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Phonon transport in single-phase ceramic materials is studied theoretically and experimentally. 
A simple equation for phonon transport is derived under the assumption that phonons propagate 
ballistically inside grains. It is shown that the effective phonon diffusion coefficient or the thermal 
conductivity is very sensitive to the manner in which the phonons pass through the contact region 
between neighboring grains. The arrival time of the peak value of the signal when a heat pulse is 
excited in the case of weak phonon nonequilibrium can be either an increasing or a decreasing 
function of the generator temperature. The temperature dependence of the low-temperature 
thermal conductivity in such ceramics should differ substantially from the T31aw. Both possible 
types of behavior have been observed in experiments with propagation of heat pulses. 

1. INTRODUCTION 

It is well known that the elastic and thermal properties 
of microscopically inhomogeneous materials are substan- 
tially different from those of homogeneous  material^.'.^ 
These differences are primarily associated with the structure 
of the material. Porosity, the size distribution of the micro- 
scopic particles (grains), and the properties of grain boun- 
daries and contact regions between microparticles play the 
determining role in ceramics. The present paper is con- 
cerned with single-phase ceramics. 

Vibrational excitations in ceramic materials in the long- 
wavelength region of the spectrum ASR (A is the wave- 
length and R is the average size of the microparticles) are 
ordinary phonons, i.e., weakly damped plane waves. The 
damping is associated with scattering by microscopic inho- 
mogeneities (as a rule, pores) and increases with decreasing 
wavelength according to the Rayleigh law T-A - 4 .  The 
short-wavelength part of the spectrum of excitations with 
A < R is analogous to the spectrum of vibrational excitations 
of the material of the ceramic particles. 

The excitation spectrum in the transitional region, i.e., 
the frequency range where the wavelength A computed for- 
mally in terms of some average sound velocity is found to be 
of order R, is more complicated. If the transformation of the 
spectrum is followed as the transitional region is approached 
from the short-wavelength side, then the increased complex- 
ity is associated with the increased role of size effects, which 
determine the character of vibrations with A -R, as well as 
with an increase in the contribution of surface modes. When 
the transitional region is approached from the long-wave- 
length side, a sharp increase in the scattering results for 
A- R in the localization of vibratiom3 We note that surface 
vibrations in microscopic particles of the ceramic are one of 
the types of localized vibrations in the system under study. 
In contrast to  aerogel^,^^^ where the transitional (fractonic) 
region of the spectrum may turn out to be very extended and 
the density of vibrational states depends on the fractal prop- 
erties of the structure, in typical ceramics with grain size 
R>  1 pm the transitional region of the spectrum is not likely 
to extend deep into the microwave region. 

The aim of the present work is to investigate theoreti- 
cally and experimentally the transport of vibrational excita- 
tions in ceramic materials. We discuss the lattice thermal 

conductivity and propagation of heat pulses. Under experi- 
mental conditions in the temperature range T>, 1 K the char- 
acteristic wavelength of the vibrations is at least one to two 
orders of magnitude smaller than R. Thus the transport pro- 
cesses are determined by excitations of the "particle" section 
of the vibrational spectrum of the ceramic, i.e., by phonons, 
just as in a continuous medium consisting of the ceramic 
material. 

2. MODEL OF PHONON TRANSPORT IN CERAMIC 
MATERIALS 

The propagation of nonequilibrium phonons (NEPs) 
in single-phase ceramic materials is determined not only by 
the properties of the material from which the ceramic is pre- 
pared, but also to a significant degree by the phonon trans- 
port through the contact regions (connecting necks) be- 
tween the particles (grains) of the ceramic. If the area of the 
necks per particle is small compared with the area of the 
surface of a particle or transfer from one particle to another 
is inhibited for other reasons, then energy transport in the 
sample will be slow, even if inside each particle phonons 
move along ballistic trajectories. 

