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We investigate nonlinear surface shear waves in an anharmonic crystal and compare them to 
nonlinear bulk waves. We demonstrate that such waves can exist in the presence of spatial 
dispersion, and use an asymptotic method to construct explicit expressions for the wave 
properties in a narrow region of parameters near the dispersion law for linear bulk waves. When 
capillary effects are included, we find that nonlinear surface waves can exist for arbitrary values of 
the anharmonicity of the elastic medium. When both spatial dispersion and capillary effects are 
included, our analysis of the third harmonic of the nonlinear surface wave reveals that the latter 
radiates bulk waves from the surface into the depth of the crystal, leading to attenuation. We 
estimate the rate of this attenuation. 

INTRODUCTION 

For many decades, elastic surface waves have found a 
variety of applications, both as probes in the physical investi- 
gation of solids and as a basis for engineering devices. Espe- 
cially interesting are high-frequency (hypersonic) elastic 
waves, whose proper description requires the inclusion of 
nonlinear effects (in particular, nonlinear interactions be- 
tween elastic waves) and spatial dispersion (due to the de- 
creasing wavelength of the hypersonic vibrations). In sur- 
face waves we expect the influence of anharmonicity to be 
more striking than in bulk waves, since the intensity of a 
surface wave considerably exceeds that of a bulk wave with 
the same total power due to the concentration of the surface 
wave energy in a thin layer near the surface. In addition, the 
fundamental characteristics of surface waves should be 
strongly influenced by surface distortion (capillary ef- 
fects) Surface waves are usually treated within the linear 
theory of elasticity; when these effects are included in the 
analysis, the surface waves will be modified in important 
ways, leading to a number of qualitatively new results, espe- 
cially in the study of pure shear waves with horizontal polar- 
ization (SH-waves) . 

Mozhaev6 showed that a new type of surface shear 
acoustic wave (SAW), whose localization at the crystal 
boundary is entirely due to inclusion of nonlinearity, can 
exist in a nonlinear elastic semi-infinite medium. In investi- 
gating a simple model of shear waves in a nonlinear medium, 
Gorentsveig et al.' found self-modulating nonlinear surface 
waves which generalize the SAW solutions found in Ref. 6. 
These nonlinear surface waves are described by soliton and 
multisoliton solutions to the nonlinear Schroedinger equa- 
tion (NSE), which the dynamic equations of a nonlinear 
elastic medium reduce to in lowest approximation. We note 
here that a description of nonlinear SAW within the frame- 
work of the NSF has a number of peculiarities. First of all, 
the results obtained are single-frequency and do not contain 
higher harmonics. Second, due to the complete integrability 
of the NSE, there is no radiation of bulk elastic waves by the 
surface vibrations and hence no associated attenuation of the 
SAW, either for zero or for more general boundary condi- 
tions at the surface of the crystal. Finally, we note that the 
model investigated in Refs. 6 and 7 did not include spatial 
dispersion of the nonlinear acoustic waves. 

The goal of this paper is to investigate nonlinear shear 
surface waves taking into account their spatial dispersion, 
and also attenuation of these waves due to radiation by high- 
er harmonics when more general boundary conditions (ca- 
pillary effects) are taken into account. 

1. FORMULATION OF THE MODEL ANDTHE SIMPLEST 
NONLINEAR SURFACE WAVES 

For a simple cubic elastic lattice with linear A and non- 
linear C interactions between first (a), second (p) ,  and 
third ( y )  nearest neighbors described by the constants A,, 
Ag, A ,  and C,, Cg, C, respectively, atomic mass m, and 
interatomic distance a, the dynamic equations for the scalar 
displacement u(x,y,z,t) in the medium have the following 
form in the long-wavelength approximation:' 

where u,, = a 2 ~ / d t  2, uxx = a 2 ~ / d ~ 2 ,  etc. 
Naturally, Rayleigh waves cannot propagate within 

such a model; however, a pure shear surface wave with hori- 
zontal polarization exists even in the scalar model. 

In the limit a2 -0, Eq. ( 1 ) becomes a wave equation 
without dispersion 

where c is the velocity of sound, c2 = (a2/m) (A, 
+4A0 +4Ay).  

