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It is shown that in a strongly anisotropic ferromagnet with spin S = 1 the equations for the four 
parameters describing the spin dynamics can be reduced to two Lorentz-invariant equations for 
the spin component in the easy plane of the ferromagnet. This simplification is possible for the 
case of weak anisotropy in the easy plane and near a transition into the quadrupole phase. In this 
case the macroscopic long-wavelength description of magnetic solitons is adequate. Two types of 
solitons occurring in such magnets are investigated and it is shown that only one type is stable. 
The relaxation processes in this system are investigated. In the entire range of parameters, 
excluding a narrow neighborhood of the transition into the quadrupole phase, magnons are 
strongly damped. Retardation of solitons of the domain-wall type is also stronger than in weakly 
anisotropic magnets. 

1. INTRODUCTION 

It is well known that ferromagnets (FMs) with spin 
S >  1/2 and strong single-ion anisotropy (SA) have a num- 
ber of special physical properties which Heisenberg magnets 
do not have. Many of these properties were even noted in the 
first works on this subject: existence of 2 s  branches of spin 
waves, i.e., additional branches compared with a single 
branch in weakly anisotropic ferromagnet' or ferromagnets 
with spin S = 1/2 in which SA is impossible, as well as the 
possibility of quantum reduction of the average value of the 
spin S, right down to vanishing of ( S )  and transition at 
T = 0 into the so-called quadrupole phase.ls2 The static and 
dynamic properties of strongly anisotropic ferromagnets, 
primarily with spin S = 1, have been studied in many works 
on the basis of a Hamiltonian of the form 

Here S, is the spin operator at the site I, I is an exchange 
integral, and the constants B and P characterize the single- 
ion anisotropy. A number of interesting results have been 
obtained on the basis of this spin model, in which the single- 
ion anisotropy models the strong spin-orbital splitting of the 
levels of the ion. However two questions, which in our opin- 
ion arc fundamental, have obviously not been adequately 
discussed. 

First, nonlinear effects, primarily, nonlinear magnetic- 
solitons spin excitations, have not been adequately investi- 
gated, though the important role of quantum reduction of 
spin for the soliton thermodynamics of quasi-one-dimen- 
sional ferromagnets of the type CsNiF, was noted in a recent 
re vie^.^ Nonlinear waves have been analyzed in only two 
papers: OstrovskiY's work4 and the work of Zvezdin and 
Mukhin,' which we discuss below. 

Second, the question of the relaxation of elementary ex- 

operator in the standard Green's function technique for 
spin-1 operators or Hubbard operators. 

We have proposed simple phenomenological equations 
for describing the linear and nonlinear dynamics of strongly 
anisotropic ferromagnets and we have analyzed, on the basis 
of these equations, the two problems indicated above. These 
equations have also enabled us to study the dissipation of 
nonlinear excitations in the form of moving domain walls 
(kink-type solitons). 

2. EQUATIONS OF MAGNETIZATION DYNAMICS 

The special properties of ferromagnets with strong SA 
are attributable to the fact that their spin dynamics is not 
described, as in the case S = 1/2, only by the average value 
of the spin. In the phenomenological approach this is mani- 
fested as an increase in the number of variables required to 
describe the system. In the case S = 1 of interest to us Os- 
trovskii4 showed that four variables must be used, for which 
it is convenient to choose the average spin S and the three 
Euler angles p, 8, and y (the analysis was performed both in 
terms of the equatiogs of motion for the complete set of 
states of the operator S and by means of the method of gener- 
alized coherent states). The angles 8 and q, are the standard 
angles employed for describing the unit (normalized) mag- 
netization vector. The angle y, describing the rotation of the 
spin system around the average spin ( S  ), must be included 
because of the importance of the higher-ordef; (quadrupole) 
averages of the components of the operator S. 

OstrovskiY's equations for S, y, 8, and p are quite un- 
wieldy. For completeness, we present the Lagrangian from 
which they are derived. This Lagrangian can be represented 
in the form 

where the Lagrangian density is given by 
citations, magnons belonging to the additional L=tiS(y+cos El$)-w(0, cp, y, S), 
branches, has not been previously studied. In spite of the 
fundamental importance of this question, it has not been and a3 is the volume per spin. 
investigated, evidently because of the enormous computa- Here w/a3 is the energy density of the ferromagnet. It 
tional difficulties which arise in the calculation of the mass can be written, by virtue of Ref. 4, in the form 
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-i/2Z,S2+L/,(1-S2)'b[B(~~~ 2y cos 2q-cos 0 sin 2y sin 2q) 
-sin2 8 cos 2.1 (B cos2 cp+P) 1. 

In Eq. ( 3 )  

The dynamic part of the Lagrangian can be easily re- 
constructed from the explicit form of the equations. The en- 
ergy w of a ferromagnet contains both terms which are stan- 
dard for a Heisenberg ferromagnet (first line) and 
additional terms, which are related to the variable y. In the 
limit S- 1 the last term, which is specific to ferromagnets 
with SA, drops out. Introducing the angular variables for the 
magnetization M, = IM lcos 6, M, + iM, = IM [sin 6 
X exp(ip) and redefining the constants 

the formula for the energy is transformed into the standard 
expression 

where M is the magnetization of the ferromagnet, 
jM/2p,/a3 is the saturation magnetization with S = 1, and 
a' is the volume per spin. 