In what follows we shall study the propagation of weak- 
ly nonequilibrium phonons, generated by a "warm" gener- 
ator AT/T<  1, where A T  is the amount by which the tem- 
perature of the generator exceeds the temperature of the 
thermostat T. This makes it possible to neglect completely 
the anharmonic interactions in the ceramic material, which 
at low temperatures T ~ 4 . 2  K are characterized by relaxa- 
tion times T~ > 1-10 ms. In the samples employed, most of 
the energy in a heat pulse arrives at the bolometer over a time 
on the order of hundreds of microseconds, which is obvious- 
ly shorter than the characteristic inelastic relaxation times 
7,. The spectral composition of a heat pulse can change as a 
result of inelasticity of phonon scattering near grain boun- 
daries. If the total area of the contact boundaries is small 
compared with the area of a particle, then a phonon under- 
goes many collisions with the boundaries before it leaves the 
particle. Thus, even if the fraction of inelastic events of re- 
flection from the boundaries is small, appreciable thermali- 
zation of the phonon gas inside each microparticle is possi- 
ble. For this reason, we examine two limiting cases. 

319 Sov. Phys. JETP 75 (2), August 1992 0038-5646/92/080319-10$05.00 @ 1992 American Institute of Physics 31 9 



A. Thermalization of phonons in the boundary regions is 
insignificant 

In this case the propagation of NEPs in thin ceramic 
samples occurs with conservation of the number of phonons 
and the spectral distribution of the injected phonons, i.e., the 
total number of phonons falling within the spectral interval 
from w tow + dw is an integral of the motion. 

B. Thermalization in each microscopic particle is significant 

The phonon distribution is in local equilibrium and the 
distribution parameter (temperature) depends on the loca- 
tion of the microscopic particle and the time. 

We first study qualitatively the propagation of NEPs in 
a ceramic. 

Suppose that each particle of the ceramic is, on the aver- 
age, in contact with S other particles. For close packing we 
have S & 1. The average area of all connecting necks per par- 
ticle is equal to Z = 60, where a is the average area of one 
neck. We assume that phonon reflection from sections of the 
particle surfaces which lie adjacent to pores is diffuse. There 
are two possible cases: 

1) Phonon motion inside the particles is ballistic. If I is 
the mean-free path in the ceramic material, then we have 
1 > R. Due to the technological idiosyncracies of the prepara- 
tion of a ceramic, even in pure materials Ican differ apprecia- 
bly from the corresponding quantity characteristic for a sin- 
gle crystal at the same temperature. 

2)  Phonon motion inside particles is diffusive; i.e., 
I < R .  

In our ceramics the quantity R is less than 10pm. Thus 
we assume that both cases are important and we study them 
separately. 

Let to be the characteristic residence time of a phonon 
in a given particle. After a time to has elapsed, the phonon, 
with high probability, leaves the particle in which it was 
located and enters one of the neighboring particles which are 
in contact with the initial particle. In the process, the 
phonon migrates in space along one of the possible directions 
by an amount -R. This picture of the motion is similar to 
the hopping mechanism by which excitations are transport- 
ed. Here R plays the role of the hopping length and to is the 
characteristic hopping time. For time scales t)  to, this pro- 
cess is described by a diffusion equation, and the diffusion 
coefficient is 

If the phonon motion inside a particle with I >  R is bal- 
listic (case l ) ,  then, evidently, 

where S is the average surface area of a particle and 

Z 
DmvSR - f,. 

S 

Here the factor f, is the probability that a phonon passes 
along the connecting neck from one particle into another. 
Generally speaking, this quantity depends on the wave- 
length (energy) of the incident phonon. Thus, in the first 
case, the bolometer signal reaches its peak value at the time 

where L is the length of the sample. 
In the second case the time to can be estimated as fol- 

lows. The time t, required in order for a phonon to diffuse to 
the surface of a particle is of order R '/D,. Here Dl is the 
phonon diffusion coefficient in the particle. If, in the process, 
the phonon reaches the connecting neck, then it exits with 
probabilityf,, into the neighboring particle. Thus the scale to 
is equal to 

and the signal peak arrives at the bolometer at the time 

The meaning of this result is obvious. The effective diffusion 
coefficient in a porous ceramic material is less than the diffu- 
sion coefficient in a continuous material by the amount of 
the multiplier Zfw/S, describing the decrease in the proba- 
bility of spatial migration of a phonon in connection with the 
requirement that the phonon pass through the neck (com- 
pare Ref. 6 ) . 