For a pure shear surface wave propagating along the x 
axis and uniform in the direction of they axis, the proper 
choice of scales for time, the coordinates, and wave ampli- 
tudes ( [x]  = a, [z] = a, [ t ]  = a/c, [u ]  = {IC, + 4C0 
+ 4Cy I / ( A ,  + 4Ag + 4Ay))"2 reduces Eq. ( 1) to dimen- 

sionless form (for definiteness we will assume 
C, + 4Cg + 4Cy < 0, which corresponds to a "focusing" 
elastic medium ) 
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where il=6(Cg+2C,)/(C,+4CB+4C,) and 
p = (Ag + 2Ay)/(A, + 4Ag + 4A,), and S is the sign 
function, which equals 1 for focusing media and - 1 for 
defocusing media with C, + 4Cg + 4C, > 0. In this model 
we have x = 1/12; however, we will introduce a formal mul- 
tiplier x into the "dispersion" term of Eq. (3)  so that in what 
follows we can retain the option of treating the limiting case 
of a model without spatial dispersion. In the "dispersion- 
less" limit x -0 (for il = 1 ) we obtain from Eq. (3)  the 
equation used in Ref. 6. We note that the choice of sign S = 1 
for the anharmonic moduli [i.e., the choice of sign in front of 
the anharmonic terms in Eq. ( 3  ) 1 is not entirely orthodox: 
as a rule, investigators of soliton solutions in nonlinear elas- 
tic one-dimensional systems in terms of the nonlinear equa- 
tions of an elastic string choose the opposite sign for the 
anharmonic terms. 

Equation (3)  must be supplemented by boundary con- 
ditions at the crystal surface (the planez = 0).  When stress- 
es are absent at a free surface this condition takes the form 

In the limit x = 0 (i.e., in the lowest approximation with 
respect to a2)  expression (4)  reduces to the Maradudin 
boundary c~ndi t ion ,~  and, as was shown in Ref. 7, the exis- 
tence of small-amplitude weakly localized nonlinear surface 
waves requires only the condition 

Along with condition (5),  in what follows we will make 
use of a more general boundary condition, which takes into 
account near-boundary distortion of the lattice (capillary 
effects). Within the framework of Eq. (3), even if we neglect 
nonlinear and dispersive ( -x)  terms, to accuracy of terms 
of order -a our boundary condition has the form 
I u, 1, =, = Az(u,, - u, ) 1, =, (in the variables we have cho- 
sen the thickness of the near-surface layer is Azza  = I ) ,  
and consequently for a solution periodic in t and x 
[ -sin(kx - wt)] it reduces to 

where y = Az(w2 - k 2). The parameter y has a more com- 
plicated form when its dependence on the crystal plane and 
elastic modulus in the near-surface layer are taken into ac- 
count;5 however, y always contains terms - w2 and - k 2, 
and therefore we will always assume it is small ( y 4 1 ) . 

For the case of an unbounded crystal linear wave of the 
form u(x,z,t) = sin(kx + qz - wt) have the following dis- 
persion law 

while for a wave independent of 

When we neglect spatial dispersion (x = 0)  we obtain the 
linear spectrum w = k, which is illustrated by the dashed 
line in Fig. 1. In this same figure the solid curve shows the 
dispersion law (7b). Of course, the expressions we have ob- 
tained are meaningful for small k ( k g  1 ), but the small-k 
behavior is not of interest here. 

In the expression for the simplest type of surface waves, 
the coordinate x along the surface and the time t appear in 

the combination f = x - Vt, and the dependence on the 
phase I? = kx - wt = kf is assumed to be periodic (here, k is 
the wave vector of the surface wave and o = kV is its fre- 
quency). For such a wave Eq. (3)  reduces to the following: 

The authors of Refs. 6 and 7 studied the fundamental 
harmonic of a solution to this equation localized in z of the 
form u z f(z) sin (kx - o t )  for x = 0, neglecting the z-de- 
pendence in the nonlinear terms (8).  This solution has the 
standard soliton form 

A somewhat unusual feature is the presence of the wave vec- 
tor k in the denominator of the expression for the soliton 
amplitude, which is connected with the structure of the non- 
linear term in the original equation. It is clear from (9)  that 
this solution exists for o < k, i.e., in the "below-spectrum" 
region, for linear waves with V = 1 (the single dashes in Fig. 
1).  In Refs. 6 and 7 it was noted that the solutions so ob- 
tained are small in amplitude only when the inequality 
o - k < k is satisfied. 