The complete analysis of the system of equations for the 
variables 6, p, y, and S is quite complicated, and only some 
of the particular solutions were indicated in Ref. 4. More- 
over, for an arbitrary ratio of the parameters I,, B, and P 
with I,-B /4-I, - B /4-p the soliton solutions that are 
obtained are localized in a region of order R,, i.e., compara- 
ble to the interatomic distance a. There is thus no sense in 
switching to a macroscopic description. The problem can be 
radically simplified in two limiting cases: the quasiclassical 
case, when the change in Sis  small compared with unity, and 
the "ultraquantum" case, when the quantum reduction of 
spin is large and Sg 1 holds in both the ground state and the 
soliton. The cases #const but 1 - Sg 1 corresponds to rela- 
tively weak anisotropy, BgI,, and ( 1 - S) - B /Io. Analysis 
of this case is important, for example, for describing quan- 
tum spin reduction effects in solitons of the quasi-one-di- 
mensional ferromagnet CsNiF,; see Ref. 3. We now examine 
the ultraquantum case as the most characteristic case. 

The situation Sg 1 is realized near transitions from the 
ferromagnetic phase with S #O into the so-called quadru- 
pole phase, in which S = 0, and only averages of the type 
( S  S, - 1/3S 'S,, ) are different from zero. 

An example of a specific material is nickel fluorosilicate 
NiSiF6.6H,O, in which we have Sg 1 at normal pressure 
and S decreases with increasing pressure; see Ref. 6. On the 
basis of the model ( 1 ), such a transition occurs for certain 
values of the constants of the problem, namely, for I, = B /4 
(for nickel fluorosilicate B/Ioz3.54 at P =  8.6 kbar; see 
Ref. 6).  This can also be seen from the macroscopic energy 
( 3  ).'Assuming 0 <p<: B and I,- B /4, we easily find that the 
minimum of the expression (3),  i.e., the ground state of the 
ferromagnet, corresponds to 

In this case, in both phases we have y = 0. The angular vari- 
ables 6 and p i n  the ground state are determined by the signs 
of the anisotropy constants. Since we have assumed 
B > p >  0, the most difficult axis is the x axis, the yz plane is 
the anisotropic easy plane, and the easy axis is thez axis, i.e., 
in the ground state we have 6 = 0, p = ~ / 2 .  

In order to simplify the Lagrangian (2) ,  (3)  we assume 
that the values of y and qb = n-/2 - p are small (the condi- 
tion $4 1 even arises for B<  I, and Sz I in the case 09 B 
(see Ref. 7); we verify below the fact that y is small). Vary- 
ing the Lagrangian with respect to y and J/ gives, in the lead- 
ing order approximation in these small parameters and Sg 1, 
the simple expressions 

y =  [ti/ ( B i b )  ] [S+S6 cos elsin 81. ( 5  

$= [fi/ (B+P sin") I[- (Sij/sin e)(B+p sin2 O)+SP cos 0].(6) 

The formula for qb with S = const is identical to the for- 
mula derived in Ref. 7. The singularity of the form ( 8  /sin 6 )  
in the limit 6-0 turns out to be insignificant and does not 
arise in the final expressions for the Lagrangian. It is easy to 
see that the conditions $4 1 and y g  1 correspond to small- 
ness of the time derivatives, tiw <B, where w is the character- 
istic frequency, 

o-max {((I cos Olsin t)), J'/S). 

As we shall verify below, the maximum value of the 
characteristic frequencies of the problem is determined by 
theexpressionw -max{S ',p/I,), so that forSg 1 a n d p g  B 
the condition k < B is satisfied. 

Substituting Eq. (5)  into the complete Lagrangian of 
the ferromagnet (2)  and (3)  we obtain the final expression 
for the Lagrangian describing the dynamics of the magneti- 
zation of a strongly anisotropic ferromagnetic in terms of 
only two dynamical variables S and 6: 

L=[fi/ZB(B+p) ] [B(SZSF~')+fi{(S cos e) ')2j -w, 

The quantity w = w(6, S )  is the energy density of the 
static distribution of the variables S and 6 and is obtained 
from w (6, p ,  y, S) by setting y = 0 and p = ~ / 2  in the latter 
and making a series expansion in the small parameter S up to 
S4 inclusively. Having found the distribution 6 and S i n  an 
arbitrary nonlinear wave of magnetization, we can recon- 
struct the variables y and p = n-/2 - qb according to the for- 
mula (5).  

We verify below that the condition Fiu < B  for all types 
of linear and nonlinear waves is satisfied only for the case 
P< B, which corresponds to the case when the anisotropy in 
the easy plane is small compared with the out-of-plane ani- 
sotropy. In this case the second term in the kinetic part of Eq. 
(7)  is small, and the kinetic part of the Lagrangian becomes 
isotropic. Dropping this small term, we arrive at a Lorentz- 
invariant Lagrangian, in which the derivatives with respect 
to time and the coordinates appear only in the combination 
(df/dt)' - c2 (V' ' .  It is convenient to write this Lagran- 
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gian in terms of the spin components in the basal plane 
S, =Scos  Bands, =Ss in8:  

where the characteristic velocity is c = (Rd2fi) (BI,) 'I2 

z R $  /fi. Such a Lagrangian was derived in Ref. 8 from 
qualitative considerations, based on analysis of magnon 
spectra and the structure of static domain walls (DWs). 

