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It is shown that in a semiconductor-insulator interface there are traps with exceptionally low free- 
carrier capture cross sections a. They form because of random fluctuations of the number density 
of charged centers built into the insulator along this interface. A slow trap is created by a large- 
scale repulsive fluctuation of centers, which forms the barrier, and a cluster of attractive centers, 
the "nucleus," that finds itself in the fluctuation. A relation between the parameters of these traps 
and the probability of their appearance is established for different temperatures Tand surface 
carrier densities n. It is shown that many mesoscopic MOSFETs (metal-oxide-semiconductor 
field effect transistors) may contain, at certain values of ~ a n d g ,  a single trap in which charge 
exchange generates a noise current of the "random telegraphic signal" (RTS) type with 
characteristic times ranging from - 10- to lo2 s. The temperature dependence of afor  this trap 
is specified by theequation o(T)  = uo exp( - AE,/T), with AE, > T. Themost probable values 
of a, and AE, that follow from the theory, their variations, and the variations of the values of 
optimal for the emergence of RTS when the temperature range changes resemble those observed 
in RTS studies. The basis of the theory of RTS generated in a mesoscopic MOSFET by a single 
slow fluctuation surface trap is constructed. The properties of such a trap are found to differ 
considerably from those of other electron traps owing to the special structure of the nucleus and 
barrier and the great difference in size (a typical barrier radius I, is several dozen nanometers, 
while that of a nucleus ranges from one to two nanometers). Also determined are the RTS 
amplitude and its dependence on the temperature and the voltage across the gate for different 
ratios of 1, and the oxide layer thickness, similar to the dependence of the carrier capture and 
emission times at the trap level. Analysis of RTS data suggests that this dependence be explained 
only by assuming that these are fluctuation traps. Finally, a number of important consequences of 
the fluctuation origin of slow surface traps and the exceptionally high information capacity of 
RTS are noted. 

1. INTRODUCTION 

Advances in manufacturing solid-state nanostructures 
have stimulated great interest in studying the properties of 
such small objects. They are created not only artificially, by 
technological means, but also by nature itself. This paper 
discusses the physical consequences of the existence in the 
semiconductor-insulator heterojunction plane of random 
nanostructures comprised of charged centers, structures 
that emerge because of the random distribution of such 
centers and generate surface traps in semiconductors with 
extraordinarily small free-carrier capture cross sections. 

To be specific, we examine the Si:SiO, system, which is 
characterized by the high quality of the heterojunction. De- 
spite this, SiO, always contains a sizable built-in space 
charge, which, as is well-known (e.g., Refs. 1 and 2), is con- 
centrated near the interface with Si (no farther than 30 A 
from the interface, this value being only the resolution limit 
of the measurements) and the charge can be expected to be 
in the junction region in Si:SiO, whose thickness is about one 
to two atomic layers3). The value of this space charge, mea- 
sured by the variation in the flat-band p~tent ial , ' .~  is the 
result of a fairly exact balance between the relatively large 
positive and negative built-in charges. This can be assumed 
from experiments in the localization of carriers at low tem- 
perature~.~ The proximity to the semiconductor and the high 
total number density of the charged centers lead to a situa- 
tion in which density fluctuations along the interface create 
a random potential pattern with a high amplitude, which 
localizes electrons and holes at the semiconductor's sur- 

face.5 The surface states, or traps, considered in Ref. 5 are 
"fast." But fluctuations of the built-in charge also form 
"slow" surface traps. These generate small-scale clusters of 
attractive centers, or "nuclei," that find themselves inside 
the large-scale repulsive fluctuation. The multiply charged 
nucleus localizes the captured particle inside a very small 
volume surrounded by a high and extended potential barrier. 
The capture time exponentially increases with the height of 
the barrier, and for strong barriers created by large, and 
therefore infrequent, fluctuations can be very long. 

There are noticeably fewer slow surface traps than fast 
traps. But since the probabilities of the formation of nuclei 
with a high binding energy of the captured particle and of 
strong repulsive barriers are not very low,6 there are enough 
such traps for a sizable flicker surface noise in ordinary met- 
al-oxide-semiconductor field-emission transistors (MOS- 
FETs) and for the possibility of observing at least one slow 
trap in transistors of submicron dimensions. 

In their properties slow fluctuation traps most closely 
resemble repulsive centers, such as Au in Ge or Zn in Si, 
whose capture cross section is determined by the tunneling 
of high-energy free charge carriers (with an energy E >  T) 
under a fairly low barrier.' But there are considerable differ- 
ences here. For instance, capturing by fluctuation traps oc- 
curs because of the direct tunneling of a particle to one of the 
excited (resonance) states created by the attractive nucleus. 
Only after it has given away its energy does the particle go to 
the ground state. Resonance states have no repulsive centers, 
and owing to indirect tunneling the particle immediately 
finds itself in the ground state.' The considerable diversity in 
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the properties of fluctuation traps introduces a very great 
difference between the radii of the nucleus and barrier. The 
typical value of the first ranges from one to two nanometers, 
and that of the second is on the order of the thickness of the 
insulator in the MOS structure, that is, several dozen nano- 
meters, and differs considerably from trap to trap owing to 
the randomness of their formation. Since the nucleus and 
barrier, so different in scale and the effect they have on the 
particle, together form a slow trap, the properties of this trap 
must contain various information about the heterojunction 
and the adjacent layers of the semiconductor and insulator. 

Investigations in the conduction of mesoscopic MOS- 
FETs stimulated progress in the study of the properties of 
slow surface traps. Ralls et aIG9 discovered random current 
switching corresponding to jumps in the conductivity in this 
extremely small sample under charge exchange in the only 
slow surface trap in the sample with times of capture and 
emission of electrons, r, and re, of the order of 1 s and long- 
er, and that had the shape of a random telegraphic signal 
(RTS). Many experiments (see, e.g., the review article by 
Kirton and UrenlO) showed that l/f noise in a MOSFET of 
ordinary dimensions constitutes a combination of RTSs 
emerging as a result of charge exchange in a large number of 
such traps. But it may be more important that the study of 
the RTS produced by a single trap proved to be exceptionally 
informative and the properties of traps found from RTS 
studies have been quite unexpected and yield with difficulty 
to explanations based on the ordinary ideas of electron traps 
(see Ref. 10 and Secs. 7 and 8 of this paper). 

Further analysis shows that fluctuation traps possess 
just such properties. Below we determine for such traps the 
optimal structure of the nucleus and shape of the energy 
barrier and then the times r, and r, for a trap with a given 
nucleus and barrier. Since the most complete information 
about slow traps is provided by RTS studies, subsequent de- 
termination of the probability for these traps to appear, of 
the most probable properties of traps, and of the optimal 
conditions for observing traps with T, and r, lying in the 
given range have been done for MOSFETs of submicron di- 
mensions. The basic laws governing the behavior of the RTS 
generated by the charge exchange in the fluctuation trap are 
also determined; namely, the RTS amplitude and its depend- 
ence on temperature and voltage on the field electrode of the 
MOS structure for different ratios of barrier radius to insula- 
tor thickness and similar behavior for r, and r,. The experi- 
mental RTS data are then discussed and it is shown that 
interpreting the data correctly requires using the concept of 
fluctuation traps. Finally, we discuss the new possibilities 
opened up by the remarkable richness of the RTS data pro- 
vided by the charge exchange in the slow fluctuation surface 
traps, and of other important corollaries of the agreement 
between theory and experiment. 

2. STRUCTURE OF NUCLEUS AND SHAPE OF BARRIER OF A 
SLOW SURFACE TRAP 

Consider the localization of particles (electrons from 
the inversion n-type channel of the MOS structure, for the 
sake of definiteness) in the potential pattern created by the 
charges built into the interface between the semiconductor 
and the insulator and distributed at random along the inter- 
face. The average surface densities of the positively and ne- 
gatively charged centers are denoted by Z + and C. - . On the 

basis of this statement of the problem, Gergel' and Suris5 
have shown that the fluctuations of the built-in charge gen- 
erate localized surface states for electrons and holes. The 
expression for the density of surface states at the Fermi level, 
Nss ( E ~ ) ,  derived in the Gaussian approximation and there- 
fore depending only on the total center density, 
Z = Z ,  + Z , p r o v i d e s a t 8 - 1 0 1 2 c m 2  agooddescrip- 
tion of the Nss (aF) dependence for Si:SiO, structures, with 
the exception of values of a, close to the middle of the forbid- 
den band. Gergel' and Suris's theory, which allows only for 
quasiclassical localization of carriers in large-scale potential 
fluctuations, states that for these values of aF the Nss (aF) 
curve acquires a sharp dip. 