2. NONLINEAR SURFACE AND INTERNAL WAVES IN A 
DISPERSIVE MEDIUM 

We now include spatial dispersion in the discussion, 
and find the true surface wave solution, which includes high- 
er harmonics. Since the function u is periodic in one of its 
variables, we can use an asymptotic procedure to find the 
solution of Eq. (8)  , l o  according to which the function u(z,f) 
is written as a Fourier series in the variable <with expansion 
coefficients that depend on z (in this case, the parameter w 
which is contained in f is arbitrary for a given k) ,  while the 
amplitudes of the harmonics are expanded in a power series 
with respect to a small parameter which characterizes the 
deviation of the solution from a linear wave: 

Y 

u ( z .  c)=x j2,, .  ! ( z ) s i n [  ( 2 r t + 1  )<,I. (10) 
8)-0 

A natural requirement for the convergence of this expansion 
is fulfillment of a series of inequalities f, + , <  f, (in what 
follows we will verify that this expansion can be used to find 
the small-amplitude solutions with f, < 1 ). Substituting ( 10) 
into Eq. (8 )  leads to an infinite system of ordinary differen- 
tial equations for the functions f,. These equations are too 

FIG. 1.  Region in which nonlinear surface waves exist in the dispersion- 
less limit (vertical hatching), and when spatial dispersion is taken into 
account (crosshatching). 
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complicated to write in explicit form. However, their overall 
structure is as follows: 

Here the @, are infinite sums of products fff,, F, con- 
tains triple products of the functions A and their first and 
second derivatives with respect to z (the total number of 
derivatives in each term equals 2) ,  and Us consists of triple 
products of the form f f ,  f,!, f ;, where the primes denote 
derivatives with respect to z. 

In using the asymptotic procedure the natural small pa- 
rameter for expanding the functionsf, is the deviation of the 
frequency w of the nonlinear surface wave from the value of 
the frequency of the linear wave from the same value of wave 
number. It is easy to set up a hierarchy ordering the func- 
tionsf, : 

Since there is a connection between the smallness of the am- 
plitude of the nonlinear surface wave and its weak localiza- 
tion near the surface, it is convenient to introduce a new 
coordinate scale along the z axis: 17 = EZ. Let us write down 
the equations for the coefficients A, for the first three har- 
monics of the solution through order E~ (for S = 1 ) : 

where the primes denote derivatives with respect to 7. 
For the simplest boundary condition ( 5 ) ,  to lowest or- 

der we obtain from ( 14) the following solution which de- 
scribes nonlinear surface waves: 

This expression is closest to the solution (9)  obtained in 
Refs. 6 and 7, and reduces to it as x - 0. The region in which 
surface waves exist in a dispersive medium is shown in Fig. 1 
by oblique crosshatching and lies under the dispersion 
curves for linear waves (7b). The lower boundary of this 
region is found from the condition of convergence of the 
asymptotic procedure: &Yj + g A,, EY. + z,i + & A.i. Note 
an unusual feature of the location of the region of parameters 
w and k in which the surface waves exist. Usually in one- 
dimensional systems spatially localized "bion" solutions ex- 
ist for values of the parameter adjacent to the dispersion 
curve and in the direction in which this curve is convex (i.e., 

solitons localized along the x axis having parameters that lie 
above the solid curve in Fig. 1, but they occur when the sign 
of the nonlinearity is reversed). 