A Lorentz-invariant Lagrangian of the form (8)  was 
obtained in Ref. 5 for a strongly anisotropic ferromagnet on 
the basis of a two-level model. On the other hand, the math- 
ematical properties of a model with the Lagrangian (8 ) ,  
called the complex (two-component) q, model has been in- 
vestigated, without reference to any physical problem, by 
many authors; see Refs. 9 and 10. Eleonskii and Kulaginl' 
showed, for simple nonlinear waves of the form 
S,, = S,, (c), where { = x - ut, that the corresponding dy- 
namical problem with two degrees of freedom can be inte- 
grated exactly; this makes it possible to make an exact analy- 
sis of all types of simple waves. Some particular cases, 
describing, for example, two types of domain walls, were 
written out in Ref. 9. Thus the approximations adopted have 
made it possible to simplify significantly the analysis of the 
problem. 

3. ELEMENTARY EXCITATIONS: SPIN WAVES AND DOMAIN- 
WALL SOLITONS 

Elementary excitations of ferromagnets can be studied 
in the quasiclassical limit on the basis of the Lagrangian (8)  : 
both linear excitations (magnons) and nonlinear excitations 
(topological kink solitons (domain walls), which are impor- 
tant for the analysis of the thermodynamics of quasi-one- 
dimensional magnets). We begin with the analysis of the 
spin waves in the linear theory. In order to analyze them we 
write 

and linearize the equations of motion derived from Eq. (8)  
with respect to a, and a,. The following two independent 
equations are obtained for 0, and uz with a uniform ground 
state SF' = 0 and S 1'' = So: 

where fro, = 4 (PB) 'I2 and fino = (BZoS $ ) 'I2. 

Hence it follows that superposed on the uniform ground 
state there exist two modes of small oscillations of the mag- 
netization with linear polarization and frequencies 

In the case of a Heisenberg magnet the wave with alley 
(transverse branch) corresponds to the standard spin 
waves. ForP = 0, i.e., in the limiting case of a weakly aniso- 
tropic ferromagnet with an isotropic easy plane, it has a non- 
activational dispersion relation: w = clkl. The second 
branch with ulle, and frequency o = n ( k )  is specific to 
strongly anisotropic magnets with a branch of longitudinal 

spin waves. In the Heisenberg limit (B<Z,, So= 1) its fre- 
quency is much higher than the frequency of transverse spin 
waves. As we shall verify below, in this limit it is strongly 
damped and there is no need to take this mode into account. 
In the ultraquantum limit, So< 1, of interest to us the fre- 
quencies of the longitudinal and transverse magnons will be 
comparable and n ( k )  < w (k )  with Si <fi /I,. The longitu- 
dinal mode is a soft mode for the transition from the ferro- 
magnetic into the quadrupole phase as B + 41, (So - 0) .  In 
the limitP< B, So < 1, and kRo < 1 the Lorentz-invariant dis- 
persion laws (10) are identical to the magnon dispersion 
laws obtained previously on the basis of an analysis of the 
quantum problem (see Refs. 8 and 12 ) . 

In quasi-one-dimensional magnets the nonlinear excita- 
tions, primarily topological kink-type solitons (domain 
walls), must be taken into account together with magnons. 
The question of the structure of DWs is also of interest for 
ordinary three-dimensional magnets. Domain walls in 
strongly anisotropic magnets have been studied by many au- 
thors (see Refs. 4 and 13). When the Lagrangian (8)  is used, 
however, this analysis simplifies greatly and a much more 
complete analysis is possible. In particular, the question of 
the structure of both types of DWs and their stability can be 
solved exactly. 

We now examine the one-dimensional solutions of the 
equations which follow from the Lagrangian (8)  and which 
describe stationary DWs. We assume that the magnetization 
is a function ofx only and that it satisfies the boundary con- 
ditions Sy + 0, S, + f So as x + + oo . 

Stationary DWs with energy (8) were studied by Bu- 
laevskii and Ginzburg.14 They noted that there exists two 
types of DWs. One type (a "linear" DW) corresponds to 
variable S: 

In the other type, a "rotating" DW, both the magnitude and 
direction of the spin are variable. This case corresponds to 
the solution 

S,=S, th (x(p"/Ro) I,"'). (12) 

A rotating DW exists, as one can easily see from Eq. 
( 12), only if S$ > P/Io holds. A solution of this type for the 
complex p model was written down in Ref. 9. The solutions 
describing moving DWs are easily obtained from Eqs. ( 1 1 ) 
and ( 12) by a Lorentz transformation: 
x+x'  = ( X  - ut)/(l  - u2/c2)'12. The Lorentz-invariant 
dynamics of DWs in strongly anisotropic magnets was stud- 
ied in Refs. 4 and 5. 