Actually, no such dip should exist owing to the large 
density pqua,,,, (a') of the quantum states generated by 
small-scale, Poisson (non-Gaussian) clusters of attractive 
centers. Such a "nucleus," with an electron binding energy 
E',  consists of a small number Z,, of centers inside a disk 
whose radius is close to that of the wave function, a,. . For 
estimates we can assume Z - ( a  ) ' and 
a,. -a, ( E , / E ' ) " ~  for E'%E,.  Here E, = me4/8x2fi2 and 
a ,  = 4xfi2/me2 are the binding energy and the scale of the 
wave function the ground state of an electron of mass m on 
an isolated charge + e built into the interface (see Refs. 3 
and 5) ,  and x = (a, + a, )/2, where a, and E, the dielectric 
constants of the semiconductor and insulator (we as- 
sume in numerical estimates that a, = 12, E, = 4, 
in = 4~ l o 2 '  g, E,  = 0.025 eV, and a ,  = 35 A) .  An esti- 
mate for Z,, and a ,  follows from reasoning similar to that 
used in Refs. 6 and 11 in determining the optimal nuclei in 
the bulk of a doped semiconductor. The same reasoning was 
used in Ref. 5, but the conclusion reached there that p,,,,. 

(E') is negligible was based on the asymptotic behavior of 
quasipoint nuclei with a radius small compared to a,. , sug- 
gested in Ref. 1 1. As shown in Ref. 6, this asymptotic behav- 
ior can be employed only for unrealistically large values of E'. 
For practical values of a' the radius of an optimal nucleus 
considerably exceeds a,. . Hence, the value of pquan,,, (a') 
proves to be much higher than the one calculated in the 
asymptotic approximation. For instance, Ref. 6 shows 
that if the bulk donor concentration N satisfies 
@ = ( 4 ~ / 3 ) ~ a i  - 1, with a, the Bohr radius in the bulk of 
the semiconductor, the asymptotic formula understates 
pqualltum (a') by approximately ten orders of magnitude. It is 
then natural to expect that for a two-dimensional distribu- 
tion of centers with & +  = 71-2, a: - 1, that is, with 
Z + - 1012 cm-2,  the asymptotic formula of Ref. 5 under- 
states pqU,,,,, (a' ) by ( 2/3 ) 10 = 6-7 orders of magnitude. 
Besides, for high a' (small a,, ) the spatial dispersion of a, 
and a, must provide a considerable contribution to E', since 
highly localized electrons are coupled very effectively by the 
potential of the cell containing a charged center. As is 
known,I2 in silicon this contribution is considerable even for 
single charged centers and very high ( - 1 eV) for double 
charged centers. Clearly, the contribution of spatial disper- 
sion, diminishing as the charges from a common central cell 
are dispersed, is easily restored by an increase in the number 
of charges in a region of radius -a,. . Because of this effect 
the rate at whichpquantUrn (a' ) decreases for large values of E' 

must drop drastically. These facts and the results of prelimi- 
nary calculations carried out by the present author together 
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with N. M. Storonskii via the refined formulas of Ref. 13 
seriously suggest that in Si:Si02 with 2, - 2- - 10" crnp2, 
the value ofp,,,,,,, (E') amounts to roughly 109-10'0 eV- ' 
cmP2 for both electrons and holes even at E'-0.5 eV and 
slowly decreases as E' increases and 2 + and 2 _ decrease. 

When measured from the middle level of the bottom of 
the conduction band at the interface (in what follows all 
energies are measured from this level), the energy of the 
ground state of an electron bound by the nucleus, E,, consists 
of two terms, - E' and the shift (primarily classical) in the 
field of the charges separated from the nucleus by a distance 
much greater than a,. . Infrequent, slow surface traps with 
multiply charged nuclei surrounded by strong large-scale 
repulsive fluctuations, have a moderate (or even negative) 
binding energy because of the balance of these two large 
terms. For this reason their contributions to Nss(&,) is 
small. But such traps (as well as similar bulk traps discussed 
in Ref. 6) manifest themselves vividly in nonequilibrium 
phenomena owing to very slow charge exchange. 

Now let us find the large-scale fluctuation {(l), where 1 
is the vector in the interface plane, that generates with the 
highest probability a barrier with a given tunneling trans- 
mission coefficient for free electrons with energy E, cap- 
tured by the given nucleus. Near the nucleus but for r$a,. 
the height of the barrier is 

U L  

where fl, is the area of the barrier area and a = a, + a, ,  
with Q, and g, the average surface densities of localized and 
delocalized (free) electrons. For g, $ad Eq. ( 1) holds for 
E~ $ T and eT)A, where A = (e2/x) ( ~ 2 ) " ~  is the scale of 
the fluctuation pattern. For 2A < - E, <A ln(8d 22'/4/ 
a?), where d is the insulator thickness, d ( E~ w/E,, and w is 
the thickness of the space-charge region separating the n- 
channel from thep-substrate, the following formulas for g, 
and a, hold5 

where E, is the homogeneous field pressing the electrons to 
the surface of the interface, 

and No is the concentration of acceptors in the substrate. 
Another condition for the applicability of Eq. ( 1 ) is the 

inequality I, (d, where I, is the radius of the barrier. It is met 
when is not very small and allows for ignoring image 
charges in Eq. ( 1 ). Here fl, and {(l) are linked by the con- 
dition that the total charge on fl, be zero: 

where we have ignored the charge Z,. (Eq. 5). The exponent 
in the tunneling transmission coefficient for electrons with 
an energy E, A ( 2 ) ,  moving in the direction of fastest tunnel- 
ing to the nucleus (along the x axis at right angles to the 
interface; see below) is 

where we have allowed for Eq. ( 1 ), and x,  ( E )  and x,(E) are 
the roots of the equation U(x,l = 0 )  = E. By employing for- 
mulas (5) and (6) and the requirement that entropy be min- 
imal, we can obtain, via a variatio!al procedure, an equation 
for the optimal fluctuation {(I) for given E = E ~ ,  
A(&) = AT, and 2,. . This nonlinear integral equation can be 
solved only numerically, but it allows us to clarify a number 
of general laws governing the behavior of {(l), namely, that 
{(I) possesses radial symmetry; for x,(E, ) (l(1, we have 
l (1)  cc [ u  (I) - u (I,) 1, with the potential u ( r )  of a separate 
cente~being approximately e2/xr, and for I<x, (E, ) the val- 
ue of {(I) is practically independent of I. Hence we seek the 
optimal fluctuation below in the form 

In this way the problem reduces to finding the optimal val- 
ues of B, y, and I,. Naturally, the probability of slow-irap 
formation is underestimated only slightly because the form 
of$(/) is not known precisely. Assuming thaty, x ,  (E,), and 
x2(&,) are much smaller than I, (this assumption is verified 
below), we find from (5)  and (7)  that B = gl,. The entropy 
of a large-scale fluctuation calculated in the Gaussian ap- 
proximation is 

