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We propose a mechanism generating a nonlinear wave in a dispersive medium with a resonant 
two-phonon transition. We consider an acoustic surface wave propagating in a film-substrate 
medium. We show that for an acoustic wave with a relatively small energy a breather state can be 
formed. We indicate the conditions for the realization of this effect. 

1. INTRODUCTION 

When acoustic waves with sufficiently large amplitude 
propagate in a nonlinear medium nonlinear acoustic waves 
may be formed. Nonlinear waves of a stable shape-soli- 
tons-are of particular interest among those nonlinear 
waves. The determination of mechanisms causing the forma- 
tion of solitons is one of the main problems of the physics of 
nonlinear waves. Acoustic solitons may be formed in para- 
magnetic dielectrics through the McCall-Hahn mechanism, 
i.e., when there is a coherent interaction between acoustic 
waves and the paramagnetic impurities contained in the me- 
dium and the conditions for self-induced transparency 
(SIT) are satisfied.',* Under well defined conditions there 
may also appear apart from solitons, pulsating acoustic wave 
solitons (breathers) . 3  Besides this effect acoustic breathers 
can be formed in dispersive paramagnetic dielectrics when 
anharmonic crystal lattice vibrations and the coherent inter- 
action of acoustic waves with resonant paramagnetic impur- 
ities are simultaneously effe~tive.~ The physical picture 
changes if the wave causes a two-phonon excitation of the 
paramagnetic impurities. Under SIT conditions a soliton is 
then formed in the form of a 2?r pulse with a Lorentz 
~hape . "~  The question of whether the excitation of an acous- 
tic breather is possible in that case is an open one. 

The main statement of the present paper is that breather 
states may be formed for an acoustic pulse with a relatively 
small energy which causes two-phonon excitations of the 
paramagnetic impurities, if the medium in which the wave 
propagates is dispersive. 

2. DERIVATION OFTHE EQUATIONS 

We study a mechanism which produces a nonlinear 
acoustic wave in a dispersive medium with a resonant two- 
phonon transition using the example of an acoustic surface 
wave (ASW) propagating in a solid halfspace-solid layer 
(substrate-film) system. We assume that the substrate-a 
nonmetallic diamagnetic solid with electron (J) and nuclear 
( I )  spins-occupies the x < 0 halfspace (for the sake of sim- 
plicity we shall assume J = I = 4 ). Different kinds of ASW 
can propagate in this system; they differ from one another by 
the boundary conditions characterizing the state of the wave 
process at the boundaries of the media.7 We consider an 
ASW pulse with vertical polarization of length T g  TI,, , fre- 
quency w,, and wavevector k propagating in the direction of 
the positive z axis (the T , ,  are the longitudinal and trans- 
verse relaxation times). An external constant magnetic field 
H, is applied in the same direction. If the condition 
20, = 0, + w, is satisfied the E, component of the defor- 

mation tensor of the ASW will cause two-phonon transitions 
in the electron-nuclear spin system of the impurities (0, and 
0, are the Zeeman frequencies of the electron and nuclear 
spins) . ' s 9  The spin-phonon interaction in this case does not 
change the nature of the boundary conditions and, hence, 
the transverse structure of the field and the dispersion law of 
the ASW are determined in the linear limit.7 Using an ex- 
pansion in coherent states of the acoustic field we can write 
the component of the deformation tensor of the ASW in the 
following f~rm:~, 'O 

where 

a: and a, are Bose creation and annihilation operators for 
acoustic surface waves, p is the density of the medium, N, is 
the number of sites in the lattice, V is the volume of the 
medium, and y, ( x )  is a function which determines the verti- 
cal structure of the field and which depends on the actual 
shape of the ASW.7 We shall assume in what follows that we 
havefi= No = V =  1. 

The dispersion relation is given by the equationL' 

where c is the speed of the linear ASW and the quantity h is 
determined by the thickness of the film. 

The Hamiltonian of this model has the form 

where 

is the Zeeman Hamiltonian, 

is the hyperfine interaction Hamiltonian, 

is the phonon system Hamiltonian, 

is the spin-phonon interaction Hamiltonian under condi- 
tions when two-phonon transitions can be excited, A is the 
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hyperfine interaction constant, 0 is the Bohr magneton, and 
F,, is a component of the spin-phonon interaction tensor. 

Performing a canonical transformation using the uni- 
tary operator9 

we determine the representation in which in the rotating 
wave approximation the evolution of the system is given by 
the Hamiltonian 

where we have 

L=A~HoFz,zzzz12~r. 