The thicknesses of rotating and linear DWs A, and A,, 
respectively, are determined by the expressions 

AR=Rojl,/fi)'". A,.=Ro/So. 

In the range of values of the parameters which we have 
chosen (So < 1, p<Z0 -- B /4) we have A,,, > R,. This indi- 
cates that the long-wavelength approximation is applicable. 
The conditions of the long-wavelength approximation break 
down only in a narrow interval of velocities of DWs near the 
limiting velocity, i.e., for [ (c - u)/c] < @/I,) '" or ;=So 
for the rotating or linear DW, respectively. 
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The existence of two topologically equivalent DWs 
raises the question of the stability of each type of wall against 
a transition into a wall of the other type. Since the problem is 
Lorentz-invariant, it is sufficient to study the stability of a 
stationary DW. In order to analyze the stability, as well as 
for further applications to the problem of retardation of 
DWs, we analyze the spectra of small oscillations of the mag- 
netization (spin waves) against the DW background. For 
this we represent Sy and S, in the form (9)  with S:: (x) 
determining a DW at rest [see Eq. ( 1 1 ) or ( 12) 1, and we 
write down the linearized equations of motion for ay,=. These 
equations for both types of DWs can be represented in the 
form 

(Z,+2Clch2 g+A)o,+2(C(C+2) )'h ( t h  g/ch g)o,+a20,=0, 

(13) 
(1;,+2C th2 E) o,+2 (C (C+2) )'" ( t h  g/ch g )  o,+~~a,=O. 

Here the following notation was introduced: { = x/A, 
A = A, or A,, iS = no or wo for a linear or rotating DW, 
respectively. The parameter C is proportional to the maxi- 
mum value of the component Sy in the DW: C = 0 for a 
linear DW and C = 2(10Si/? - 1 ) for a rotating DW and 
A = 0 for the rotating DWznd A =J /IoSi - 1 for the lin- 
ear DW. The operators L ,  and L, are the well-known 
Schroedinger operators with a nonreflecting potential and 
with a zero lowest eigenvalue: 

The frequencies and wave functions of the spin waves are 
determiged by the eigenvalues and eigenfunctions of the op- 
erators L ,,, , whichAare well known (see, for example, Ref. 
15 1. The operator L ,  has a single localized state po and a 
continuous spectrum of states p, , 

cp,= (th ~ - i k ) e x p ( i k ~ ) / ( l + k ~ ~ ~ ) ' ~ .  

The operator 2, has two localized states $o and $, given by 

~ n d  its states $, in the continuous spectrum correspond to 
L2$, = (4  + k ,)$,; the formula for $, is quite unwieldy 
(see Ref. 15). For simplicity we have written out pi and $j 

( i  = 0 or k and j = 0 ,  1, or k)  for the one-dimensional case. 
In the three-dimensional case the following obvious substi- 
tutions must be made: 

( c ~ i y  $,) +(cp,,  $j) exp (ik,r,)/S'", 

and the quantity k :A2 must be added to the eigenvalues. 
Here k, = (0, ky , k, ) is the component of k that lies in the 
plane of the DW; A = A, or A,, respectively; and, S is the 
area of the DW. 

The frequencies of the magnons in the continuous spec- 
trum for both types of DWs is determined, naturally, by the 
formulas ( 10). Localized magnon states are of a specific na- 
ture. It is these states that determine the stability of DWs of 
each type. 

We begin with the case of a linear DW. Here we have 
C = 0, the equations for a, and az are independent, and the 
magnon spectrum contains two independent branches, on 
each of which cry or a, oscillates. The mode with a, # O  in 
the presence of a DW corresponds to two localized states 
with wave functions 111, and $, ( 16). The frequency of the 
lower state is equal to zero in the one-dimensional case and 
this state corresponds to a translational mode. In the three- 
dimensional case it describes bending oscillations of the DW 
with the dispersion relation 

The frequency of the next localized state is R("  = 31/2 fl, 
or, correspondingly, 

It corresponds to a spin wave in the DW without displace- 
ment of the wall. 

The wave with a, $0 has only one localized state with 
wave function p = po ( 15) and frequency w"' , where 

in the one- and three-dimensional cases, respectively. It is 
easy to see that this mode describes instability of the linear 
DW for So > (B /Io) . 

The spectrum of spin waves is more difficult to analyze 
for a rotating DW. This analysis cannot be performed exact- 
ly. It is possible to find the wave function of the translational 
mode [with frequency w = 0 or w (k, ) = cl k, I 1. It corre- 
sponds to my - - ( 1 - PSi/Io) sinh { /cosh2{, and 
a, - l/cosh2{. The other magnon states can be sought ky 
expazding ay and a, in eigenfunctions of the operators L ,  
and L,, respectively, 

This gives an unwieldy coupled system of equations for the 
coefficients a and 6. In the case C< 1 (which, as we shall 
show, is most important for the problem of the stability of a 
rotating DW) this system can be solved by means of pertur- 
bation theory. The stability of the DW is determined by the 
mode which in the limit C-0 goes into oy -po, a, = 0. For 
the frequency of this mode 0"' with C # O  but C g  1 the 
following expression is obtained in the linear approximation 
in C: 