The foregoing analysis obviously refers to the case A. 
We note that similar arguments can be used even in the case 
B, if the change in the energy of the phonon gas in the chosen 
microparticle is studied instead of the change in the number 
of phonons in the particle and the phonon energy flux 
through the contact region is studied instead of the phonon 
flux through the contact region. 

3. PROPAGATION OF NEPs IN CERAMICS 

1. Suppose the thermalization of NEPs in the ceramic is 
insignificant. Let N(r,,t) be the phonon number density at 
frequency w (for simplicity we omit this dependence) in a 
particle with coordinate r, at time t. On the basis of the 
assumption that phonon reflection from the boundaries of a 
particle with pores is diffuse and also since 

any nonuniform phonon distribution inside a particle be- 
comes rapidly uniform (over a time of the order of R /us 
g t o  ). Thus we assume that the phonon density inside each 
particle is uniform. The quantity N(r,  ,t) evidently satisfies 
the continuity equation, which we write in the form 

Herep(v-+ v') is the probability per unit time of a transition 
phonon from particle v into a particle v', in contact with the 
particle v, when the phonon is incident on the connecting 
neck between the particles; the summation in Eq. ( 1 ) ex- 
tends over all particles v' in contact with the given particle v. 
In accordance with the foregoing discussion, in the formula 
(1) no distinction is made between the phonon densities 
near the neck and in the volume of the particle. 

In order to elucidate the meaning of the quantity 
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p(v-v'), we write the balance of phonon transitions 
through the contact region a per unit time, using the as- 
sumption that phonon reflection from the boundaries is dif- 
fuse. Then the number of phonons passing per unit time from 
the vth microparticle into the v'th microparticle and vice 
versa, can be written in exactly the same way as if the pho- 
nons passed through the contact area a from one half-space 
with phonon density nu into another half-space with density 
nu..  

In this case we have instead of Eq. ( 1 ) 

where V is the vclume of the uth microparticle and is 
the area of the contact region connecting the vth and u'th 
microparticles. Thus 

Evidently, 

Assuming that N ( r ,  , t )  is a continuously varying func- 
tion of position, we expand the function N(ru ,  , t )  in a series in 
powers of r,, - r , .  Such an expansion is valid, if N ( r u , t )  
varies significantly over a distance appreciably greater than 
the grain size R. Thus we obtain 

where we have introduced 

is the radius vector from the center of the vth particle to the 
center of the v'th particle. 

In writing down Eq. (2 )  we assumed that the probabili- 
ties of a transition from u into v' and from v' into v through 
the contact area are equal to one another, i.e., 

We introduce the vector 

and the quantity 

Let ( A ( r u ) )  denote the statistical average of the quantity 
A ( r ,  ) over the distribution of microparticles of the ceramic. 
Let 

B=<U (s) >. 

Writing 

d  (ru)=D(ru)-  D, 

we obtain from Eq. ( 3 )  

+'/2x [ ( a u u . ~ ) z - 1 / 3 a f u ~ A  ] p ( u & u 1 ) ]  N (I*.,: t ) .  
1, ' ( 4 )  

We introduce the operator 

We now perform the statistical averaging in Eq. (4). Let 

n(r ,  t ) = < N ( r ,  t ) ) .  

We obtain 

dn(ru, 1 )  - DAn (r,,  t )  = < f r ( r )  N (r ,  t )  ). 
at 

The equation for the Fourier transform n  ( r , w )  has the form 

If G ( r , w )  is the Green's function for the diffusion equation 
with a point source, then substituting the formal solution of 
Eq. ( 4 )  into the right-hand side of Eq. ( 6 )  gives 

( - iw-DA)n(r ,  a)= dr f<L(r )G(r - r ' .  a ) L ( r f  )N(r r ,  61) ). 

