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Within the framework of the generalized tight binding approximation incorporating strong 
electron correlations it is shown that deviations of the electron from an integral value can give rise 
to localized levels of the impurity type emerging inside the semiconductor gap despite the 
regularity of the lattice. The appearance of these levels is related to the contribution of excited 
many-electron states to the one-particle density of states. 

1. INTRODUCTION order Hamiltonian and include the interactions between 

There is a broad class of compounds consisting of 3d- cells in the perturbation Hamiltonian H,:  

metals, rare-earth metals, and actinides that possess semi- 
conducting properties owing to strong electron correlations. H=Ho+H,. 

The best known examples are NiO, MnO, and the newly 
(1) 

discovered compound La,CuO,. In the one-electron ap- Ho = L H 0 ( i ) .  H ,  = L H , ( i ,  j ) .  

proach these compounds must be metals according to the ( 7 . J \  

Wilson criterion, since they have unfilled bands. Strong elec- 
tron correlations lead to Mott-Hubbard band splitting, 
which results in a semiconductor gap emerging.' The size of 
the gap, E,, is not necessarily determined by the Mott-Hub- 
bard splitting U: depending on the positions of other bands 
(e.g., anion bands), various cases are possible, for instance, a 
gap with charge t r an~fe r .~  

The problem of impurity levels in semiconductors with 
strong electron correlations has commanded attention for a 
long time.3 Lately it became especially important in connec- 
tion with the problem of formation of the electronic struc- 
ture in high-T, superconductors. There are many indica- 
tions that under doping, say, in the La, , Sr, CuO, system, 
not only is the Fermi level shifted into the valence band but 
deviations from the rigid-band model occur., 

In ordinary semiconductors, as is known, impurity lev- 
els appear because of fluctuations of the crystal potential in 
the vicinity of a defect. Below we will see that impurity levels 
can appear in the correlation semiconductors considered 
here in the absence of such fluctuations. We assume that the 
only quantity varying as a result of doping is the electron 
density p = N , / N ,  where Jlr is the number of atoms, that 
all the parameters of the Hamiltonian are fixed, and that 
impurities introduce no new terms into the Hamiltonian. 

The physical reason why additional levels appear under 
doping is related to the way the one-particle spectrum forms 
in systems with strong correlations. A generalization of the 
tight binding approximation suitable for systems with strong 
correlations is discussed in Sec. 2. Sections 3 and 4 are devot- 
ed to a mechanism for impurity-level formation. Results are 
discussed in Sec. 5. 

2.THETlGHT BINDING APPROXIMATION IN THE MANY- 
ELECTRON APPROACH 

For a meaningful description of strong electron correla- 
tions we incorporate all intracell interactions in the zeroth- 

Let us suppose that we have succeeded in diagonalizing 
H,,(i), that is, found for each number of electrons n in the 
cell the eigenfunctions \I?) = In,y) and the energies E, ( n ) ,  
where y stands for all the other quantum numbers. Then, in 
the representation of the Hubbard operator X r1*'2, the Ham- 
iltonian H,, can be written as 

with p the chemical potential. 
The creation of a one-particle Fermi excitation in the 

many-electron approach is associated with the transition of 
an n-electron state into an (n + 1 )-electron A con- 
venient parametrization suggested in Ref. 7 makes it possi- 
ble to assign to each pair of states, the initial and the final, a 
root vector, ( r 1 , r 2 )  -+a(r1,r2). In this notation the spec- 
trum of one-particle excitations in the zeroth approximation 
is determined by the energies: 

A one-particle Fermi excitation is described by the 
annihilation and creation operators, 

where the matrix elements ~ ( a )  are determined by the ex- 
plicit form of the Hamiltonian H,,, while the nonzero matrix 
elements distinguish from the entire energy spectrum (3)  
the actual admissible excitations, which we call allowed re- 
sonances. Note that from commutation relations it follows 
that 
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The number of remaining resonances in ( 3 ) with non- 
zero matrix elements is larger than the number of peaks in 
the one-particle density of states N(E).  The reason is that a 
number of resonances have a zero oscillator strength (a zero 
residue of the corresponding Green's function). Indeed, the 
one-particle Green's function is defined as 

and the zeroth-order Green's function is 

Thus, for an oscillator strength to be finite the respec- 
tive matrix element ~ ( a )  must be nonzero and at least one of 
the states (T,,T,) must be filled. For this reason at absolute 
zero the allowed transitions between the excited states con- 
tribute nothing to N(E).  

Note that the total number of states is the same in the 
Fermi operators representation and Hubbard operators rep- 
resentation, which is easily seen if we take the Green's func- 
tion ( 5  ) as an example: 

This sum rule is retained when we allow for intercell hop- 
ping, at least in the "Hubbard-I" approximation (the Har- 
tree-Fock approximation in the diagrammatic technique7), 
which considers the band structure of one-particle excita- 
tions. 