+ m 

Q10)=(2~[gl-4P,'/3- (2/n) 5 dh(Pk['i(4+k2) ] ) '' 
- L 

where 

332 Sov. Phys. JETP 75 (2), August 1992 lvanov et a/. 332 



The squared frequencies of the other modes superposed 
on the DW are also positive for all C >  0. Therefore a rotat- 
ing DW is stable in its entire region of existence C >  0, or 
ZJ; >,l?. Writing the condition for stability of a linear DW 
(w"' )' > 0 in the form I$: <,l?, we find that the transition 
between the linear and rotating DWs proceeds as a unique 
second-order phase transition with S i = f l  /Io. A linear DW 
of higher symmetry exists in a narrow range of values of So: 
0 < Sg </3/Iog 1. The existence of a kink in the structure for 
some values of the parameters of the ferromagnetic phase 
transition and of the soft mode associated with this transi- 
tion results in the appearance of singularities in the soliton 
contribution to the thermodynamic quantities of the quasi- 
one-dimensional magnet for these values of the param- 
eters.16 

4. MAGNON DAMPING 

The nonlinear effects which determine the interaction 
of magnons with one another can also be easily described on 
the basis of the Lagrangian ( 8). In order to analyze them it is 
convenient to perform quasiclassical quantization of the 
fields Sy and S, and to introduce creation and annihilation 
operators for the magnons of the corresponding branches. 
For this, we introduce the small deviations a, and a, [see 
Eqs. (9) ] of these fields from the equilibrium field (uniform 
and nonuniform, is a DW is present), and we write the La- 
grangian as an expansion in powers of these variables and 
their derivatives: 

Here L, is proportional to oy and oz or their derivatives 
with a total power of n. We have L,=O by virtue of the 
equations of motion. We now switch to the Hamiltonian for- 
malism, for which we introduce the canonical momenta .rr, 
and .rr, which are conjugate to the variables a, and a, : 

In terms of these variables the system Hamiltonian, de- 
scribing the dynamics of small oscillations of the magnetiza- 
tion, has the form of an expansion in powers of a , ,  a , ,  and 
Vai. Retaining in the expansion terms up to a4 inclusively, 
we represent the Hamiltonian in the following form: 

fi= 3 dV { (2c2/f0R," ( ( n V 2 +  n,') 

Here dV= (dx/a) for the one-dimensional case and 
dV= d 3x/a3 for the three-dimensional case, where a is the 
distance between the spins. In the expression for H the 
ground state, determined by the values of SF' and S y', was 
not specified. In particular, in the uniform case we must as- 
sume SF' = 0 and S :" = So, and in the presence of a DW 
SF' and S:" are functions of the coordinates and are deter- 
mined by the formulas ( 11 ) and ( 12). In the analxsis of 
magnons superposed on a linear DW the operators S i L, and 
S ~ L ,  + ,l?/Io, respectively, are obtained in the brackets in 
the first and second lines of the formula ( 18), respectively. 
The last line in Eq. ( 18) describes nonlinear effects (three- 
and four-magnon effects). 

We expand uz and oy in some complete set of states 
{$,I and {q,,): 

ox = Cozly; l .  o.=r,o?llul,, 
1 I 

where the subscript 1 indicates the collection of eigenvalues. 
[For the uniform phase q, and $ are plane waves: p,, 
$, -exp(ikr); for magnons superposed gn a D y  q, and t,b 

are the eigenfunctions of the operators L, and L ,  in Eqs. 
( 15 ) and ( 16). ] The Hamiltonian describing magnons 
against the background consisting of a uniform ground state 
can be written in the following form in terms of the ampli- 
tudes a , :  

The quadratic part of H, is diagonal: 

where m = ~c*/I,R : and w, and R, are the spin-wave fre- 
quencies introduced above. We note that the same form is 
obtained for Ho for magnons superposed on a linear DW, 
except that the sum2ation over k exten* over the eigenval- 
ues of the operators L,  (for T,, , oy ) and L, (for .rr,, ) and 
w, and R, must be replaced by the corresponding frequen- 
cies of magnons against the background of the DW. For 
magnons superposed on a rotating DW, however, off-diag- 
onal terms of the form oy ( 1 )uz (2) or a, ( 1 )uy (2) and 
q ( 1 ) az (2) appear in Ho in Eq. ( 19). The role of these terms 
is discussed in the next section. 

The nonlinear terms in the Hamiltonian have the form 
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It is interesting to note that the cubic Hamiltonian H3 
contains the small parameter So and not all anharmonicities 
are possible (there are no terms of the form a: and a,u 5 ). 
For this reason, the contribution of the fourth-order Hamil- 
tonian H4 can compete with the contribution of H3. 