1 0  

S=n id.! l [ i2( l ) /Zl= ( nQ -' l o  ' /Z) [ln(l,/y) - (312) I ,  (8)  
0 

and Eq. (6) acquires the form 

Expressing y in terms of I, and S via Eq. (8)  and substituting 
the result into ( 9 ) ,  we get the function AT(S,Io), which in- 
creases with S, as can easily be shown. Hence, the minimum 
in the entropy, S, , for given A,, E,, and Z,, corresponds to 
the maximum in A, (S,I,) as a function of I,, that is, S, can 
be found by solving the equations A,(S,I,) = AT and 
6'AT (S,lo)/6'lo = 0 simultaneously. Without going into the 
details of the calculations involved, we give the final result: 

where 1, = l,/a, is the solution to the equation 

.kT = 4~, ,? -~*l ;~~~b- l  

Here the following dimensionless quantities have been intro- - 
duced: 8, = E,/E,, 2 = n-za;, p = n-Qa:, 2 = x/y, and 

b(6,) =(ZCr/2QliL)exp[ (eT/4Qr,) +5/21 ) , 

and 2, and 2, are the roots of the equation 

ln ( l+Z)  +b(la)lZ=L12+ln 2 
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with b(io) < 1/2 and,%, < 1 <%,. From Eq. ( 1 ) we find that 
the optimal barrier U(r) for r g l o  consists of two terms, of 
which the spherically symmetric term 

is the principal one, while the other term, U2(r), depends on 
the angle 8 between r and the x axis and for r<y is given by 
the following formula: 

~,(r)=4QT~e,(r /y)  (I-cos8). (13) 

For small values of g this approach is inapplicable, 
since as the screening weakens the radius of an optimal fluc- 
tuation grows and exceeds the insulator's thickness. Then 
the strength of the barrier is limited by screening due to the 
image charges induce: on the field electrode (gate) of the 
MOSFET. Note that {(I) does not change for I<x,(E), and 
for x2 (E) -4 1 9  lo we have $(I) cc u (I). But since the potential 
~ ( r )  of the center, which for r 4 d  is proportional to r - ' ,  
decreases much faster for r%d because of screening, instead 
of (7)  we seek &(I) in the form ((1) = B(y2 + 1') -"' for 
1 < qd and $(I) = 0 for I >  qd, with q-  1. [In subsequent 
numerical estimates we assume that q = 2, since at E, = 12 
and E, = 4 the difference between u( r )  and e2/xr is moder- 
ate as long as r<2d holds.] The problem now is to find the 
optimum values of B and y, and its solution in many respects 
is the same as in the previous case. The value of B is deter- 
mined by an equation resembling ( 1 1 ) : 

I: 

AT = 4.Ze.R-"by' ( R )  5 d r  [I/, + ln 2 
F1 

- In (1 + f) - bl ( H ) / % l k ,  (14) 

where g = rBa,, and 

6 ,  (13) = (Z,. I2qdB) exp filz+ ( eT/48) I ,  

with 2 = d /a,. The following equation links y with B: 

The expression for S,,, has the form 

s,=jj2/28+rT8/4% (15) 

and the potentials U, ( r )  and U2 ( r )  are specified as follows: 

U, (r) =-Z.~e2/xr+~,+4~,B[L/z+ln 2-In (I+rly) ] 

for r a q d ,  (12a) 

U,(r) =4~,21(1-cos 8)rly for rey .  ( 13a) 

Here are the main aspects of determining the optimal 
fluctuations in the case of large D, for ad %a, ,  which for 
situations with % - 1 is equivalent to the condition 8. the 
large-scale fluctuation that generated the barrier cannot be 
considered in the Gaussian approximation in this case. The 
capturing process here is characterized by the fact that the 
electrons are pressed to the interface by the strong electric 
field and, consequently, are quasi-two-dimensional and tun- 
nel to the trap in the 1-plane.'' Also, as an electron moves 
toward the nucleus, the barrier becomes still higher because 
of the weakening of the interelectron interaction, which is 
considerable for large (see Ref. 3 ) . 

3. CAPTURE AND EJECTION OF CARRIERS BY ASLOW TRAP 

A potential well that finds itself inside a potential bar- 
rier can generate excited, quasidiscrete, states in addition to 
the ground state. Assuming the nucleus to be a point and 
ignoring the variation in barrier height within the well, we 
find that the energies of these excited states are 

where A stands for a set of quantum numbers including the 
radial quantum number n, the azimuthal quantum number 
L, and the magnetic quantum number M, and K = ~i~ if 
Io4d and K = 2 if Io)d. Of all the A only those correspond 
to solutions to our problem at which the wave functions van- 
ish at the interface with the insulator (at x = 0),  that is, the 
difference L - M must be an odd number, and the values of 
n and L are limited by the condition that the energies E, lie 
below the top of the barrier, U, ( r )  + +i2 (L + 1/2) '/2m?. 
In the quasiclassical approximation this yields 

whereb=&(lo) ifl ,<dandb= b,(B) ifIo%d.Fortheopti- 
ma1 fluctuations studied in this paper, the right-hand side of 
( 17) at high temperatures is large compared to unity. Here 
the electric field of the barrier produces a fairly moderate 
shift (decrease) in the energies E, satisfying ( 17). Under- 
standably, the substitution of a point charge Z,, for the opti- 
mal nucleus leads to an error in determining E,, and the 
greater the quantity by which the radius of the wave function 
of state A exceeds the radius of the optimal nucleus, that is, 
the greater n + L is, the smaller the error. For the ground 
state (with n = 0, L = 1, and M = 0)  the last term in (16) 
should be replaced with - E': 

As the temperature is lowered, the important values of 
grow and those of Z,, drop (Sec. 4) .  In the process the right- 
hand side of Eq. ( 17) and the number of resonance states 
decrease and the shift in E ,  induced by the barrier field and 
the average field that presses the electrons to the surface 
increases. On the Si[100] surface, however, even at high 
values ofQ the slow electron traps have resonance states that 
have split off from the ground state because of the lifting of 
many-valley degeneracy by the requirement that the wave 
function at the insulator surface ~ a n i s h . ~  

Now let us calculate the electron capture and ejection 
timer. First we determine the time that it takes an electron to 
leave the well from a resonance level A. If we employ the 
quasiclassical approximation and ignore the potential 
U2(r), this time 7, can easily be found:14 

where T , ,  is the period of the classical motion of an electron 
in state A, 

T,,,=nA ( n f  L+1)3/4~tZ,~2. (20) 

The "tunneling" exponent in ( 19) differs from (6)  in that it 
is augmented by the centrifugal energy fi2(L + 1/2)2/2rn?. 
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But because this energy rapidly decreases as r grows, it con- 
tributes little to the integral along the section from r, to r,. 

We now determine the time T, required to eject an elec- 
tron from a slow trap. The probabilities for the electron to be 
on the resonance levels for which the time of transfer to other 
levels is short compared to T ,  obey an equilibrium distribu- 
tion 

W G  = g-' exp [- (EL - E~)/T], 

where we have assumed that these levels lie noticeably signif- 
icant than the ground level (E, - E, < T ), whose degree of 
degeneracy is g, that is, W 0 , , ,  = g - I .  This implies that the 
timer: to eject an electron through such "equilibrium" reso- 
nance states is given by the following formula: 

Here [ n ]  stands for the complete set of quantum numbers 
for an "equilibrium" level. For "nonequilibrium" levels of a 
trap (if it has such levels) and for states in the continuous 
spectrum, the time that it takes an electron to leave for lower 
equilibrium levels exceeds the time that it takes to leave the 
well. We may assume, therefore, that if an electron finds 
itself in such states, it leaves the well. Distinguishing be- 
tween equilibrium and nonequilibrium states and using the 
principle of detailed balance for the latter make it possible to 
write 7, in the form 

~=-'=g-' ET~;; e x p [ - ( ~ ~ ~ , - 8 ~ ) / T ]  
[nl  

where {n) stands for the set of quantum numbers character- 
izing a nonequilibrium level, and T, {, } is the time that it takes 
an electron to move from level {n) to lower equilibrium lev- 
els. The main process determining r ,~ ,  }, the descent of carri- 
ers along the energy axis in the course of phonon emission, is 
the same as in the capture of carriers by attractive centers." 
However, the characteristic time 7, of this process may dif- 
fer drastically both from the similar quantity for attractive 
centers and from trap to trap and depends on the positioned 
of the upper levels [Eqs. ( 16) and ( 17) ] in relation to the 
top of the barrier and on the shape of the barrier near the top. 
For traps whose nonequilibrium levels are distributed fairly 
densely up to the upper equilibrium level, T, must be of the 
order of the phonon emission time, that is, roughly 1 0  l 2  - 
10 - l 3  s at - 300 K. But if the distance from the lower none- 
qulibrium level to the upper equilibrium one exceeds the op- 
tical-phonon energy, T, is determined by a multiphonon pro- 
cess and may be several orders of magnitude longer. 