Intercell hopping can be written in the form 

and the dispersion law in the "Hubbard-I" approximation 
has the form 

det [Sap ( E  - R, ) - F(a) T aD(k) ] = 0. ( 6 )  

The matrix elements of To (k )  determine not only the dis- 
persion law but also the hybridization of the emerging 
bands. Equation (6)  is valid far from the Mott-Hubbard 
transition point, that is, when max{T(k)) 4 U. 

3.THE BANDS IN AN UNDOPED SEMICONDUCTOR 

The electron density in an undoped stoichiometric 
semiconductor is an integral number. Suppose, for the sake 
of simplicity, that p = 1. Then the important states are the 
vacuum state lo), one-particle states I l,y), and two-particle 
states 12,y); at absolute zero ( T =  0)  only the ground 
(n = 1 ) state 11,O) is filled. The level diagram is depicted in 

Fig. 1 ,  where for simplicity only two excited states (for n = 1 
and for n = 2) are shown. Since the only filled state is 1 1,0), 
only three Fermi excitations have a nonzero residue at 
T =  0: 

Qo=Eo ( I )  - E, ( 0 ) ,  

Qt=Eo ( 2 )  -Eo ( I ) ,  

Q,=Et ( 2 )  - E o ( I ) .  

The density of states in the zeroth approximation is 

No ( E )  = O ( E -  ~ 1 , ) .  

Of course, band dispersion "erodes" these delta functions, 
and the explicit form of N(E)  is unimportant for the time 
being. Let Eu be the top of the valence band and E, the 
bottom of the conduction band. The conditionmax 
{T(k ) )g  U-R, - Ro guarantees that these bands do not 
overlap. 

To calculate the position of the Fermi level we must 
allow for the spin structure of the states. At n = 1 each level 
is twofold degenerate in spin, and at n = 2 there are spin 
singlet states and spin triplet states. Hence, 
F(a,) = F(a, ) = F(a,) = ( X  130q1.0" ) = 1/2. 

As a result, even if we allow for twofold degeneracy in 
spin, the valence band contains not two states per cell, as 
would be the case for free electrons, but one state per cell. 
Hence, at p = 1 the valence band is completely full and the 
conduction band is empty. The Fermi level is inside the gap. 

4. VARIATION OFTHE SPECTRUM UNDER DOPING 

Let us now assume that the "number" of electrons p is 
1 + x .  Since 

at T = 0 the filled levels are the ground level n = 1, (X 
= 1 - x and the ground level n = 2, ( X  :,0;2'0) = x .  The new 

transition R, = Eo (2)  - El ( 1 ) now acquires a finite oscilla- 
tor strength. 

Calculation of the number of states in the doped case is 
more complicated and requires knowing the explicit form of 
the matrix elements of the allowed transitions. Hence, al- 
though the main statement of this paper is of a general na- 
ture, we consider a specific model, the two-band Hubbard 
model: 

FIG. 1.  The energy levels of states with different numbers of electrons n. 
The "X"  stands for the filled level Eo( 1 ), the dashed arrows designate the 
processes of annihilation of a one-particle Fermi excitation, and 1,2, and 3 
at the arrows refer to the energies a,. 
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where E, and E~ are the energies of the first and second levels, 
n ,, and n,, are the operators of the number of electrons with 
a spin projection u, U,,, are the Coulomb parameters, V is 
the matrix element of the Coulomb interaction of electron on 
different orbits, J is the exchange integral, and S, and S2 are FIG. 2. The many-electron levels and the one-electron transitions be- 

the spin operators of the first and second levels. tween them that are essential in the doped cae. The wavy lines designate 
the new Fermi excitations R,, R,, and R,. 

The eigenstates of the cell are: 
(a )  n = 0, the vacuum state 10); 
(b)  n = 1, two lilu) doublets, whereil = 1,2 is the orbi- 

tal index; Qc=Eo(3) -En ( 2 ) .  %=El (3) -En ( 2 ) .  
(c)  n = 2, three singlets and one triplet: 

Using the data of Table I, we can easily verify the validity of IS, h)=aAt +aLl+ lo), 1 S. 0>=2-"3(a ,+~~a24+-aI++aL++)  10). 
the sum rule 

. . 
0 Q 

(dl  n = 3, two 13,ilu) doublets: 
in both the undoped and doped cases. 

13, lo)=a1,ia2t+a,c+I O), 13, 20>=a,++alifa2,+(O>. Since 

All the resonances with finite matrix elements for the 
opertors a,, and a,, (a = f 1/2) are listed in Table I. The 
last columns contain the values of the root factors Fs and FT 
for the cases of the singlet and triplet lower two-particle 
states, respectively. We assume that Hubbard repulsion fair- 
ly strong, so that the levels Is,l) and ls,2) always lie high. 