Quasiclassical quantization of small oscillations super- 
posed on a classical ground state is performed in the stan- 
dard manner. It is sufficient to replace the canonical vari- 
ables a and a by operators which satisfy Bose commutation 
relations. For the variables introduced above, ai ( 1 ) and 
aj ( 1 ), i, j = y or z and 1 = k,, these relations have the follow- 
ing form for a uniform state: 

It is convenient to replace a and a by creation and anni- 
hilation operators for magnons of two types: a, and a,+ for 
longitudinal magnons and b,  and b ,+ for transverse mag- 
nons: 

Substituting these expressions into Eqs. ( 19) and(20), 
we obtain the magnon Hamiltonian H = Ho + H, + H4 
= Ho + Hi,, in the standard form for perturbation-theory 

analysis of magnon interactions. The zeroth-order Hamilto- 
nian Ho has a diagonal canonical form 

For magnons superposed on a linear DW H, also has the 
form (22). Only the set of magnon states over which the 
summation extends changes. 

The three- and four-magnon Hamiltonians H3 and H4 
contain a large number of terms describing processes involv- 
ing longitudinal as well as transverse magnons. We do not 
give the explicit form of H3 and H4, because it can be easily 
obtained from Eqs. (20) and (21 ) . 

The interaction of magnons in a strongly anisotropic 
ferromagnet was investigated by Val'kov and Val 'ko~a. '~  
They started from the quantum problem formulated in 
terms of Hubbard operators; they represented these opera- 
tors in terms of Bose operators and they took into account 
the contribution of the projection operators, which necessar- 
ily appear with such a transformation. Then the Hamilto- 
nian of the interacting magnons, employed in Ref. 12 for 
analysis of anharmonic corrections to the magnon frequen- 
cies, was derived by a quite complicated procedure. It is im- 
portant to note that both the structure of the Hamiltonians 
H, and H4 and the form of the amplitudes in the long-wave- 
length approximation in our work are identical to those em- 
ployed in Ref. 12. This shows that the simple phenomeno- 
logical approach proposed in the present work is adequate. 

We now analyze the magnon damping. The damping 
rate y(k)  can be calculated by the standard method as the 
imaginary part of the mass operator of a magnon on a given 
branch. The calculations can be performed in the spin-wave 
approximation, which corresponds to low temperatures. 
The condition for applicability of the low-temperature ap- 
proximation for the ferromagnetic phase corresponds to the 

inequality T& T, , where T, is the temperature at which the 
average spin vanishes. It can be shown that as S,+O we have 

but in this case T, is higher than the characteristic tempera- 
tures T, = fin, -- Ip0 and T, = &, -- (PI0) which cor- 
respond to the activation energies of longitudinal and trans- 
verse magnons, respectively. 

We now calculate the damping rates in the long-wave- 
length approximation (k-0). In this case, the rates y, and 
y, are found to be finite. We begin with the contribution of 
three-magnon processes. Analysis of the conservation laws 
shows that processes involving three longitudinal magnons 
are forbidden, and only processes in which one longitudinal 
and two transverse magnons participate [the term with 
uzuyuy in Eq. (201 are important. Among them, the pro- 
cesses in which a longitudinal magnon decays into two trans- 
verse magnons contribute to the damping of a longitudinal 
magnon, while the process with the same vertex, describing 
the merging of two transverse magnons into a longitudinal 
magnon, contributes to the damping of a transverse magnon. 
All these three-magnon processes are allowed for fl, > 2w0, 
i.e., p < IoSi .  For longitudinal magnons, when this condi- 
tion is satisfied, the three-magnon damping rate is equal to 
zero at T = 0 and increases with increasing temperature. We 
give the expression for yj3' for TI - T, and in the limiting 
cases of high and low temperature: 

As for the damping of transverse magnons, the contri- 
bution of three-magnon processes to y, is exponentially 
small at low temperatures, while at high temperatures 
(T$ T, - T, ) it increases linearly with temperature: 

These formulas demonstrate a basic specific property of 
magnons in a strongly anisotropic orthorhombic ferromag- 
net: The ratio of the damping rate to the frequency is not 
necessarily small. A natural small parameter arises only in a 
narrow range of values of the parameters where 1 - P/I,S; 

1. However, for S, =. ( 2  - 3 )  (B /I,) even in the case of 
extremely low temperatures, the ratio yj3'/fl, is small only if 
the quantity a/R, is the small parameter. For transverse 
magnons the situation is somewhat more favorable, since at 
low temperatures y, is exponentially small. Even at tem- 
peratures T-TI, T,, however, we have y;')/w, 
-S,(IdP) '/ '(u/R,)~, and for Si -P/I, the quantity 
(u /R , )~  is the only parameter that formally ensures that the 
damping is small. 

Three-magnon damping is equal to zero in a narrow 
region of the parameters 0 < Si <p/I,, but here four-mag- 
non scattering of magnons belonging to different branches 
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leads to similar answers. A large number of different pro- 
cesses contribute to four-magnon damping yj4' and yj4'. 
This contribution can be described schematically by the for- 
mula 

where w = R, or w, and To = TI or T, for longitudinal or 
transverse magnons, respectively. 