( 7 )  

We introduce on the right-hand side of Eq. (7 )  a planar 
source of phonons, which injects phonons into the sample at 
time t  = 0 from the plane z = 0: 

+ dr'<L ( r )  G ( r - r f ,  w )  L (r ' )  N (r', m )  ). 
( 8  

Here a = a ( w )  is the spectral distribution of the injected 
phonons. We perform the averaging in Eq. ( 8 ) ,  decoupling 
the average in the integrand. We obtain 

The equation ( 2 )  can now be rewritten in the form a  
( - io-DA)n (r ,  w )  = - 6 ( z )  

2n 

1 ,  =-! E [ ( a b L , ~ ) L - - - - -  a u ~ - h ] F ( u + u ' ) ~ ( r . ,  I ) .  We now transform the integrand in Eq. ( 9 ) ,  introducing the 
", 3 ( 3 )  Fourier transforms G ( k , w  ) and n  ( k , ~ )  : 
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Here 

1% a ma~roscopically homogeneous medium the quantity 
(L , ,  ( r )Lq2  ( r ' ) )  depends on the difference r  - r'. We intro- 
duce the notation 

~ : , ~ ~ ( r - - r ' )  =<Idq, ( r ) iJqZ(r t )  ). 

Fourier transforming Eq. (9) with respect to the spatial 
variable we obtain 

Finally 

We now examine 

We are interested in n ( k , w )  in the long-wavelength limit, 
since 

It is easy to verify that the integration in the region 

makes the main contribution to the integration. This means 
that we can perform the integration by expanding the inte- 
grand in a series in the small parameter 

and retain only the terms of lowest order in k /q. 
We now examine in greater detail 

L,+r,k (r-r') = -< (q+k, V  ( r )  ) (k .  V ( r r ) ' )  > 

+ (q+k) 'kYd ( r )  d (r') > 

Here r ,  - r  and r, +r'. In writing this equality we employed 
the expression for L,  ( r ) ,  the fact that 

and 

In a macroscopically isotropic medium 

<(q+k,  V ( r ) )  (k, V ( r l ) )  ) = ( k Z + k q ) ( V ( r ) ,  V ( r 1 ) , > .  

The second and third terms in the expression for 
L, + ,, ( r  - r ' )  are proportional to k and give on integra- 
tion over dq an insignificant renormalization of the diffusion 
coefficient D. 

Integrating the remaining terms in L ,  + ,, ( r  - r" and 
retaining only the contribution of lowest order in k / q  < 1, we 
obtain after substitution into Eq. ( 12) 

Here 
m 

is the correlation radius and 

Thus in the case at hand the propagation of NEPs in the 
ceramic is described by the one-dimensional diffusion equa- 
tion with effective diffusion coefficient 

We now make a number of estimates. In order of magni- 
tude we have D-GpR 2,  where S is the average number of 
particles in contact with the selected  particle,^ is the average 
transmission factor of the connecting neck, R is the mean- 
square radius of the particle, v i  - (S"2pR)2 = Sp2R ', if it is 
assumed that 6 )  1, and characterizes the scale of the 
fluctuations in the number of particles in contact near the 
mean value. 

Thus the ratio of the first and second terms is of the 
order of ( R , / R )  ' / a .  Depending on the ratio of R, and R, 
this quantity can be either less or greater than unity. The 
significance of the quantity R,  evidently lies in the fact that 
in a region of characteristic size R,  phonons move from par- 
ticle to particle along a preferred direction. For R,  - R ,  we 
have D,, z D and the second term makes only an insignifi- 
cant correction to the average diffusion coefficient. This is 
probably the situation in homogeneous ceramics with a 
small spread of the particle radii near the average radius 
(Fig. 1 ). Conversely, in ceramics where small particles fill 
the gap between larger particles, i.e., ceramics with a larger 
spread of the particle radii, the quantity R , / R  can be quite 
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FIG. 1 .  Structure of ceramic with low particle-size variance. 

large (Fig. 2) .  For example, for all small particles which are 
in contact with a large particle the quantity V is directed 
toward the large particle and the correlation radius Ro 
reaches the radius of the large particle. 