The capture time T, of a trap for the Fermi filling of 
levels is linked with T, via the relation 

This yields 

In deriving ( 19)-(22) we ignored indirect tunneling of 
electrons to equilibrium levels. This process is less probable 
than direct tunneling since the respective expressions for 
r, ' and T, contain a factor much smaller than T 2. The 
times T , ,  are the shortest in this case. At = 0.025 eV we 
have 

Tn,,=2.10-'4 [ (n+L+I) 3/Z,r21 S. 

Allowing for U2 ( r )  [Eqs. ( 13) and ( 13a) ] lifts the de- 
generacy of the levels in M and eliminates the quantum 
numbers n and L. True, for r < y this correction is moderate 
and has little effect on the values of E ~ .  For this reason it 
remains expedient to classify the levels using the numbers n, 
L, and M. The main effect of U,(r) consists in a considerable 
increase in both T, and T,, since even a small increase in the 
barrier height drives the tunneling probability down. For 
instance, even for 8 < 1, when 

the barrier's transparency, already small in the x direction, 
rapidly decreases as 8 grows. Hence, on the right-hand side 
of Eq. ( 19) there appears an additional large factor raised to 
the ( M  + 1) st power. True, further conclusions are inde- 
pendent of this growth of the pre-exponential factor in T, 

and T,, and the factor is ignored below. Finally we note that 
if in Si[100] the free electrons and the resonance level be- 
long to different valleys, we must include in TG : the proba- 
bility of an intervalley transition. 

4. THE STATISTICS OF OBSERVED SLOW TRAPS 

To determine the optimal conditions of observation of 
RTS in submicron MOS structures and the expected RTS 
parameters, we being by estimating the entropy of a large- 
scale repulsive fluctuation needed for observing a single slow 
trap in the structure of such dimensions. Slow traps consti- 
tute a vivid example of hybrid localization of carriers in a 
random Coulomb field.6 To estimate the probability of thew 
existence, we employ the two-parameter density of states 
introduced in Ref. 6: 

where P (E, - E') is the probability density of a classical 
shift of quantum levels by E, - E'. In our case P (E, -- E') 
can be estimated as  follow^:^,'^ 

where So,, is the entropy of the fluctuation that guarantees 
the required shift. This implies that for given and T the 
desired average number jj of the slow traps in a MOS struc- 
ture of area A is given, in order of magnitude, by the follow- 
ing formula: 

where Ae, and AE' are the ranges of admissible variations in 
E, and E', with AE,AE'-~OT~, since RTS observations T, 

and T, do not differ very greatly, that is, E, - E, < (3-4) T, 
and vary from 10 - s to 10's (i.e., the range of variations of 
the activation energies in these times is less than T In lo5; see 
Ref. 10). Formula (23) provides a crude estimate forjj, but, 

298 Sov. Phys. JETP 75 (2), August 1992 B. I. Fuks 298 



because of the logarithmic dependence of Sop, on the quanti- 
ties in (23), is quite sufficient for determining the value of 
Sop, needed for these traps to appear with a required rate. 
For the same reason the suggested estimate of Sop, is also 
acceptable (at E,  = 0.025 eV, 3 - 1, and A -  10-8-10-9 
cm2 ) . 

Further theoretical analysis and the data of Ref. 10 
show that at roughly 300 K the important values - of E' are 
approximately 0.5 eV and for such E' and C- 1 we have 
pquantum (E') - 109-1010 cm-2 eV - ' (Sec. 2), so we find that 
at - 300 K 

True, this value does not vary very strongly with decreasing 
T since the important values of E' decrease (see below) and 
the corresponding value ofpq,,,,,, (E' ) grows. For instance, 
the data of Ref. 9 imply that at -30 K we have E'-E,, and 
since pqUantum ( E ' )  - 1012-1013 cm-2 eV for such E' and 
% - 1, we have 

Together with (23) this leads to the estimate 
Sop, - ln( 10/F). Apparently, for radiating traps j-0.1, 
that is, Sop, - 5. The given fairly small value ofp corresponds 
to the face'' that for practically every sample there exists a 
temperature range (quite narrow, AT/T-0. 1 ) in which the 
RTS is observed. The observation of traps at smaller values 
ofF (larger values of Sop, ) is unlikely, and the study of traps 
atp- 1 is hindered by the pile-up of RTS generated by differ- 
ent traps whose charge exchange times differ little. 

We begin the search for the most probable traps having 
very low capture cross sections a by considering the case of 
maximum temperatures. The extremely strong barriers 
needed here exist with a noticeable probability only for mini- 
mum screening, and carriers are captured either owing to 
thermal activation or to tunneling to the upper-most, non- 
equilibrium, levels, that is, E,, the optimum capture energy, 
is close to the top of the barrier. Hence in (14) we put 
b, (5) 1/2. This yields 

and using (22), we can link the barrier height to T,: 

Here we have allowed for the fact that the principal term in 
(22) is the sum over {n), which can be estimated as 
r 1  exp [ - (E, - E ~ ) / T  1, where 7, is most likely to lie in 
the range 1 0 "  to 10-l2 s (Sec. 3). 

Augmenting the system of equations (18) (with 
K = i ) ,  (24), and (25) with the expression linking E' and 
Z,. , which we write in the form 

where c is a factor of order unity,6 we can use the new system 
to find 3 and then, via ( 15), the entropy of the optimal fluc- 
tuation corresponding to the given a (or E,), T, 2 ,  and r, or, 
as is done below, to find the relation between E,  and T for a 
given value of Sop,. 

Introducing the notation t = (3~,,, )'/2/i into Eqs. 
( 18) and (24)-(26), we arrive at an equation for t for traps 

with E,, 

and an equation linking T with E,, 

The dependence of t  on the structure and trap parameters in 
the right-hand side of (27) is extremely weak. Apparently, 
- 1.3,<t< 1.5 holds over the entire rangeof - real values of the 

parameters [e.g., ford = 15, 7 = 2, C = 1, Sop, = 5, c = 1, 
T =  E,  = 0.025 eV, and l n ( ~ ~ / ~ , )  = 25 value t z  1.45. This 
allows us to replace 2t - t -  ' by 2 in (28) with rather good 
accuracy. If, in addition, we express E, in terms of Qd via 
(3),  we find that Eq. (28) yields 

which shows that for large values of T the free carrier density 
optimal for studying slow traps, zpt, varies according to the 
following law: g ",Pt cc exp ( 2 s  A/,:A/T ) . Finding a from the 
formula r; ' = crv,Q,e~, /~,  where v, is the thermal veloc- 
ity of the carriers," we see from Eq. (29) that 
u = a, exp( - AE,/T ) holds for optimal traps, with 
AE, z 2 s  :;:A and a. = ( ra: ) 3/2/8%3/4~v .. From (29) it 
follows that, for instance, at T-320 K and ezpt- 101° 
cm- observation of RTS with 7, - 1 in the majority of sam- 
ples is possible when A-0.08 eV (it is assumed that 
Sop, ~ 5 ,  T, z 10-lo s and E, = lo4 V/cm), that is, 
Z 5 X 1012 cm, and then the following values are opti- 
mal: E'-0.8 eV, E,.Z -0.24 eV, AEB=0.35 eV, and 
a,= 10- " cm2. For comparison we note that the a vs T 
dependence obtained for a large number of traps studied at 
temperatures ranging from 250 to 350 K and times ranging 
from to 10' s has revealed that a, and AE, lie in the 
10-14-10-'9 cm2 and 0.2-0.65 eV ranges, respectively.I0 
For the results listed in Ref. 9 an estimate yields A ~ 0 . 0 4  eV. 
This somewhat overestimates A (and, hence, Z and E', too), 
since in deriving Eq. (29) S was determined via ( 15), which 
overestimates the entropy of an optimal fluctuation (see Sec. 
2) and no allowance was made for an increase in probability 
of slow-trap formation along the periphery of the inversion 
channel. In narrow-channel MOSFETs used in RTS studies, 
peripheral effects are essential. 