The solution of the system of equations (14)-(18) is 
found rather simply and has the following form (due to its 
complexity, we will not write out the solution forf,,): 

2% 2'" 1 
f r t  = 3" 'k~1~-1  PZ, f a , = -  -- ch -3 p ~ ,  

3"k 18xk2 

2 " 0' 5 1 [I: 

i s  - [3 ( ig2  L + ( ~ + ~ ~ ~ ~ ~ ~ ~ i ~ g z ) e ~ l  pi 1 3'"k 3Kxk2 ch' p z  

whereg = xk2/(1 - x,uk2) andp = ~(g/x)" ' .  
From the expressions given here there follow the fol- 

lowing estimates: &2f,,/f1 cc ~2f,,/f,, c &2f,,/f1, o: .c2/xk '. 
Thus, the true small parameter for the expansion we have 
made is the quantity ~ ' / x k  '. This is characteristic of asymp- 
totic methods, in which the expansion is in powers of the 
ratio of the deviation of the frequency of the nonlinear wave 
from the linear frequency to the magnitude of the dispersion 
D (where D = ~5' 2w/dk '-x). The region of applicability of 
the asymptotic method (the crosshatching in Fig. 1 men- 
tioned above) is determined by the inequality 
(k  - xk 4, - w2 &xk 4; i.e., there is considerably less space 
between the dispersive and nondispersive spectra (the 
dashed and solid curves in Fig. 1 ). We find that as the disper- 
sion of the medium decreases (i.e., as x decreases) the range 
of applicability of the method contracts, until it disappears 
in the nondispersive limit ( x  = 0 ) .  Therefore, the question 
of the existence of nonlinear surface waves of the form (9)  
remains open for a nondispersive medium. 

Nonlinear surface waves possess a number of features 
that distinguish them from ordinary linear surface waves. 
First of all, in linear surface waves (Rayleigh waves) the 
frequency is fixed for a given value of k and differs from that 
of internal waves with the same k. In contrast, for a given 
value of k the frequency of a nonlinear surface wave, though 
it must lie below the frequency of the linear internal wave, 
can have a continuous spectrum of values. The frequency of 
a nonlinear surface wave is connected with its amplitude. As 
is clear from ( 19), 

where G is the amplitude of the surface wave. For fixed fre- 
quency and wave amplitude (given by the source of radi- 
ation) the excited nonlinear surface wave has a smaller 
wavelength than the linear one. 

Furthermore, in the nonlinear case delocalized nonlin- 
ear internal waves also exist for a given k at the frequency of 
the nonlinear surface wave. Actually, it is easy to verify that 
Eq. (8) admits solutions that are uniform in z, in which the 
strain is described by the formula 

~~"=[2"rK(r )x '~ /n]  k sn\2K(r) (kx-ot)/n, r]; (22) 

here K(r )  is the complete elliptic integral of the first kind, 
sn[p,r] is the Jacobi elliptic sine, r is the modulus of the 
elliptic function and, as before, k = 2r/A is the wave num- 
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ber (where A is the wavelength). For fixed values of k and w 
the modulus r (which gives the wave amplitude) is deter- 
mined implicitly by the expression 

For comparison we present the expression for the strain 
of a surface wave for z = 0: 

Note that Eqs. (22) and (24) differ even for small am- 
plitudes: for r g  1 we have u; = ~ ; / 2 ' / ~ ;  i.e, the amplitude of 
the internal wave is smaller than that of the surface wave. 

Let us rewrite relation (23) in a somewhat different 
way, so that it takes the form of a nonlinear dispersion law: if 
we introduce the strain amplitude A = 23/2 r K ( r ) ~ ' / ~  /T of 
the nonlinear wave, and use the asymptotic form 
K( r )  ZT( 1 + ?/4)/2 for small amplitudes (and therefore 
for small r g  1 ), we obtain the nonlinear dispersion law for 
internal waves: 

(as it turns out, A z Gk /2ll2 ). 
Knowledge of the dispersion laws (21 ) and (25) allows 

us to draw conclusions about the longitudinal stability of 
internal and surface nonlinear waves against their decay into 
solitons localized along the direction of propagation of the 
wave (the z axis). In fact, from Eqs. (2 1 ) and (25) it follows 
that for small k the quantity (d  2w/ak 2 ) / ( d ~ / d A  2, is 
greater than zero, and equals 16% and 8x for surface and 
bulk waves, respectively. According to the well-known 
Lighthill criterion," for this sign of the inequality nonlinear 
waves of constant amplitude are modulationally stable. Con- 
sequently, the surface waves investigated here are also stable 
against decay into a train of solitons localized in the plane of 
the crystal surface. 