Using the standard procedure3s4 we obtain from the 
Hamiltonian (3) a set of equations for the averages of the 
operators of the acoustic field and of the spin variables: 

sr-k'=-oL"a-k'f 4iLB+h~ky-~ ( ~ ) o ~ e - " ' ~ & ~ ~ ,  
(4)  

0i~=-o~'a~+4il~R-kx~y-k (x) wke-'k2~z,, 

8+=io,B+-iL(~+)~N. N='/ziL[ (u+)'B-- (u-)'Bf 1. 

where (5) 

la, ) is the coherent state vector of the k th mode of ASW, 
and the symbol {a, > indicates the set of all amplitudes a,. 

We multiply Eq. (4)  by the quantity ikx,y, (0) 
Xexp(ikz) and sum over k; as a result we obtain on the 
boundary of the media forx = 0 a nonlinear equation for the 
ASW: 

where we have 

Apart from the notation this equation is valid also in the case 
when the ASW causes two-phonon transitions of only the 
electron spins of the paramagnetic impurities with J =  1. 
The interaction between the ASW and the paramagnetic im- 
purities will then change the boundary conditions at the 
boundary between the film and the substrate for x = 0. This 

is caused by the fact that two-phonon transitions in impuri- 
ties here are caused by the E,, component of the deformation 
tensor of the ASW. The change in the boundary conditions 
can reflect differently on the nonlinear wave process. In par- 
ticular, in the effects studied in Ref. 12 the change in the 
boundary conditions caused by the spin-phonon interaction 
are of a very significant nature and lead to a qualitative 
change in the physical picture of the wave process, but in 
some situationsI3 such a change is not fundamental. When 
the ASW causes two-phonon excitations of the paramagnet- 
ic impurities with J =  1 spins we shall follow Ref. 13 and 
also approximately use the linear boundary conditions and, 
hence, the results obtained in the present paper remain valid 
also for that case. 

3. ASW BREATHER STATE 

Using the slowly changing profile method we can signif- 
icantly simplify the set of Eqs. (5 )  and (6).  To do this we 
write U in the form 

where we have Z ,  = exp [il(kz - o, t )  1, and $, is the slow- 
ly changing amplitude of the acoustic wave. As the quantity 
U is real it follows that $, = $ *  , . 

Bearing in mind that the ASW causes two-phonon exci- 
tations of the paramagnetic impurities and that in the sim- 
plest case we consider there are only two energy levels, we 
can write the average magnetization of the paramagnetic im- 
purities in the form 

When the ASW interact with paramagnetic impurities 
the most characteristic features of the nonlinear phenomena 
usually show up when the condition for exact resonance, 
2 0 ,  = o, , is satisfied. We therefore consider just that case. 
We assume here that all paramagnetic impurities before the 
ASW pulse enters the medium are in the ground state, i.e., 
that we have Nini, = - f for t- - co. 

We note that when there are no phase changes in the 
wave, i.e., when the conditions $, = $ *  , = $ - , are satis- 
fied, substitution of Eqs. (7 )  and (8 )  into the set of Eqs. (5)  
and (6)  in a nondispersive medium, when h -0, leads to the 
well known soliton solution in the form of a 277- pulse with a 
Lorentz ~ h a ~ e . ~ , ~  

We consider in the present paper the solution of the set 
of Eqs. ( 5 )  and (6)  in the case 10,1< 1 where the quantity 

is proportional to the pulse energy. We use the reductive 
perturbation method, developed in Ref. 14, according to 
which we can write the quantity g, as follows 

where we have 
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and E is a small parameter determining the degree of nonlin- 
earity. Such a representation enables us to split off from 8, 
the even more slowly changing quantity q, :;' ( f , ~ ) .  Hence 
we assume that the quantities p ::', R, and Q satisfy the 
inequalities 

We substitute the expansions (7) to (9) into Eq. (6)  and use 
the fact that from the set of Eqs. (5) we find that 

1 

Ln, 
P,,=*c2i - J ( 8 : : )  )' dll+O,(&'). 

2 - w 

Using the inequalities ( 10) we can transform Eq. (6)  to the 
following form: 

where we have 

(12) 
To determine the quantities p ::' in Eq. ( 11 ) we sepa- 

rately set equal to zero the terms with the same powers of E. 

As a result we obtain 

It follows from the dispersion relation ( 1 ) that in dispersive 
media we have W, = W ,  , = 0. Hence it follows from ( 13 ) 
that from all quantities q, $',,, only the terms q, yi, ,  , are 
nonvanishing (q, $',, + , = p (!';T- ) and the relation be- 
tween the quantities R and Q is then determined from the 
equations 

Comparing Eqs. ( 12) to ( 15) we can prove that the 
following relations hold: 

Note that Eqs. ( 13) to ( 16) are obtained from Eq. ( 11) by 
expanding in powers of E up to third order. One checks easily 
that an expansion to higher powers of E does not lead to 
relations which are independent of ( 13)-( 16). 