Equation (29) implies that improving the quality of 
MOS - structures (by lowering Z )  leads to a smaller value of 
Q :Pt at a given temperature. Here the RTS amplitude may 
prove - to lie below the signal detection threshold, that is, 
Q :Pt < a Lhr, where a is the threshold number density of 
free electrons. The threshold and Z determine the maximum 
temperature (for a given T,) of stable RTS observation in 
these structures [Eq. (29) with a O,Pt replaced by a Fr 1. In a 
large sample, of course, there may be specimens with very 
strong barriers that enable observing RTSs at higher tem- 
peratures. 

At low temperatures Eq. (29) becomes invalid because 
of the increasing optimal density of carriers, Bop,, and the 
strengthening of electron screening, which was not allowed 

a can be for in Eq. (29). The expression for " P ' = ~ Q  Opt 

derived from Eqs. (28) and (2)'' (since here Q-Q, %Dd ): 
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Electron screening lowers the height of a barrier with radius 
I,$- vd by 4re2Gd /E,. If instead of 0 Opt we substitute into 
(30) the value at which this lowering is A, we find that the 
temperature below which electron screening noticeably low- 
ers the barrier is 

- 
At Sop, = 5, d = 15, and T,/T/ = 10'' we have TI-0.3A, 
and with 3 = 2 ( 2 - 5 ~  10'2cm-2), when Az0.08 eV, we 
have T, = 0.024 eV. For T< TI the temperature dependence 
of :pt becomes much weaker than Eq. (29) would imply. 

As electron screening grows, the optimal fluctuation 
becomes smaller. For lo < vd we must use Eq. ( 11 ) to deter- 
mine E, instead of Eq. ( 14). Here, too, at maximum tem- 
peratures (see below) E, is close to the top of the barrier, 
that is, &(lo) z 1/2 [see Eq. (1 I ) ] .  Hence, for I, <vd, in the 
system of equations used for lo $-d Eqs. (25) and (26) do not 
change, K = 01, in Eq. ( 18), and Eq. ( 15 ) must be replaced 
with ( 10) and Eq. (24) with 

~~/4?T,=ln (QTo2/Z,-) -5/2. (32) 

If we allow for (2),  this system reduces to a cumbersome 
transcendental equation for Opt(  7'). Here we discuss only 
some of its implications. 

In deriving Eq. ( 1 1 ) and subsequent formulas a large 
parameter was employed, 7,) 1. Numerically this condition 
proves - - to be more stringent: 
1 I , ~ ~ / , : ~ 1 / 4 2 - 3 / 4 ~ - 1 / 8  

O >  c r -  exp u, where u is the solution 
to the equation 

exp(AE,/T) in the expression for a is fairly moderate but 
the factor uo is small. True, traps that capture carriers 
through low-lying resonance states should also often be en- 
countered for T>T,. We have assumed that E, coincides 
with the top of the barrier, which followed from the require- 
ment that A (E)  + E/T grow with E if one ignores the energy 
dependence of the pre-exponential factor in the expression 
for T,. The requirement, as can be verified, has the form 
E'/T< ( 8 )  'I2rZE. / K  3'2 and is met in the situations just dis- 
cussed. Actually, for lower quasidiscrete levels, T,,, is of 
order 10- l4 s or less, while the real values of T, are on the 
order of 10-lo s or even more (see Sec. 3).  This leads to a 
decrease in E, even for high temperatures. Finally, for the 
lowest temperatures and the respective large values of g Opt, 
when the Fermi level lies in the allowed band and direct 
tunneling of electrons to level E,  becomes possible, traps 
should be observed that have no thermal-activation depend- 
ence in a (AE, = 0) .  

Thus, the foregoing implies that ( 1 ) among silicon 
MOSFETs of submicron dimensions when the number den- 
sity of the charged centers built into the insulator is of order 
1012 cm, - 2  many may contain a single fluctuation surface 
trap with times rC and T, in the range l o p 3  to lo2; (2)  the 
temperature dependence of a for such charges is of the ther- 
mal-activation type observed in RTS experiments, and the 
optimal values of a, and AE, we have found lie within the 
range of values measured for different traps (the reason for 
such a broad spread in values of a, and AE, is also dis- 
cussed) ; and (3)  the tendency, predicted by the fluctuation 
theory, for the conduction of the inversion channel to 
change, whereby an RTS is observed, and the properties of 
the observed traps to change under temperature variations 

The - quantity u depends weakly on all the parameters. At - resemble in many respects those observed in experiments. Z = 1, c = 1, and SY, = 5 we have uz2.65, and I,, ~ 2 5 .  
Now, knowing the structure and properties of fluctu- 

The conditions icr < '0 < 7' can be met in MoS strut- ation surface traps, we can determine the main 
tures with d = 1000-1200 A in a moderate temperature in- an RTS generated by a single trap of this 
terval kind. We will also determine what information can be ex- 

u t l n  (z,/zr) T / ~ A  <U+S;~ ln (~$/l,,), 

in which 

tracted from studying such traps and compare their param- 
eters with the parameters of RTS observed in mesoscopic 
silicon MOSFETs. 

QP1=2'"'lE5"n-" exp {- u+ (ln(rc/ri) T/ZA-u) /Sdtt] 1, (33) S. THE RTSAHPUTUDE 
and 

When d- 400-600 .&, the temperature dependence of 
8 Opt(  T) for I, < vd can be found only numerically. The tem- 
perature of the transition of optimal fluctuations with 
Io<vd for such values of d can be estimated as 
T2 =2uA/ ln(r, /T, ). At A = 0.08 eV and T,/T, = 101° we 
obtain T2=0.022 eV. 

Qualitatively, at lower temperatures the average statis- 
tical properties of a trap generating an RTS are as follows. If 
we wish to observe an RTS with given T, and T, as T de- 
creases, we must increase g ,  so that the enhanced screening 
lowers the barrier and, hence, does not allow a sharp in- 
crease in T, and 7,. In the process one should also observe a 
tendency for the transition of E, to ever lower lying reso- 
nance levels, that is, as T is lowered, an ever growing num- 
ber of traps should be observed for which the factor 

Since a slow trap remains in filled and empty states for a 
very long time, it is possible to isolate in the noise of a varying 
nature of considerably higher frequencies those fairly small 
jumps in the resistance of the inversion channel, AR /R 
(with R the resistance of channel and AR its variation 
brought on by the capture of an electron), that are generated 
by the change in the charge state of the trap. The mechanism 
of these jumps differs for low and high electron number den- 
sities. 

We start with the case where g, < g,. The conductivity 
of the channel is of the activation type [see Eq. ( 3 ) ]  and 
external charges are screened by electrons localized at fast 
surface traps and by the gate electrode. When an electron is 
captured by a slow trap, its potential raises the fast-trap lev- 
els by u ( I ) ,  and in the course of time intervals long compared 
to the charge-exchange time of the traps an additional elec- 
tron density is generated equal, on the average, to 
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where U(1) is the height of the slow-trap barrier, and 
p, (&',I ) the density of states with a binding energy E' at 
point I. Here 

at 1 - lo and E' - - E~ and 

for I< lo. From ( 1 ) with u (I) < T < 2A we have 

sol ( I ? )  =-u (1 )  pb [u(I)-&p, 4 . 

We see that although the shift u(1) is at its greatest when 
I 410, with u (1) =:e2/xl, the quantity 6a1  (1) is small because 
p, [ U(1) - ~ , , 1  ] is exponentially small when U(1) > 2A. 
Hence, for />lo the main screening charge occupies the re- 
gion with U(1) <2A and 6a ,  (1) ,-- - u( l )Q , /2~ .  If the 
length of linear electron screening, x~/n-e2gl ,  and lo are 
small compared to d, an electron from a slow trap screens 
fast traps, where the number of electrons decreases by 1. In 
times T, and 7, the distribution of the electrons over the fast 
traps reaches equilibrium and outside the barrier, when a 
slow trap captures an electron, the distance from the Fermi 
level to the boundary of the allowed band changes, on the 
average over the sample, by SE, = - ~A/AQ/  [see Eq. 
(2 )  1, while the relative changes in ad [see Eq. (3)  1 and 
AR /R are equal: 

The variation in mobility caused by charge exchange in the 
trap was ignored here because its contribution - (ZA ) - ' is 
negligible. 