Table I shows that doping introduces new resonances 
with finite oscillator strengths: these are the transitions 3, 
10, and 14 for the singlet two-particle state and the transi- 
tions 6, 7, 11, 12, 15, and 16 for the triplet state. Figure 2 
shows a simplified diagram of transitions, where the new 
resonances are labeled 3,4, and 5 and distinguished by wavy 
lines. The large number of additional resonances in the trip- 
let case is due to the spin degeneracy of the triplet. 

Doping also results in the three-particle states contrib- 
uting to the one-particle spectrum: 

AE=Q,-Q,=E,(I) -E,(i) >0, 

the level R3 lies below R, and finds itself inside the gap if 

Eb<Q,<E,. (1 1) 

Since we haveF(a3) - x ,  the number of states occupying this 
level is also of order x. Thus, in a regular system with an odd 
number of electrons there appears a level of the impurity 
type, and the dispersion of this level for x  4 1 is suppressed by 
the same factor F(a3) - x ,  as Eq. (6)  shows. The same is 
true of the levels R, and R,. 

If condition ( 11) is not met for one of the levels R, 
( i  = 3,4,5), the corresponding level winds up in a band and 
becomes a virtual level. 

Figure 3 depicts the diagram of the density of states of a 
doped semiconductor for the case where condition ( 1 1 ) is 

TABLE I. The allowed transitions, matrix elements, and root factors for the ground single (F ,  ) 
and triplet (F,) two-particle states. 

(8, 0; 3, 1, a) 
(T, -20; 3, 1, - 0) 

Number of 
resonace 

(T, 0; 3, 1, a) 
(S, 2; 3, 1. 0) 

(S, 0; 3, 2, 0) 
(T, -20; 3. 2, - 0) 
(T, 0; 3, 2, 0) 
(S. 1; 3, 2, 0) 

- - 

Type of I ''.(a) I a I F s ( a )  I FT(CL) 
resonance 
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in the presence of doping new states may be filled. The same 

FIG. 3. The density of states of a doped semiconductor. 

met for the level R,, while levels R, and R, fall in the empty 
conduction band. Let us find the position of the Fermi level, 
restricting our discussion for the sake of simplicity to the 
ground singlet two-particle state Is,O). The number of states 
(with spin taken into account) in the R, band (the valence 
band) is 1 - x, and that on the 0, level is x. Thus, as an 
impurity level the R, level does indeed split away states from 
the valence band, so that together they localize a single elec- 
tron. The concentrationp = 1 + x corresponds to x carriers 
in the next allowed band. For the singlet this is the band 
( 1u-SO) related to transitions between the ground one- and 
two-particle states. I t  contains ( 1 + x) /2  states and proves 
to be partially filled with x electrons. 

The reasoning is similar in the case of the ground triplet 
state of two holes. The resonances R, = 0, (in the notation 
ofTable I )  act as the impurity level, which holds x electrons. 
Additionally, x electrons partially fill the bottom of the con- 
duction band formed in the triplet case by the transitions 
R, = R,. 

5. DISCUSSION 

As x grows, when the impurity levels spread out into 
impurity bands, in the vicinity of the R, level a band forms 
that was absent in the undoped semiconductor. Since the R, 
band forms with the participation of the excited states E, ( 1 ) 
and the R, and R ,  bands with the participation of the ground 
state E,( 1 ), the symmetry of these bands may differ, that is, 

feature has been discovered in superconducting copper ox- 
i d e ~ , ~  where the hybridized d,? - ,? -p,,,, orbitals play the 
leading role in the undoped case, and the contribution of the 
dZ2 -states of copper manifests itself in the doped case. 

Note that the formal approach taken in the present pa- 
per is similar to the way in which the Hubbard model is 
treated in the atomic limit. Nevertheless, in the Hubbard 
model no such mechanism for exhibiting the impurity levels 
exists, since the model allows only for a single state with 
n = 0, n = 1, and n = 2. I t  is the presence of excited many- 
electron states and three-particles states in our transition 
that permits realizing this mechanism. This suggests that the 
Hubbard model is ill suited for describing highly correlated 
system with a nonintegral electron concentration. 

The suggested mechanism for the appearance of new 
levels and bands with doping is, obviously, retained for other 
values of the electron concentration p close to an integral 
value. The physical reason for the appearance of new levels is 
the nonzero contribution from excited many-electron states, 
which is absent in the undoped case. 

Of course, real substitution of one cation for another 
naturally introduces fluctuations into the crystal field, with 
the result that electrons scatter on these fluctuations. Hence, 
in calculating specific systems this mechanism must be taken 
into account along with the usual mechanism. 
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