The specific features of nonlinear surface waves we 
have discussed here have the following physical interpreta- 
tion. In the linear theory, elastic waves (phonons) in an un- 
bounded volume do not interact; Rayleigh waves arise from 
the interaction of longitudinal and transverse phonons at the 
surface. In a nonlinear medium with the sign of the anhar- 
monicity we have chosen (a  focusing medium) an effective 
attraction in the perpendicular direction arises between 
phonons propagating along the x axis [note that when we 
substitute the wave solution sin(kx - wt) into the anhar- 
monic term in Eq. (3)  of the form ( d ~ / d x ) ~  (d  2 ~ / d ~ 2 ) ,  the 
sign of this nonlinear term changes and the wave interaction 
acquires the characteristics of an attraction]. Because of this 
attraction the phonons form bound multiphonon states (dy- 
namic solitons) even in a nondispersive medium, which is 
equivalent to focusing of phonons (localization of the 
phonon current in a plane perpendicular to the direction of 
its propagation). If we view such states as solitons, we may 
also consider surface waves to be "half a soliton." What is 
unusual about this situation is the fact that in the majority of 
nonlinear evolution systems the attraction of elementary ex- 
citations leads to the formation of bound states localized in 
all directions (multidimensional solitons), whereas in the 
problems under discussion here the phonons repel in the di- 
rection of propagation and attract in the transverse direc- 

tion. This results in a nonlinear wave that is localized near 
the surface and uniform along it. 

3. THE EFFECT OF CAPILLARY PHENOMENA ON 
NONLINEAR SURFACE WAVES 

Up to now we have treated the simplest boundary con- 
dition (5).  We will now discuss the influence of capillary 
effects on the propagation of nonlinear surface waves (this 
problem was investigated for the first time in Ref. 12). For 
this we use boundary condition (6)  at the crystal surface. In 
order to satisfy this condition, it is sufficient to use the solu- 
tion (20) we have found for the fundamental harmonic, with 
a shift in its argument. To accuracy up to E~ inclusive, the 
solution for the fundamental harmonic has the form 

+ (2+25hg2-972g')ch-' [ p  (z+ z,) ] 

The boundary condition (6)  is easily satisfied by choos- 
ing the constant z,. It is also in the form of a series in even 
powers of the small parameter E. Using Eq. (26), we can 
write z, to accuracy c2. However, in what follows we will 
require only the lowest approximation for the quantity 2,: 

I Y 
z,= - Arcth - . 

P P 

First of all, it is clear from Eq. (27) that when we take 
capillary effects into account the nonlinear surface wave ex- 
ists only when the inequality 1 yl < p  holds. We recall that 
p = ~k 2/( 1 - xPk 2 ) ' / 2  a E %  l;i.e.,theamplitudeofthesur- 
face wave (u,,, m ~ )  should exceed the capillary parameter 
y (which in this case remains small in order to ensure con- 
vergence of the asymptotic expansion). This condition is 
easily fulfilled since we have assumed y 4 1. 

Second, it is clear from (27) that the character of the 
nonlinear surface wave depends significantly on the sign of 
the capillary parameter y. For y > 0 the dependence of the 
field amplitude on position z becomes closer to the corre- 
sponding dependence in a linear surface wave (curve I in 
Fig. 2). On the same figure, in the form of curve 2 we show 
the profile of the nonlinear surface wave for y < 0. In this 
case a competition between the nonlinear and capillary ef- 
fects occurs. Because of the capillary effects, the wave is "re- 
pelled" from the boundary; this is balanced by the nonlinear 
"attraction." This nonlinear surface wave is apparently un- 
stable against "breaking away" from the boundary to form a 
bulk soliton. 