The origin of the term v:R :/D has a simple meaning. 
Indeed, consider the plane z = const, near which a large par- 
ticle is in contact with a collection of small particles. If the 
small particles with radius r in this plane were in contact 
with small particles lying near the planes z r, then the bal- 
ance of phonon transitions between particles would be deter- 
mined by the small difference in the phonon density in neigh- 
boring particles. In the case of contact with a large particle, 
the difference between the average phonon density inside 
each particle and the average phonon density in the plane 
z = const is greater because it is determined by the average 
phonon density between the planes z = const and 
z = const + R, since irrespective of the distribution of 
sources of the entering phonons, after a time of the order of 
R /us has elapsed the phonon density inside a particle be- 
comes uniform as a result of diffuse scattering of phonons at 
the boundary. The jump N(r, ) - N(rU, ) arising in the case 
of contact between small particles and a large particle is 
much larger than in the case of contact between identical 
particles both in the plane z = const and in the plane 
z = const + R. This means that passage through a region 
with volume R: in the presence of large particles occurs 
much more quickly. The diffusion process in such a ceramic 
may be significantly more rapid than the diffusion process in 
a weakly inhomogeneous ceramic with a small spread in the 
particle radii and the same average grain size. 

The arrival time of the signal peak at the bolometer is 
determined by the expression t, - L  '/D,,. In a weakly in- 
homogeneous ceramic D% v: R : /D and t, - L  '/D 
- L '/SpR ' , and we obtain for t, an expression that is iden- 
tical to the result of qualitative analysis. 

2. We now examine the other limiting case, assuming 
the number of reflections of a phonon from intergrain boun- 
daries us t,/R 3 1 and, in addition, l v ,  to / R  > 1, where 6 is the 
inelasticity parameter for phonon scattering at the bound- 

1 I 
Z+R' 

FIG. 2. Structure of ceramic with high particle-size variance. 

ary. On the basis of the last inequality it can be assumed 
that a locally equilibrium phonon distribution is estab- 
lished inside each microparticle of the ceramic; i.e., the 
phonon distribution function has the form 
n(r,,t) = l/exp [ f iw/k,  T(r,,t) ] - '. In this case, instead of 
the equation ( 1 ), which expresses the law of conservation of 
the number of phonons with energies from w to w + do, we 
can write the continuity equation for the energy. Let 
E(r,,t) = J,dr/,"dw h p ( w )  n(w;r,,t) be theenergy of the 
gas of nonequilibrium phonons in the vth microparticle. 
Then, evidently, 

xho [n (o ;  r,, t)-n(r,., t )  1, (15 )  

where, as before, p, (v-v') - ( o / S )  ( v,/R) f, . The right- 
hand side of Eq. ( 15) is the difference of the energy fluxes of 
nonequilibrium phonons flowing through the contact re- 
gions between the vth particle and all neighboring particles. 

Setting n(o;r,,t) - n(o;r",,t) =: - (dn/dT) [T(r, ,)  

-T(r,)]~(dn/dT)[(au,,V)++(au,,,V)']T(rU,t) and 
dE/dt = (dE/dT) (dT/dt) = C, (dT/dt), where C, is the 
specific heat capacity of the ceramic material, we obtain fin- 
ally 

I 
d""t) at = z j j ( u - u ' )  u . [ (a  . . v ~ ) + - ( a . . . ~ ) ' ] ~ ( r . , L ) ,  2 

which differs from Eq. (2)  only by other quantitiesp(v- v'), 
describing some average transition probability between the 
vth and v'th microparticles: 

The further analysis of the solution of Eq. ( 15) is com- 
pletely similar to the analysis presented above for the case 
when appreciable thermalization of NEPs does not occur. 
The obvious difference lies only in the fact that the expres- 
sion for the effective diffusion coefficient is different: 
j ( v+  u') appears instead ofp(v+ v'). 

We now examine the question of the temperature de- 
pendence of the arrival time t, of the signal peak. In the 
expression ( 14) for D,, the only quantity that can depend on 
the phonon wavelength is, evidently, the quantity p; both 
terms in D,, are proportional top (in the second term v i  -p2 
and D in the denominator is proportional to p) .  Thus 
t, - l/p,, where Z is the average frequency of the injected 
phonons. There are several possible cases. 

1. Phonon transmission through a connecting neck is 
described by the theory ofacoustic matching. In this case the 
transmission factor f does not depend on the frequency 
(wavelength) of the phonon. Thus t, (T)  = const and the 
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arrival time of the signal peak is independent of the tempera- 
ture. 