From (35) it follows that AR /R cc D-i. Using Eqs. (2)  
and (3)  and expressing g, in terms of Q,, we find that 
AR /R cc G ,- 

For a < x ~ / n - e 2 d  the relative RTS amplitude decreases 
with a ,  contrary to the case discussed above. The reason is 
weak electron screening, with the result that a slow trap cap- 
turing an electron leads only to a small probability p, ( 1 of 
an electron leaving fast traps. We can find this probability by 
employing the above expression (1) -- - u ( / ) a  /28 and 
the fact that under weak electron screening (for p, < 1) 
u (I) z e2/xl for I < ~d and u (I) =: eZ&,d 2 / ~ f l  for 1% 2zd / E ~ .  

The result is 
m 

The average deviation of the Fermi level outside the 
barrier, SE,, decreases in proportion top,. As a result, for- 
mula (35) assumes the form 

Hence, here AR /R depends on the radius ofthebarrier in the 

following way: it decreases as lo grows, and since lo grows as - 
Q decreases, AR /R decreases as well. In addition, the deri- 
vation of (36) implies that for traps with lo < d the relative 
RTS amplitude reaches its maximum at e, -6, A/2n-e2d and 
assumes the following value: (AR /R ),,, ~4n-e2d /E, TA. 
At d = 4x l op6  cm, T =  1/40 eV, and A = 4 x  cm2 
we have ( AR /R ),,, ~ 2 % .  Formulas (35) and (36) give 
the RTS amplitude averaged over different samples. The 
amplitude differs from sample to sample because it is deter- 
mined not by s~~ averaged over the entire sample outside the 
barrier but by a similar quantity averaged exclusively over 
the free-electron flow paths that pass only above the poten- 
tial wells of the random potential pattern. Hence, in samples 
in which the flow paths pass next to a barrier, AR /R is 
greater than the values that follow from (35) and (36). On 
the other hand, in samples where the paths are far from a 
barrier, AR /R is smaller than these values. This agrees with 
the experimental data listed in Refs. 9, 10, and 16. 

Now we turn to the case a, > el. For real Si:Si02 struc- 
tures - such a situation is possible if g > Z ,  that is, 
Q>(2 - 4) x 10" cm. -' Then the radius of a barrier in a - 
trap is fairly moderate [since 1,- Q - 'I2 ; see condition ( 5) 1, 
and the trap is screened primarily by free charge carriers. 
The optimal temperature for observing traps with charge- 
exchange times of the order of 10 - ' - 1 s for such a is mod- 
erate (about 50 K or even lower; see Sec. 4 and Ref. 9),  and 
the free electrons form a 2 0  Fermi liquid whose metallic 
conduction determines their excitation within a narrow en- 
ergy band ( - T )  near &,. When a slow trap captures an 
electron, the number of free electrons in the sample de- 
creases by 1. The number of conduction electrons does not 
change in the process since the 2 0  density of states is a con- 
stant. Resistance increases because the Fermi wave vector 
kF diminishes and because the scattering on the trap barrier 
intensifies, with the barrier becoming higher owing to elec- 
tron capture. The jump in resistance, ARC, caused by the 
decrease in the number of free electrons by 1 can be inter- 
preted as a variation in R brought on by the decrease in the 
gate potential V, by the potential of the capacitor formed by 
the sample with charge e, that is 4.rred /E ,  A: 

AR,/R= ( 8  ln RIBV,) 4ned/e,A. (37) 

Here we have also allowed for variations in the contribution 
from different scatterers and the effect of weak carrier local- 
ization, which may manifest itself in such samples. 

Among free-electron scatterers the slow trap is the most 
effective. Its scattering cross section is classical and roughly 
equal to 21,. Since = Z, where eZ is the charge of the 
centers incorporated in the trap, Z increases by 1 when an 
electron is captured. The respective increase in the scatter- 
ing cross section can be estimated as -26i0 = ( ~ ~ 1 , )  - ', 
and the resulting increase in the effective inverse time of 
scattering at -fik, ( m ~ ~ , ~ , )  - '. This yields 

where p is the electron mobility, g,  the degree of valley de- 
generacy of band states, and y, a factor of order unity. 

The sum of (37) and (38) gives the relative RTS ampli- 
tude. Apparently, in the experiments conducted so far the 
first term, (37), dominates. But the final conclusion depends 
on the values of p and y,. 
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At liquid helium temperatures the RTS amplitude may 
be determined by universal conductance fluctuations 
(UCF). Earlier" it was assumed, on the basis of the data 
listed in Refs. 18 and 19, that the RTS are caused by UCF at 
large displacements (k,SI$ 1 ) of a quasipoint scatterer. In 
the given model the sources of UCF are variations in E, (see 
Ref. 20) and small deformations of the scatterer, whose size 
is much smaller than the mean free path of the electrons, I,, . 
The variations in E, caused by the decrease in the number of 
free electrons by 1 are weak and introduce into the UCF 
amplitude an additional small factor of the order of 
4red /E, A Vgc, where Vgc is the halfwidth of the conductance 
correlation function caused by variations in V,. For 
Vgc z0.2B , d z 6 x  cm (see Ref. 17), and A = l op9  
cm this factor is roughly 0.01 5. The contribution intro- 
duced by the change in the barrier is greater here. On the 
basis of ideas about the interference between classical Feyn- 
man paths and owing to the fact that in a 2 0  system every 
path passes through a finite fraction of the total number of 
scatterers,I9 we can assume that changes in the barrier gen- 
erate UCF whose amplitude contains an additional factor of 
order kFSlo(I,Jlsc ), which reflects the presence of a correlat- 
ed small shift ( kFSIo < 1 ) of a large number ( - lo/lsc ) of 
scatterers. Since we have I,SI,Z (2rDd ) - ', this factor is of 
order (k,l,, ) - ' < 1, that is, the amplitude of the UCF gen- 
erated by changes in the charge of a fluctuation trap is para- 
metrically small and decreases as a function of e, .  

The UCF were employed to explain the RTS amplitude 
in view of the variation of the latter from trap to trap." For 
fluctuation traps there may also be other reasons for such 
variations. The regular variations in the RTS amplitude [see 
Eqs. ( 35 )-(38 ) ] can be separated in experiments from UCF 
by isolating the random oscillations in amplitude caused by 
variations in V,. The period of these oscillations ( - Vgc ) for - 
Q, >a, must be short compared to the characteristic scale 
of the regular variations in the amplitude. In identifying the 
mechanism that determines the RTS amplitude it is also pos- 
sible to use variants of tb lethod of determining the posi- 
tion of a slow trap by the length of the sample.21 

6. FIELD AND TEMPERATURE CURVES FOR CAPTURE AND 
EJECTION TIMES T,  and T, 

The source and sink potentials of a MOSFET, if one 
ignores their difference, specify the universal position of the 
Fermi level in the inversion channel. When V, varies by A V, 
in the direction of inversion, the Fermi level in a metal drops 
by eA V, in relation to the position of the Fermi level in the 
channel, which shifts by a quantity AE, determined by the 
following formula: 

AV,= (4ned/ei) (hQ+N,Aw) 

= (4ned/ei) (aQ/d~~-!-e-~C.-') A E ~ ,  

where Aw is the variation in the thickness of SCR, and 
C, = E , / ~ T W  the specific capacitance of SCR. This leads to 
the following expressions for the variations in E, and a 

The increase in E with Vgcaused T, to lower [see Eq. (22) 1. 
The effect of changes in Q on T, and re is more complex. Let - 

us study it for the situation in which Q, > a d .  Two cases are 
of interest, lo < d and lo$ d. 