Let us turn to an investigation of higher harmonics, i.e., 
the parts of the solution proportional to sin 3 (kx - wt). In 
this case it turns out that the shift in the argument of solution 
(20) for f3, we found earlier does not result in an expression 
that satisfies the boundary condition (6).  The physical rea- 
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FIG. 2. Profile of the envelope of a nonlinear surface wave for different 
signs of the capillary parameter. Curve I corresponds to the case y > 0, 
curve 2 to the case y < 0. 

son for this is the fact that internal sound waves at the third 
harmonic are radiated from the surface into the depth of the 
crystal. Expression (20) for f3, follows from Eq. (16), 
which was obtained by means of the asymptotic method. In 
deriving the hierarchy of Eqs. ( 14)-( 18) we assumed that 
the derivative a /az is small, and terms containing a "', /azn 
were neglected in Eq. (16) by virtue of their smallness in 
comparison to the lowest-order term, which is proportional 
to f,,. The investigation of internal waves in which 
u a sin(qz) requires that we include these terms in Eq. ( 16), 
which now has the following form: 

(Previously the second and third terms on the left-hand side 
were discarded. ) Now we can choose an approximate solu- 
tion to Eq. (28) in the form 

where f i:' is described by an expressional analogous to (20) 
with argument p(z + 2,). When we substitute the general 
solution for the uniform equation into the left side of (28), 
we obtain for the z component of the wave vector q the equa- 
tion 

It is easy to verify that this equation coincides to lowest 
order in E with expression (7a) for the dispersion law of bulk 
elastic waves, if in the latter we make the substitution k+ 3k, 
w - 3w (which corresponds to treating the third harmonic) 
and make use of the definition (13) in the form 
w2 = k - xk - k 2 ~ 2 .  Thus, for a surface wave with fixed 
wave vector k linear internal waves are radiated at the third 
harmonic into the interior of the crystal. This phenomenon 
is entirely a consequence of including spatial dispersion. In 
the dispersionless limit x = 0 there is no wave emerging 
from the surface (q = 0). For small dispersion ( x  < 1 ) we 
have 

q = 6 ( 2 x ) ' " k " ~  I .  (31) 

Thus, these waves propagate into the interior of the 
crystal at a very small angle T to the surface: 
tan T = q/3k = 2 (2x ) '/* k 4 1. [Actually, for our model 
x = 1/12, and for small surface wave vectors k <  1 we have 
q=:61'2k2 and T = (2/3) 1/2k(1.] 

The final expression for the third-harmonic solution, 
taking into account the direction of propagation of the wave 
from the boundary, has the following form: 

+ P sin (3kx-3ot+qz-a). 
(32) 

For the components that do not contain localized correc- 
tions [ a cos( 3kx - 3wt) 1 the boundary conditions give the 
following relation for the constant a: 

requiring that the boundary condition for the components 
that are a sin(3kx - 3wt) be satisfied let us find the ampli- 
tude of the outgoing wave from the surface P: 

Since p a E and y <p, we have Pa e3 < 1. Knowing the 
final expression [see Eqs. (32)-(34) ] for the solution at the 
third harmonic, it is easy to calculate the energy flux from 
the surface into the crystal and the attenuation of the nonlin- 
ear surface wave. The energy flux density (per unit area of 
the surface) is determined by the expression Q = (2(du/ 
a t )  (au/az) ), where the angle brackets denote averaging 
over a period of the wave. Thus, the damping rate of the 
nonlinear surface wave equals 

If we set x = 1/12 and p = 2 (i.e., the case of an iso- 
tropic crystal), then for small values of k, when w z k and 
q z  6'12 k 2, Eq. (35) simplifies (in addition we will assume 
that y<&k2):  

where w(k) is the dispersion law (7b). 
Note that our treatment here deals only with those non- 

linear surface wave energy losses connected with radiation 
of internal waves into the interior of the crystal. Along with 
this there undoubtedly exist dissipative losses, which we will 
not discuss in this paper. 

