct the desired dependence Q, (Q, ), or equiv- 
alently, Q, ( V - V, ) at fixed temperature. In so doing, the 
dependence R - Q ; ' must also be taken into account. The 
corresponding curves are shown in Figs. 3 and 4. 

At low temperatures the delocalized charge Q,, re- 
maining much less than Q, in virtually the entire interval 
0 < Q, < Q ;l.., increases in a power-law fashion with in- 
creasing total charge Q,: In Q, oc T -'ln Q,, which repro- 
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duces to a significant degree the threshold character of the 
dependence Qd (Q,  ) at T = 0.  

It is interesting that for intermediate temperatures 
(0.5 T, < T <  T, 2) the charges under consideration are 
virtually proportional to one another, similar to the high- 
temperature asymptotic behavior, but with a smaller slope 
(Qd/Q,  z 0 . 4 T <  1 ) .  This means that in this temperature in- 
terval, as the gate voltage increases, in addition to an in- 
crease in charge mobility, the stationary charges further 
charge the fluctuation surface states at the same time. It is 
obvious that because of the direct proportionality which has 
been shown to exist, this will be perceived experimentally as 
a corresponding decrease in the effective electron mobility. 

Thus the extension, elaborated here, of the theory of 
fluctuation surface states in MIS structures6 to the case of 
finite temperatures explains the basic features of the surface 

FIG. 2. Temperature dependence of the total charge Q, (-) and 
the delocalized charge Q , ( -  - - )  for fixed 4 = p, -,u (p, is the 
band bending). 

conductivity of inversion layers: the decrease in the surface 
mobility as compared with the volume mobility, the weaken- 
ing of the temperature dependence of the surface mobility, 
and the low-temperature "jump" in the threshold voltage of 
an MOS transistor. In particular, the well-known difference 
between the surface mobility of electrons in silicon MOS 
transistors and the bulk value of the mobility (by approxi- 
mately a factor of three at room temperature) can be easily 
interpreted on the basis of the theoretical model developed 
here. For this, it is sufficient to assume that the density of 
charged defects a = o+ + o- at the Si-SiO, interface is 
equal to 4-10" cm-', which falls into the range of built-in 
charge densities typical for Si-SiO,. 

It is also natural to assume that the characteristic estab- 
lished here-the existence of bound charge at intermediate 
temperatures-should also be strongly manifested in the 

FIG. 3. Delocalized charge versus the total charge Q, (Q, ) at low tern- FIG. 4. Delocalized charge versus the total charge Q, (Q, ) at fixed tem- 
perature. perature. 
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