Substituting ( 16) into ( 14) and using ( 15) we get in the 
variables y = z - v,t, t an equation for the quantities 

( 1 )  X+ =E'P * 1 , , 1 :  

~ i a , x , + P a ~ d x ~ + q ~ ~  I x +  I2=o, (17) 

where we have 

This is the well known nonlinear Schrodinger equation 
(NLS) which for Pq> 0  has a soliton solution.15 It is clear 
from the expressions for P and q  that this inequality is satis- 
fied. We consider a single-soliton solution of the NLS 

~ * = ~ 2 i q  exp [=ti@] cosh- '212f; (18) 

where we have 

@=2'5yz-2 [gyv,+2(q2-E2) ql t - ( F O .  

f=pz+ (4Eq- yv,) t -  Yo. 

{, q, and b are the scattering data for the soliton, rl deter- 
mines the soliton amplitude and ( its velocity u = - 46. 

Substituting the solution (18) into (9)  and using (10) 
we obtain for the quantities $7 * , 

8 , , = T 2 i q  exp[ f i ( @ f Q z - Q t )  ] cosh- '2llf: (19) 

The occurrence of the factor exp[ f i(Qz - Rt)]  in this 
expression indicates the appearance of periodic "beats" in 
position and time, which are slow compared to 
exp [ f i(kz - w, t)  1, with characteristic parameters Q and 
R; as a result the soliton solution ( 18) is transformed into 
the solution ( 19) which has the shape of a breather. 

4. DISCUSSION OFTHE RESULTS 

When a pulse propagates in a dispersive medium its 
shape changes-the width of the pulse increases while it 
propagates if 2wk/dk ' # O .  This is connected with the fact 
that in a dispersive medium waves with different wave- 
lengths propagate with different velocities. In the NLS equa- 
tion the dispersive effects are taken into account by the term 

pa ;yx * . 
On the other hand, nonlinear effects caused by the co- 

herent nonlinear two-phonon interaction of the wave with 
the paramagnetic impurities lead to a progressive deforma- 
tion of the initial pulse profile. In the NLS equation the non- 
linear effects are taken into account by the term qx + Ix: 1 2 .  
As a result of the competition between the nonlinear effects 
which increase [he torsion of the pulse profile and the disper- 
sion effect, due to which the profile gets smeared out, the 
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shape of the nonlinear wave stabilizes-an ASW breather 
state is formed. 

The condition for a balance between the dispersive and 
nonlinear effects in the particular case when for f = 0 the 
pulse /X (z, 0) 1 has a rectangular shape of amplitude H 
and length L can be written as 

The solution ( 19) can occur in a dispersive medium in 
which h is sufficiently large so that condition (20) is satis- 
fied. Such a situation is realized when the dispersion is "ex- 
ternal" and caused by the presence of a film on the surface of 
the substrate, i.e., for ASW. One can determine from (20) 
the (order of magnitude of the) film width necessary for the 
realization of the ASW breather (19). In the continuous- 
medium approximation,I6 i.e., when we neglect the discrete 
structure of the medium, we have h+O for acoustic bulk 
waves and, hence, the proposed mechanism for the forma- 
tion of a nonlinear wave is not realized. 

We have thus shown that in dispersive media (e.g., in a 
film-substrate system) containing paramagnetic impurities 
a nonlinear wave in the shape of an ASW breather can be 
formed in the case of the propagation of an ASW of suffi- 
ciently small energy, /@,I  < 1, which is able to cause two- 
phonon excitations of the impurities. The explicit shape of 
this wave is for x = 0 given by Eq. ( 19) and the transverse 
structure of the field is determined by the function y, ( x ) .  
The dispersion law and the connection between the quanti- 
ties R and Q are given, respectively, by Eqs. ( 1 ) and ( 15). 
Phase modulation results. 

We note that the results given here are valid for pulses 
with a sufficiently smooth envelope, provided that the pulse 
is large compared to the wavelength, i.e., Ak& 1. Moreover, 
the length of the breather must be significantly larger than 
the characteristic length over which the periodic "beats" 
change: AQ$1. These conditions are satisfied for the solu- 
tion (18) but are not satisfied for other solutions. It is, for 
instance, well known" that Eq. ( 17) contains, apart from 
( 18), also N-soliton solutions, the behavior of which is more 
complicated. In particular, for the many-soliton solutions of 
the NLS characteristic oscillations of the envelope and 
strong compression of the peaks of the pulse occur in the 
initial stage of wave propagation. Under these conditions we 
cannot apply the slowly varying envelope approximation 
(7)  and even less (9)-the splitting off from f?, of the even 
more slowly varying quantity e, iz'. Hence, the scheme for 
above such solutions proposed is invalid and for their study 
we need a completely different approach (see, e.g., Ref. 17). 