Let us compare the damping (36) of the surface wave 
with its intrinsic energy. To lowest order in the parameter E 

the expression for the energy of a nonlinear surface wave 
passing through a unit area of the boundary (in the custom- 
ary dimensionless variables) is 

and for small values of k 

As time passes, the energy and amplitude of the wave 
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decrease; however, in this case it is not clear whether the 
frequency alone increases [w -w(k) ] or if there a simulta- 
neous change in the wavelength. Therefore, we present only 
an estimate for the characteristic attenuation time of the 
nonlinear surface wave: T- E /(dE /at) - k 4/y2~5. Thecor- 
responding distance over which the surface wave can propa- 
gate in this time is in order of magnitude 

Thus, even for the maximum attainable values of 
y - ~k the distance L the wave propagates is proportional 
to E - ' and is large for small-amplitude surface waves. 

In conclusion, we emphasize once more the importance 
of including the spatial dispersion of the nonlinear elastic 
medium. Dispersion reveals itself to be important in two 
ways: first of all, the region in which the nonlinear surface 
exists with respect to amplitude and frequency is finite only 
for finite values of the dispersion x ( x  %c2/k 2 ) .  Second, the 
appearance of internal radiation when capillary effects are 
taken into account is also associated with dispersion, in that 
q-Q-x"2. (Note that as x decreases the expressions we 
have derived lose their meaning as soon as x - ~ ~ / k  2.) 

4. SURFACE WAVES IN A "DEFOCUSING" MEDIUM 

Finally, let us briefly touch on the case of a "defocus- 
ing" elastic medium, in which we have Ca + 4CD + 4C, > 0 
and S = - 1 (this sign of the anharmonic terms is usually 
encountered in discussions of soliton dynamics of one-di- 
mensional nonlinear chains"). In this case all the anhar- 
monic terms in Eqs. (3),  (8),  (14)-(18), and (28) change 
sign, and the character of the nonlinear elastic waves 
changes considerably. Now the expression for the strain in 
the nonlinear internal wave has the form (22), in which the 
Jacobi sine sn(p,r) is replaced by an elliptic cosine cn(p,r). 
In this case the nonlinear dispersion law of these waves also 
change significantly: 

d=kZ-xk'[4K2 (r) (1 -2rZ)/n2] . (39) 

For small wave amplitudes ( r  4 1 ) Eq. ( 39) simplifies 

where A is the amplitude of the wave displacement. Compar- 
ing this equation with (21) and (25), we see that the fre- 
quency of the nonlinear internal waves now lies above the 
dispersion law for linear waves, and according to the Light- 
hill criterion the internal wave is unstable against longitudi- 
nal modulation and decays into a train of solitons localized 
along the x axis. It is not difficult to evaluate the growth rate 
of this instability. For small wave amplitudes A the time T for 
their decay into solitons is a quantity - (kA 2, - ' . On the 
other hand, nonlinear internal waves are stable against 
transverse compression. Therefore, for the simplest bound- 
ary conditions (5) the nonlinear surface wave does not form 

when Ccr + 4Cp + 4Cy > 0. However, the situation is 
changed when we take into account capillary effects. In this 
case propagation of nonlinear surface waves whose frequen- 
cy as before lies below the spectrum of nonlinear elastic 
waves once more becomes possible. [That is, in contrast to 
the previous case, where for w < w ( k )  both surface and inter- 
nal waves existed, now the surface waves exist for w < w (k) ,  
while the internal waves (which decay into solitons localized 
along the x axis) exist for w > w (k )  1. 

We will limit our discussion only to the lowest-order 
approximation for the nonliner surface wave. The equation 
for the lowest order approximation in E, substituting Eq. 
( 14), now has the form 

and this equation has the following solution: 

The constant z, in his expression is found from the 
boundary condition (6)  : 

1. Y 
zo= -. Arccth - . 

P P 

Since the solution (42) (is singular), it satisfies our 
problem only whenz, > 0. Consequently, in that case surface 
waves exist only for y > 0. Furthermore, it follows from (43 ) 
that y >p. Since p = ~ k (  1 - xpk 2 ,  - I/*, it is necessary to 
satisfy the inequality y > ~k = (3 '/2/23'2) Gk 2, where G is 
the amplitude of the surface waves; i.e., for 
Ca + 4CB + 4C, > 0 ( 6  = - 1 ) there exist only surface 
waves with amplitudes smaller than the capillary parameter. 
The profile of such waves has the form of curve I in Fig. 2. 
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