2. A specific dependence of the transmission factor f, 
on the phonon frequency (wavelength) can arise if the char- 
acteristic linear size ro of the contact region is small and 
comparable to the phonon wavelength. In this case phonon 
transmission through the connecting neck is determined by 
diffraction of phonons. Assuming that the neck is small com- 
pared to the radius of the particle, the well-known result for 
the diffraction of a wave by a round opening in a flat screen 
can be used. If A ) ro holds, thenf, follows the Rayleigh law 
f, -w4. In any case, as the temperature increases and the 
average wavelength of NEPs decreases the transmission fac- 
tor f, increases and t, decreases; i.e., dt,/aT< 0. 

3. If ro %A holds, then the frequency dependence f, can 
arise if a large number of defects is concentrated in the region 
of the connecting neck. There is nonetheless a possibility 
that a phonon approaching a neck in the required direction 
will be reflected backward into the initial particle. If the 
phonon scattering cross section of defects in the region of a 
neck increases with increasing average frequency of the 
NEPs, then as the temperature increases the quantity pZ 
decreases and t, increases: at, /dT> 0. 

4. The character of phonon transmission from one par- 
ticle to another can be determined by the fractal structure of 
the connecting neck. If the characteristic phonon frequency 
in the heat pulse (Y-0. 1 THz) corresponds to the fracton 
region of the spectrum of excitations in connecting necks, 
then excitation transfer in a neck can be associated with a 
hopping mechanism. Under these conditions the probability 
f, that a phonon incident on a neck is transmitted from one 
particle to another depends on the temperature and in- 
creases with increasing temperature, since the process is ac- 
tivational. The increase in f, with increasing temperature 
results in an increase of the effective diffusion coefficient. 
Under these conditions at, /dT < 0. 

Thus, depending on the type of ceramic the following 
cases are possible under conditions of ballistic propagation 
of phonons in ceramic particles: t, (T)  = const, 
at, /dT< 0, and dt, /dT> 0. 

An unusual temperature dependence of t, with 
dt,/aT< 0 can also arise for reasons unrelated with phonon 
diffraction by connecting necks or the fractal character of 
the necks. The following discussion illustrates this. Consider 
the expression ( 14). Suppose that the quantity D depends on 
the temperature. This could be associated, for example, with 
the neglected contribution of phonon diffusion within a par- 
ticle of the ceramic. It is obvious that the structural contri- 
bution to D,,, i.e., the term v i  R i/D, will remain in any case, 
since this term takes into account the possibility of "fast" 
diffusion within regions of size - R ,  in an inhomogeneous 
ceramic. Thus the temperature dependence D,, ( T) is deter- 
mined either by D(T),  if we have D(T) > voR0, or 
v i  R i/D( T), if we have D( T) < voRo, and ifD( T) decreases 
with increasing T, then it is possible to have a case when 
at, /dT changes sign. Let To be the temperature determined 
from the condition D( To ) = vo R,. For T <  To we have 
dt,/dT> 0; for T >  To we have, conversely, dt,/aT< 0. 

We now briefly discuss the behavior of the low-tem- 
perature thermal conductivity of a ceramic. Let TR be the 
temperature determined from the condition R zR. In the 

region T >  TR , evidently, A < R holds and phonon localiza- 
tion effects3 can be neglected. Since we are considering a 
model of phonon transport which presupposes that A < R, we 
confine our attention to the case T >  TR. It is convenient to 
use the results of analysis for case B. Actually, after statisti- 
cal averaging the equation ( 16) can be transformed (simi- 
larly to Eq. ( 1 ) in the A)  to the equation for thermal con- 
ductivity. In order to make a qualitative assessment we can 
employ the relation 

The temperature dependence of the thermal conductivity 
x (  T) at low temperatures is determined by the temperature 
dependence of C, (T)  - T 3  as well as by the temperature 
dependence of D,, (TI. Thus, in the acoustic-matching 
model we have D,, ( T) = const and x ( T) - T 3.  In the case 

the effective diffusion coefficient D,, (T)  increases with in- 
creasing temperature and tt ( T)/T is an increasing function 
of T. The temperature dependence of x ( T) in such ceramics 
can contain a section with a sharper temperature depend- 
ence than T 3. If we have 

then D,, (T)  decreases with increasing T, and in such ce- 
ramics, conversely, a section with a weaker temperature de- 
pendence than T can appear in x ( T) . 