For I, < d, as g increases by AQG, the excess charge 
density inside the barrier becomes equal to ((1) - D - h a ,  
as a result of which 1, decreases by Al, = I , A ~  /2g  [see con- 
dition (5)  ]. This and the variation in the average field at the 
semiconductor surface equal to 2 7 ~ e ~ Q  /E, cause the energy 
to acquire an additional term A U(r ) . When r < lo, the addi- 
tional energy term is given by the following formula: 

This term shifts the energies E,  by 

where r, = ~dr \Yi  ( r ) r  cos 6, with q, ( r )  the wave function 
of state A. The respective tunneling exponents change by 
AA, : 

Employing Eqs. (19)-(22) and (39)-(42), we get 

In deriving these two formulas we have allowed for (2) and 
assumed that traps with I d  exist only if 
e2Cs ( aQ/d~ , )  $1 holds, that is, if Q is not very low. Also, 
when we derived (44), the integral in (42) was considered 
for the optimal-capture level, E, ZE,. The factor x - r, in 
the integrand was estimated at yy - r,, where y stands for 
the coordinate of the top of the barrier, and y is a factor equal 
to unity for small A and slowly increasing with A. The re- 
maining integral was estimated at fi/(2m) "' T, since E = E, 

corresponds to the minimum of A(&) + E/T (see Sec. 4).  
From Eqs. (43) and (44) it follows that re increases with V, 
but T, decreases. For large the rates at which T, and T, 

change are of the same order of magnitude, while for small 
the rate of variation of rC is much higher than that of re 
since in the latter case we have lo$y. If d&,/aV, is deter- 
mined together with a In &,/aV, and a In r,/aV, (see, e.g., 
Refs. 1 and 2),  Eq. (43) can be used to find lo. 

For traps with I,$d, which exist when g is small, the 
additional energy term A U(r) with r < lo is independent of r 
to zeroth order in the parameter d /Io: 

AU(r) =-4neZdAQ/ei. 

In this approximation T, is independent of V, since the shift 
of all the levels is the same. But the rC ( V, ) dependence for 
I, $d is stronger: 

The right-hand side for 4 re2dg /~ ,A$  1 is equal to unity, 
then it grows like a-' as decreases, and for 
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4n-e2wQ /&,A 1 reaches its maximum value of E, w / E , ~ .  The 
right-hand sides of (43) and (44) are always small com- 
pared to unity. 

When Qd > Q,, Eqs. (43) and (44) may changequanti- 
tatively because at such values of gd the height of the barrier 
is not very great (,<2A). Hence, when gincreases by h g ,  the 
drop in the excess charge density inside the barrier is smaller 
than and increases from the edge of the barrier to the 
center, that is, r,,, ,  in (43) acquires an additional factor 
smaller than unity, and lo acquires a still smaller factor. For 
large values of gd and at the correspondingly low tempera- 
tures of RTS observation, the lo to r,,,, ratio is fairly moder- 
ate and d&,/dVg is small. This leads to strong cancellation of 
the terms on the right-hand side of Eq. (43), while Eq. (44) 
undergoes change caused by the fact that for 2 0  electrons 
tunneling to the trap in the 1 plane Eq. (42) is invalid. 

The temperature dependence of T,  and T ,  [see Eqs. 
(19)-(22) ] can primarily be described by straight lines on 
In T , ,  vs T - '  diagrams. These may have breaks corre- 
sponding to jumps in E, from one level to another. [This 
leads to jumps in the factor y in Eq. (44) and breaks in In T , ,  

( V, ) curves]. At breaks the slope of the straight lines must 
be smaller on the lower temperature side. 

Using the temperature curves for T ,  and T ,  to determine 
the energies E,, E,, and E ~ ,  we must allow for the tempera- 
ture dependence of these energies. One reason for this is the 
large entropy of electronic ionization in Si at room tempera- 
t ~ r e . ~ ~ , ~ ~  For the band gap of Si we have d&,/dT = - AS,, , 
with AS,, z 3 (see Ref. 22), and for the binding energy of 
the Coulomb center, E', we have d ~ ' / d T =  - AS,, where 
AS, z O  for a hydrogen like center and increases with the 
cantributionfrom the central cell, that is, with E', up to AS,, 
(see Ref. 23). For slow surface traps studied at - 300 K the 
typical values of E' lie in the 0.5 to 0.7 eV range and, there- 
fore, AS, for such traps can be expected to be high (for simi- 
lar traps in the bulk of Si, AS, -2), although the effect of 
SiO, and of the vibrations of separate charges in the distrib- 
uted nucleus in unclear. The random structure of the nuclei 
may explain why ASI differs from trap to trap. The increase 
in E, with T is caused not only by the diminishing binding 
energy on the nucleus but also by the increase in the height of 
the barrier caused by the weakening in electron screening. 
The latter occurs for the following reasons. The value of&, is 
determined by the position of the Fermi level in the source 
(sink), which is an n + -region doped so heavily that it be- 
comes highly degenerate. In it, therefore, the distance from 
the Fermi level to the bottom of the conduction band is tem- 
perature-independent. The position of the latter is deter- 
mined by the electron affinity energy X .  If we write 
dx/dT= 4 (the results of van Vechten and T h ~ r m o n d , ~  
suggest that AS, ~ 0 . 8  AScv), we find that at a constant 
gate-source voltage as T increases by ST  the Fermi level in 
the inversion channel drops in relation to the Fermi level in 
the metal by ASxST, which is equivalent to V, changing by 
SVg = - ASxST/e. This yields 

From Eqs. (46) and (43) [or (45) ] we find the temperature 
variations of the trap level. They, obviously, depend on the 
electron number density (owing to Vg ) and increase as func- 

tions of lo. For instance, for lo$ d and small Q [see Eqs. (45) 
and (46) I, 6' (E, - E, ) /dT may reach AS, + A S x ~ i  w / E , ~ .  

7. DISCUSSION OFTHE RESULTS OF RTS STUDIES 

Up till now, in accordance with McWhorter's hypothe- 
s i ~ , ~ ~  surface traps were assumed to reside in the insulator. 
This was considered the reason for l/f noise. Long charge- 
exchange times for the traps and their considerable spread, 
needed for flicker noise generati~n,,~ were explained quite 
logically by the rapid lowering in the probability of tunnel- 
ing below a high barrier for traps located farther from the 
semiconductor interface. In the Si:SiO, system the barrier 
for electrons is roughly 3.2 eV high and that for holes -4.7 
eV. Estimates and extensive studies of Me-Si,N4-Si0,-Si 
and Me-Si02-Si structures with tunnel-thin layers of SiO, 
(see, e.g., Ref. 1) have shown that the length over which the 
transmission coefficient decreases by a factor of e is very 
small even for electrons: A, < 1 A. Hence, to describe flicker 
noise in Si:Si02 structures, traps were employed that were at 
a distance h of roughly 10-20 from the interface. Even for 
such barriers the charge-exchange times, proportional to 
exp(h /A, ), are very long. 

RTS studies have revealed that the main reason for 
large charge-exchange times in slow surface traps is the low 
probability of thermal activation of carriers to a higher 
energy rather than the temperature-dependent low tun- 
neling probability. [For instance, according to the data of 
Ref. 10, for traps studied at -300 K it was found that u 
is on the order of 10-22-10-26 cm2 and varies like 
a = a, exp( - AE,/T), with the constant a,, being either 
large or moderate ( - 10 - 14-10- l9 cm2).] In view of this, 
starting with Ref. 9, the researchers involved in RTS studies 
explain the long charge-exchange times in slow surface traps 
by multiphonon capture of carriers to localized states in the 
insulator. The capture multiphonon cross sections are low 
and may be exponentially temperature-dependent.26,*' The 
conclusions made in Refs. 26 and 27 refer to the bulk situa- 
tion, however. If in the process of capture a carrier goes from 
the semiconductor to the insulator, u includes not only the 
low probability of transferring a large amount of energy 
from the carrier to the lattice but also the probability of spa- 
tial tunneling of the carrier in the insulator. As noted earlier, 
for the Si:SiO, system this latter probability is very low if the 
trap is located farther than 10-20 A from the interface, and 
hence even for such values of h there is no rational explana- 
tion why the measured values of uo are so high, the more so 
that the radius of the wave function of the state lying more 
than 3 eV below the bottom of the conduction band in SiO, is 
of the order of 1 A. 