Here the same law operates: damping is small only in 
the case of extremely low temperatures, T< TI or T< T, . If, 
however, the temperature is comparable to the activation of 
magnons, then the damping is small only for a/R, 4 1. The 
parameter a/Ro, i.e., the ratio of the interatomic distance to 
the interaction radius R,, is the formal small parameter of 
the mean-field theory. In real magnets, however, a/R, can 
hardly be expected to be small. Although this parameter en- 
ters in yC3' and especially in y'4' to a high power, the damp- 
ing of magnons on both branches at finite temperatures 
T-TI, T, (and longitudinal magnons in the case Si 
> (P /Io) at any temperatures right down to zero) cannot be 
considered to be small. Here the situation differs fundamen- 
tally from the situation in Heisenberg magnets, where 
y(k)/w(k) -0 as k-0. This fact is quite interesting in and 
of itself, since magnons in a strongly anisotropic ferromag- 
net, in contrast to a Heisenberg ferromagnet, are not Gold- 
stone excitations. 

The formulas obtained for yj3' for S: < 1 are also qual- 
itatively applicable for the case S i -- 1. It is found that mag- 
nons of an additional (compared with a Heisenberg ferro- 
magnet) longitudinal mode are strongly damped at any 
temperature and are not observed in resonance experiments. 
Our calculation actually showed that the longitudinal mag- 
nons are well-determined elementary excitations only if Si 
@/Io< 1 holds, when yj3' = 0 (it is interesting to note that 
this region is also the region where linear DWs are stable), 
and only at low temperatures T, much lower than their acti- 
vation temperature, when yj4' is small. Outside these narrow 
regions of the parameters the longitudinal-magnon mode is 
purely dissipative (if it is not assumed that the parameter 
(a/R,) is small). 

5. RETARDATION OF DOMAIN WALLS 

The dissipative properties of nonlinear excitations (do- 
main walls, kink-type solitons in quasi-one-dimensional fer- 
romagnets) can also be investigated on the basis of the La- 
grangian (8) and the Hamiltonian ( 18). The main 
parameter here is the viscosity q, which determines the fric- 
tional force F = - vu acting on a domain wall moving with 
velocity u. For quasi-one-dimensional ferromagnets the vis- 
cosity and the diffusion coefficient D = T/v, related to it, 
describe the width T, = Dq2 of the central peak in the re- 
sponse functions in the region of viscous motion of solitons 
(see the review Ref. 3 and the latest works Refs. 16 and 17). 
In standard three-dimensional ferromagnets the quantity q 
describes magnetic losses accompanying magnetic reversal 
due to displacement of DWs. 

In order to make a microscopic calculation of 17 it is 
necessary to study energy transfer from a moving domain 
wall to a magnon gas. The method of analysis is described in 
detail in Ref. 15. Here we give only a schematic description 

of the method. Any off-diagonal term in the Hamiltonian 
describing magnons against the background of a domain 
wall gives rise to inelastic scattering of the magnons. By ex- 
panding the field variables a,, r,, , azA and 5 in complete 
sets of eigenfunctions of the operators L ,  and L, with nonre- 
flective potentials it is easy to verify that the Hamiltonian 
describing magnons against the background of both DWs 
contains three-magnon off-diagonal terms of the form 

where the indices 1, 2, ... label magnon states. Off-diagonal 
terms of the type 

also arise in the analysis of a rotating DW. They are pro- 
duced both by terms of the type S~'S~O'a,a, [the term with 
Y (1,2)  ] and because the potentials in the quadratic part of 
the Hamiltonian ( 18) differ from nonreflecting potentials. 
The amplitudes of the inelastic processes are determined by 
integrals of products of the corresponding components of 
the magnetization in the DW, which engender the nonuni- 
formity for magnons, by the wave functions of the magnons. 
For example, 

where ,$ = ( x  - vt)/A. Because the domain wall is not sta- 
tionary the amplitudes are time dependent. This dependence 
is universal. If all indices 1,2, ... correspond to volume mag- 
nons, then 

where Q,,, = k,, - k,, - k,, and Q,, = k,, - k,, is the 
component of the momentum, along the cormal to the DW, 
that is transferred by the DW in this process. If, however, 
one of the states is localized, then the corresponding term 
ik, vt does not occur in the exponential. In the three-dimen- 
sional case all amplitudes contain a delta function expressing 
the conservation of the total momentum of the magnons in 

the plane of the DW. For example, 

The contributions of different two- and three-magnon 
processes to the stopping power are described in the Born 
approximation by formulas of the form 

where < is a combinatorial factor and n, = [exp(&,/ 
T) - 1 ] - ' is the occupation number of the state 1 with en- 

335 Sov. Phys. JETP 75 (2), August 1992 Ivanov et a/. 335 



ergy E ,  = h,. (The structure of the formulas for the fric- 
tional force is studied in greater detail in, for example, Ref. 
15.) For low domain-wall velocities the factors containing 
the occupation numbers and enclosed in square brackets are 
proportional to v because of the delta function. Hence, as 
v-0 the force satisfies F-v and it is easy to write down a 
formula for the viscosity. Switching in these formulas from 
summation to integration and calculating the corresponding 
integrals, we obtain expressions for the two- and three-mag- 
non coefficients of viscosity 77, and v3; the total coefficient of 
viscosity in 77 = v2 + v3. We present the results of the calcu- 
lation of v2 and 7, in the one- and two-dimensional strongly 
anisotropic ferromagnets. 