At higher temperatures the proposed model of phonon 
transport is no longer applicable. The properties of contact 
regions no longer dominate, and irrespective of the type of 
regions x ( T )  follows the same law for ceramics with the 
same structure. Thus, depending on the properties of contact 
regions, for T >  TR features in the form of steps or dips can 
appear in the curve x ( T) . 

The possible temperature dependence x ( T )  in ceramic 
materials at low temperatures is shown schematically in Fig. 
3. 

We note that these features in x ( T )  can be deserved 
only if for the dominant group of phonons with charactcris- 
tic frequencies wd ( T), which determine x ( T), the quantity 
D,, depends on wd ( T). In addition, evidently, the dominant 
phonon groups determining x ( T) and t, ( T) can be differ- 
ent. As a result, the features in x ( T) can appear in a different 
temperature interval. In addition, the same contact can have 

FIG. 3. Temperature dependence of the low-temperature thermal con- 
ductivity of ceramic materials: ( I )  dt,,/dT= 0, (2) dr,,/dT< 0,  and ( 3 )  
dt,,/dT> 0. 
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different properties for phonons with different frequencies. 
Thus a fractal or amorphized contact fdr transmission of 
long-wavelength phonons is described, evidently, by the the- 
ory of acoustic matching. From what we have said above it is 
obvious that a quantitative theory of the thermal conductiv- 
ity of ceramic materials at temperatures T >  T,, as well as a 
comparison with experimental data, should be based on the 
possibility of a detailed description of the properties of the 
contact regions. 

4. EXPERIMENT 

The arrangement of the experiment is as follows. Thin, 
100-200 pm thick, ceramic wafers were polished to optical 
quality. A thin ( - 1000 A thick) film of gold, which was the 
injector of nonequilibrium phonons (NEPs), was deposited 
on one of the polished faces by the method of thermal sput- 
tering. Weakly nonequilibrium phonons were excited in the 
samples; i.e., heating of the film with a current pulse made it 
possible to achieve conditions such that AT< To, where 
AT = T,  - To and To is the temperature of the thermostat. 
The phonon-nonequilibrium signal passing through the 
sample was recorded on the opposite face of the sample with 
a wideband bolometer based on a superconducting junction 
of In or Sn films. Displacement of the working of the 
bolometer by a weak magnetic field made it possible to ob- 
tain the temperature dependence of the scattering of NEPs 
in the sample.' 

For the object of investigation we chose well-known ce- 
ramics, produced commercially and widely employed in 
technology and differing significantly with respect to me- 
chanical and physical properties and technology of prepara- 
tion. These are the ceramics lead-lanthanum zirconate-tita- 
nate (LLZT) and 22KhS brand ruby ceramic. 

The basic quantity measured in the experiment was the 
arrival time t ,  of the peak value of the phonon-nonequilibri- 
um signal and its dependence on the temperature and the 
structural characteristics of the sample. 

The measurements were performed in the temperature 
range 2.2-3.8 K. The temperature of the heater exceeded the 
temperature of the thermostat by an amount ~ 0 . 2  K. Ac- 
cording to Ref. 7, this madeit possible to obtain the tempera- 
ture dependence t ,  ( T )  by changing the temperature of the 

FIG. 5. Electron micrograph of a LLZT ceramic chip on which measure- 
ments were performed. 

thermostat by changing the rate of pumping of helium va- 
pors out of the cryostat. 

The low temperatures of the experiment and the low 
energies of NEPs made it possible to eliminate from analysis 
the phonon-phonon interactions associated with weak an- 
harmonicity of the lattice of the initial material and to as- 
sume that the recorded signal is the result of scattering of 
nonmonochromatic phonons, whose initial frequency distri- 
bution was close to the Planck distribution and which did 
not interact with one another, in the sample. 

Figure 4 shows a series of the phonon-nonequilibrium 
signals S( t ) ,  recorded by the bolometer, for the LLZT sam- 
ple. 

As expected, the curves have the bell shape, characteris- 
tic for diffusion propagation, with a pronounced maximum. 