Yet, proceeding from the fact that the traps reside in the 
insulator and therefore, when V, varies their levels shift in 
relation to the bottom of the conduction band, Ralls et aL9 
established h using the formula 

(Subsequently various refinements were introduced into 
this formula; see Ref. 10). Most often the obtained values of 
h lie in the 10-20 A range, that is, are unacceptably high. In 
addition, since the range of charge-exchange times of these 
traps is not too wide, one would expect such a correlation 
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between the thermal activation and tunneling exponentials 
that the product of the two would change little. Yet, Ralls et 
u I . , ~  who studied the traps over a broad temperature range, 
observed essentially the opposite correlation: traps with a 
larger value of exp(AEB/T) had a greater value of h. And, 
finally, Kirton and Uren" obtained for a number of traps 
unrealistically large values of h, up to roughly 200 A. 

But if formula (47) or its analogs are not employed and 
the traps are assumed to be very close to the interface, it is 
difficult to explain the observed strong dependence (espe- 
cially for weak inversion) on Vg of a number of parameters 
of such highly localized states. 

The theory of Coulomb fluctuation traps developed in 
the present paper allows for a unified approach in describing 
the entire body of data of RTS studies. The following can be 
added to the conclusions on which this statement rests (see 
the end of Sec. 4 ) .  The theory illuminates the amplitude of 
the observed RTS, the amplitude variation from trap to trap, 
and the dependence of the amplitude on the sample's con- 
ductivity. It explains the activation dependence of T ,  and re,  
the observed activation energies, and the characteristic ten- 
dency of the activation exponents to be often very large at 
high T and much smaller at low T (because when carriers 
are captured through lower resonance states the tunneling 
exponent is large). For instance, in Ref. 9 for a trap studied 
in the 101 to 11 1 K range the interval of variation of the 
activation exponent was found to be 3 X lo9-3 X 10" for T, 

and 3 x 10"-3 x 1014 for re ,  and for a trap studied in the 26 
to 34 K range these intervals were lo4-10' and 5X 1O5- 
3 X lo7, respectively. Note that a similar tendency is charac- 
teristic of multiphoton capture, but here the dependence of 
In a on T ' should differ considerably from linear.27 For 
fluctuation traps, on the other hand, this dependence may be 
close to linear over the entire range of variation of T ,  and T,, 

provided that the difference between the energies of reso- 
nance states is great. 

The fluctuation theory explains the dependence of T, 

and T ,  on V,. According to it, over a broad range of surface 
band bending, T, decreases as V, grows, while T, increases. 
Another conjecture that agrees with the experimental data is 
that the dependence of T ,  on V, must be strong for weak 
inversion and much weaker for strong inversion, when I ,  is 
smaller. The dependence of T, on V, is weak for all levels of 
inversion. Comparing formulas (43) and (47),  we find that 
1,-4xh /E,, that is, for h - 10-20 A we have 1,- 100-200 A. 
But for h - 200 A, then we have I, > d [see Eqs. (45) and 
(47)l .  

The fluctuation theory also makes it clear why the trap 
level is found to have a drastic temperature shift at roughly 
300 K and why d ~ , / a T  depends strongly on V, for weak 
inversion (for traps with l,>d). At the same time, there are 
differences here between theory and the experimental data of 
Ref. 10. The reason may be that Ref. 10 reports the results of 
processing the experimental data in a way that does not quite 
agree with the fluctuation theory of activation conductivity 
given in Ref. 5. Most likely, however, the fluctuation theory 
of slow traps needs to be further developed. A detailed verifi- 
cation of agreement of theory and experiment should pro- 
vide an impetus, especially since the present paper studies 
only the principal features of the properties of such traps; 
hence a number of effects have remained outside its scope. 

8. CONCLUSION 

Agreement between the conclusions of the fluctuation 
theory and the data gathered in RTS studies is too multifa- 
ceted to be accidental, the more so since the studies have 
provided exceptionally complete information about the ki- 
netic and thermodynamic characteristics of a slow trap ob- 
tained in direct measurements in a single experiment and 
their nontrivial dependence on external conditions, and also 
a large volume of information on the properties of various 
traps in a broad range of external conditions and the charac- 
teristic change in these properties. All this strongly suggests 
that slow surface traps are generated by fluctuations of the 
charge built into the insulator and constitute planar nano- 
structures built from Coulomb centers according to certain 
rules. Hence there are three important conclusions: 

( a )  Studying the structure of the nucleus of a slow sur- 
face trap with an RTS as the detecting device may provide 
unique information about the heterojunction in Si:SiO,, the 
centers generating the built-in charge, their potential, and 
the size of the charge of the nucleus. In addition to the meth- 
ods already used, one of special interest is the optical spec- 
troscopy of a trap (which is possible for moderate or even 
weak illumination), since at frequencies of transitions be- 
tween the trap levels one can expect a strong resonant drop 
in 7,. Another variant of the spectroscopy of the resonance 
levels of a trap consists in determining the optimal-capture 
energy from a diagram of In .re vs T - ' and recording its 
jumps from one resonance level to another caused by varia- 
tions in T, V,, magnetic field strength, etc. Also, the tem- 
perature curves of the level energies may provide informa- 
tion about the phonon modes near the Si:SiO, interface. 

Each slow surface trap is a unique instrument for study- 
ing such surface electronic properties as electron scattering 
and band structure. Here we note only the spectroscopic 
possibilities arising from the fact that T, and T ,  are inversely 
proportional to the density of electronic states at the opti- 
mal-capture level. For instance, in the case of metallic con- 
duction and low temperatures, when the optimal-capture 
level coincides with the trap level, moving the latter in rela- 
tion to the Fermi level (by varying V, or the magnetic field 
strength) and determining their mutual position from the T, 

to T, ratio allows a quick estimate of the density of states by 
observing the variations of r, and T ,  proper. This method 
should prove especially effective when there is a gap in the 
density of states near the Fermi level. 

(b )  The present work indirectly corroborates the hy- 
pothesis put forward in Ref. 28 that random Coulomb bar- 
riers surrounding electron traps are the reason common to 
all semiconductors for the change in the spectrum of genera- 
tion-recombination noise to l/f noise. Actually we have dis- 
cussed here one of the mechanisms suggested in Ref. 28 to 
explain the formation of slow traps. But to confirm the fact 
that it is these traps that cause the observed surface flicker 
noise, we have chosen another avenue, which allows for 
higher reliability, since the signals of random charge-ex- 
change from a single trap are much more informative than 
l/f noise, which is a linear combination of signals from 
many traps. Apparently, in other cases, too, identification of 
the source of this noise will be more reliable in RTS studies, 
the more so that RTS similar in many respects to the case 
just discussed were later observed in heterojunct ion~,~~ 
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MOS-tunnel diodes,30 and tunnel (metal-insulator-metal) 
diodes," and much earlier these signals were often observed 
in studies of various structures withp-n junctions and were 
named burst, or popcorn noise. 

(c) The statistics of formation of fluctuation traps sug- 
gests that even with the best MOS structures used in RTS 
studies the total density of built-in charged centers, 
Z = Z + + Z .. , is much higher than I Z + - Z - I (earlier 
this was implicitly suggested by the results of Refs. 4, 5, and 
33 and other papers), which determines the density of the 
built-in charge. The quantity Z is an essential criterion for 
determining the quality of MOS structures used in scientific 
studies and devices. It determines the characteristics of 
MOSFETs through the surface carrier mobility, the density 
of surface states, the hysteresis of the state of the surface, and 
the noise power. For instance, the power of l/f noise is a 
very important criterion for improving the quality of MOS- 
FETs used as transducers of weak analog signals, say, in 
matrix photodetectors. Often it is this noise that determines 
the threshold of signal detection, which is understandable - 
since transistors operate in this case at low channel conduc- 
tivity and low temperatures, when l/f noise, according to 
the theory developed above, is exceptionally strong. 

The author is grateful to N. M. Storonski? and R. A. 
Suris for helpful discussions. 

" On the Si [ 1001 surface and fore ,  <e, the direction of optimal electron 
tunneling may deviate from the x axis since the electron effective mass 
along this axis is much greater than along I .  

Z'Formula (2) was derived in the qu~siclassic~l approximation and is 
valid for contaminated surfaces with Z < 1. At Z - 1 the pre-exponential 
factor in (2) is, apparently, somewhat overestimated. Hence the weak- 
ening of potential barriers by electron screening can only increase 
further. 
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