In a one-dimensional ferromagnet the contribution of 
three-magnon processes for both types of solitons of the do- 
main-wall type is given by the formula 

f ( x )  e sp ( -Tn /T ) ,  T<T0 

( x )  ( T T .  TBT, '  (23) 

where x = P/I,S; and To = (PI,) for a linear DW 
( x >  1)  and x = C + 1 and To = IJ; for a rotating DW; 

f(x)  and g(x)  are complicated functions, 

and f(x)  is exponentially small for x )  1. The function 
g (x )  - 1 and is virtually independent of its argument for all 
valuesofx, except x z 1 .  F o r x =  1 (p= I,S;),i.e., at the 
point where both DWs become unstable, the functions f and 
g are proportional to Ix - 1 I This singularity is caused 
by the contribution of localized magnons, whose frequencies 
soften near the transition. 

As concerns the two-magnon viscosity, for a linear DW 
it is equal to zero 912' = 0. For a rotating DW 

Cfi C exp ( -TOIT) ,  T<To ,,$' = - 
4n3AR2 { (T/T.)  (C<,+t,),  T B T .  

where c, - 13.7 and {,=. 5.3 are constants. 
Comparing Eqs. (23) and (24) shows that, with the 

exception of extremely low temperatures, the contribution 
of two-magnon processes to the coefficient of viscosity is 
always small compared with three-magnon processes. In the 
case T( To, however, these contributions can compete only 
when the factor f (x)  in Eq. (23) is anomalously small, 
f (x)  < (RJx,)'-S ;, which happens in the "Heisenberg" 
region C) 1. Thus in strongly anisotropic ferromagnets 
there is no competition between two- and three-magnon con- 
tributions, which are characteristic for Heisenberg magnets, 
to the stopping of DWs (see Refs. 15-17). 

From the Einstein relation the temperature dependence 
for the diffusion coefficient D at high temperatures D- 1/T 
is found to be the same as in a number of scalar models and in 
Heisenberg magnets; see Refs. 15-19. On the whole, the dif- 
fusion coefficient in strongly anisotropic ferromgnets is 
smaller than in Heisenberg ferromagnets; in addition, D de- 
creases rapidly as C-1. This means that the width 

I?, = Dq2 of the central peak of the correlation functions in 
the viscous state of soliton motion is smaller in this model 
than for a Heisenberg ferromagnet. 

The calculation was performed similarly in the three- 
dimensional case. The expression for the three-magnon coef- 
ficient of viscosity per unit area of the DW is obtained from 
Eq. (23)  by replacing (fiR ; ) by (WR ), changing some 
numerical factors, and by replacing the additional tempera- 
ture factor at high temperatures, 7:;'- (T/To)3. As in the 
one-dimensional case, the contribution of two-magnon pro- 
cesses is small. 

CONCLUSIONS 

The foregoing analysis has demonstrated a number of 
unusual properties of orthorhombic ferromagnets with 
S = 1 and strong single-ion anisotropy. The main difference 
from Heisenberg ferromagnets is the existence of two differ- 
ent types of linear and nonlinear elementary excitations 
which relax by means of processes that are different from 
those occurring in standard ferromagnets (a general proper- 
ty is that the damping is stronger than usual). We now dis- 
cuss other physical models that can be studied on the basis of 
the proposed method and the conclusions that can be drawn. 

For the present model of ferromagnets the case of an 
isotropic easy plane (P = 0 )  is special. In this case the 
ground state of the system is characterized by continuous 
degeneracy (with respect to the direction of magnetization 
in the easy plane), and the transverse magnons are a Gold- 
stone mode and have a linear dispersion relation w, = clkl. 
Preliminary analysis has shown that their damping is weak 
in the long-wavelength limit: ( yk /wk ) - k and k-0, i.e., 
these magnons are weakly damped. This model is also char- 
acterized by special soliton excitations-magnetic vortices 
at whose center the magnetization vanishes. 

Although in deriving Eq. (8)  we started from the exis- 
tence of magnetic order, this Lagrangian is also valid for the 
quadrupole phase (QP). (Solitons in the QP were studied in 
Ref. 5.) The dynamical and relaxational properties of the 
QP, including also nonlinear properties, can be described on 
the basis of the Lagrangian ( 8). 

The dynamical properties of Heisenberg ferromagnets 
are fundamentally different from those of antiferromagnets 
(AFM). It is interesting to discuss the properties of strongly 
anisotropic AFM. In Ref. 8 it was pointed out that for 
strongly anisotropic AFM with S = 1, on the basis of the 
lagrangian (8),  both the structure of the static DWs in the 
field of the antiferromagnetism vector L and the low-lying 
branches of magnons with h 4 I,, B near the transition from 
the AFM to the quadrupole phase (L  = 0 )  are found to be 
identical to those in ferromagnets. It is easy to verify that this 
makes it possible to reconstruct uniquely the Lagrangian of 
the problem, which is identical to Eq. (8),  if the substitu- 
tions Sy -Ly and S, +L,  are made in it. Hence it can be 
concluded that our results for the structure and stability of 
moving DWs and relaxation of DWs as well as magnon 
damping are also valid for AFMs. 
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