FIG. 4. Bolometer signals indicating phonon nonequilibrium in 
a LLZT sample with L = 120 pm.  T =  3.82 ( I ) ,  3.4 ( 2 ) ,  3.01 
(31, and 2.2 K (4) .  
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The arrival time of the peak value decreased with the tem- 
4' perature (energy of NEPs); this corresponded to a decrease 
4 @ in the intensity of the scattering. 

if Figure 5 shows an electron micrograph of a chip of the 
sample measured; one can see that the average grain size is 

f& equal to 3-5 pm with comparatively close packing. The ce- 

f O ramic is transparent, and it does not contain any defects that 
can be seen with an optical or an acoustic microscope. 

MO 
fi d It is interesting that the temperature dependence satis- 

fies 

t M ( T )  -Tn, 
FIG. 6 Temperature dependence 
t M  ( rl) for LLZT ceramic with ( I )  where n > 5 .  This eliminates the possibility of Rayleigh scat- 
L = 120 pm,  fused quartz with ( 2 )  tering of NEPs. At the same time, this temperature depend- 4 L = 160 P m  with 10 ' W/mm2 ence is very similar to the temperature dependence t ,  ( T )  

P and the temperature dependence (3) 
t M - T 5  observed in glasses under the same experimental condi- 

i tions.' 
Figure 6 shows the temperature dependences t ,  ( T) for 

I LLZT and fused quartz. 

t ,  ( L )  - L2 

f in both glasses and the ceramic materials studied. This cor- 
responds to the conditions of diffusive propagation of NEPs, 
since 

FIG. 7. a )  Phonon-nonequilibrium signals for a sample of ruby ce- 
ramic.L = 140pm, P , < l O 1  W/mm2, T =  3.8 (1),3.65 (2),3.37 
( 3 ) ,  3.13 ( 4 ) ,  and 2.44 K (5). b)  Electron micrograph of the struc- 
ture of the sample in Fig. 7a prior to mechanical treatment. 
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I 1 I 1 I I + 1 FIG. 8. a )  Phonon-nonequilibrium signal for a sample of ruby 
0 500 ' tt ps ceramic. L = 140 pm, P,, < 10 ' W/mmz, T = 3.78 ( I ) ,  3.49 

( 2 ) .  3.14 ( 3 ) .  and 2.46 K ( 4 ) .  b)  Electron microgra~h of the 
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structure of the sample in Fig. 8a prior to mechanical treatment. 

FIG. 9. Portion of Fig. 7b with strong magnification. 
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The weaker temperature dependence t, (T)  with con- 
stant heating power P, is the result of an increase in 

occurring as the temperature of the thermostat decreases, 
since 

for AT< To (the coefficient a is determined by the condi- 
tions of acoustic matching of the heater and the substrate). 
This effect can be taken into account in the manner de- 
scribed in Ref. 7. 

The observed behavior of T, ( T) in LLZT ceramics 
could indicate the existence of amorphized contact regions 
between microparticles of the ceramic, where the phonon 
transport process is similar to that occurring in glasses. 

Figures 7a and 8a show the temperature dependence of 
the bolometer signal S ( t )  for 22 KhS ruby ceramic. Figures 
7b and 8b show photographs, with the same degree of resolu- 
tion, of the structure of these samples before polishing. 

The character of the temperature dependence t ,  (T) 
shows that, in agreement with the theory, the arrival time of 
the signal peak is all the shorter the larger the grain and the 
lower the degree of homogeneity of the sample. 

The temperature dependence t, ( T) is fundamentally 
different, in contrast to LLZT. The arrival time of the peak 
value of the phonon-nonequilibrium signal increases with 

decreasing temperature (phonon energy). Figure 9 shows a 
portion of Fig. 7b with greater magnification. One can see 
that the intergrain boundaries are sharp. The structure of the 
contact regions, however, is not resolved. For this reason, it 
is entirely likely that among the contact regions there are 
continuous regions of very small characteristic size, so that 
phonon transmission through such connecting necks can be 
determined by diffraction effects. On the other hand, quite 
wide but not sharp contact regions, where the fractal nature 
of the structure could be significant, can also be discerned. 
For this reason, the appearance of a dependence S(t,To) 
with 

could also be associated to both effects. 
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