We note that the results given above are valid only in the 

case when the spin-phonon interaction constant L is not too 
small. In the opposite case one must use stronger pulses, 
which leads to the necessity of taking into account anhar- 
monic crystal lattice vibratiom4 

In the present paper we have considered the case when 
we have exact resonance, 2w, = w,, and uniform broaden- 
ing of the spectral line. It is not difficult to generalize to the 
20, fa,  case and nonuniform broadening of the spectral 
line. It is clear that in that case one should not expect results 
which are qualitatively new compared to ones given here. 

One can find characteristic values of the parameters of 
the acoustic field and of the medium necessary for an experi- 
mental observation of the effects discussed above in Refs. 2 
and 4. As substance it is advisable to use a crystal of the CaF, 
fluorite with U4+ impurities in which two-phonon reso- 
nance transitions have been found'' and also the effect of 
acoustic SIT under conditions of single-phonon excitations 
of the impurities2 

IS. L. McCall and E. L. Hahn, Phys. Rev. 183,457 (1969). 
'N. S. Shiren, Phys. Rev. B2, 2471 (1970). 
'G. T. Adamashvili, Zh. Eksp. Teor. Fiz. 92, 2202 (1987) [Sov. Phys. 
JETP 65, 1242 (1987) 1. 

4G.  T. Adamashvili, Phys. Lett. A138, 304 (1989); G. T. Adamashvili, 
Zh. Eksp. Teor. Fiz. 97,235 ( 1990) [Sov. Phys. JETP 70, 13 1 ( 1990) 1 .  
1. A. Poluektov, Yu. M. Popov, and V. S. Roitberg, Usp. Fiz. Nauk 114, 
97 (1974) [Sov. Phys. Usp. 17,673 (1975)l. 

'A. S. Kinlyak and 0 .  Kh. Khasanov, Proc. XIIAll-Union ConJ Acousto- 
Electronicsand Quantum Acoustics, Saratou /1983), Vol. 11, p. 28; V. A. 
Golenishchev-Kutuzov, V. V. Samartsev, and B. M. Khabibullin, Opti- 
cal and Acoustical Coherent Pulse Spectroscopy, Nauka, Moscow 
(1988). 

'Acoustic Surface Waves (ed. A. Oliner) (Russian translation), Mir, 
Moscow ( 1981); 1. A. Viktorov, SurfaceSound Waves in Solids, Nauka, 
Moscow ( 198 1 ). 

'V. A. Timofeev, Kazan' Thesis, V. I. Ul'yanov-Lenin State University, 
Kazan' (1980), Ch. 1. 
' G. T. Adamashvili. Phys. Lett. A86, 487 ( 1981 ) .  
'OR. T. Glauber, Phys. Rev. 131, 2766 (1963). 
"J. F. Even, R. L. Gunsor, and V. M. Weston, J. Appl. Phys. 53, 5682 

( 1982); S. A. Gabov, Introduction of Nonlinear Wave Theory, Moscow 
State Univ. ( 1988). 

I2G. T. Adamashvili, Phys. Lett. AlZO, 73 (1987); G. T. Adamashvili, 
Phys. Lett. A130,350 (1988). 

"T. Sakuma and Y. Kawanami, Phys. Rev. B29, 959 (1984). 
I4T. Taniuti and H. Yajima, J. Math. Phys. 14, 1389 (1973). 
I5V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, 

Soliton Theory: The Inverse Scattering Method, Nauka, Moscow ( 1980) 
[English translation published by Consultants Bureau, New York]. 

I" L. D. Landau and E. M. Lifshitz, Elasticity Theory, Nauka, Moscow 
( 1987) [English translation published by Pergamon, Oxford]. 

"S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, FemrosecondLa- 
ser Pulse Optics, Nauka, Moscow ( 1988). 

I8S. A. Al'tshuler and B. M. Kozyrev, Electron Paramagnetic Resonance 
of Compounds of Elements from the Intermediate Groups, Nauka, Mos- 
cow (1972). 

Translated by D. ter Haar 

290 Sov. Phys. JETP 75 (2), August 1992 G. T. Adamashvili 290 


