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The process of thermal transport in insulating quasi-one-dimensional crystals is studied using a 
well-known model-the diatomic Toda lattice. It is established that all the characteristics of this 
process discovered earlier through numerical modeling can be explained by analyzing the 
dynamical behavior of limiting systems corresponding to high and low temperatures. Such an 
approach, which can be generalized to other model systems, leads to a number of conclusions on 
the nature of the finite thermal conductivity of dielectric crystals. 

INTRODUCTION 1. THE EQUATIONS OF MOTION; BASIC LIMITING CASES 

At present the diatomic lattice with exponential inter- 
action has become an object of close attention in connection 
with modeling thermal conductivity in nonmetallic crys- 
t a l ~ . ' - ~  The anomalies in thermal conductivity in substan- 
tially nonlinear systems were well known from the time of 
the notable work of Fermi, Pasta and Ulam.4 But it has only 
recently been realized that nonlinearity does not lead to the 
inelastic phonon-phonon interaction taken into account in 
the classical theory of thermal conductivity. Thermal soli- 
tons in the quasi-one-dimensional system, experimentally 
observed in the work of Ref. 5, can radically change the char- 
acter of this process. Moreover, there has been no success in 
finding an expression for the coefficient of thermal conduc- 
tivity from first principles-the problem of the finite ther- 
mal conductivity of nonmetallic crystals remains open.3 

The only lattice m ~ d e l  with nearest-neighbor interac- 
tions for which a normal finite thermal conductivity has 
been numerically determined is the diatomic Toda lattice. 
The remarkable properties of the model considered are its 
complete integrability for the case of equal masses6 and the 
transition to a stochastic regime for a certain mass ratio., 
The finite thermal conductivity of the diatomic Toda lattice, 
discovered in numerical simulations, is also a consequence 
of this transition. 

To understand the special features of the dynamical be- 
havior of this system and the mechanism of thermal conduc- 
tivity, it is desirable to have an analytic representation of the 
elementary excitations of the lattice. The first attempts at 
deriving such representations were undertaken in Ref. 7. 
However, the results of Ref. 7 were wrong, as was shown in 
Ref. 8 by direct substitution of the solutions obtained into 
the equations of motion. 

In Refs. 8 and 9 the correct asymptotic expansions are 
obtained for the limiting cases of long-wavelength acoustic 
and optic waves. In the case of acoustic waves the displace- 
ments are assumed sufficiently small, and the limiting sys- 
tem is found to be completely integrable. However, this con- 
straint, as will be shown, does not permit one to explain the 
normal thermal conductivity of the system considered. 

In the present work we carry out a classification of the 
elementary excitations of the diatomic Toda lattice, includ- 
ing both long and short waves of small and large amplitude. 
Using these results and the numerical modeling results, we 
discuss the problem of thermal conductivity in nonmetallic 
crystals. 

The system of equations of motion for the diatomic 
Toda lattice is written in the following form: 

where y,, + , is the displacement of a particle of mass m,, 
and y,, is the displacement of a particle of mass m,. The 
usual Toda potential is used: 

Everywhere in the following we take a = b = 1, except 
where specifically noted. The equations in terms of the de- 
formations are often useful: 

nz1m2d2rzn/at2= (m,+m,)exp (-r,,,) -m, exp (-r2,-,) 
-m, eyp (-r2nT1), 

(1.3) 
mIm2d2rzn+l/dt2=(ml+m2) exp(-I-,,,,) - m, exp(--rZ,+,) 

-ml exp(-r,,). 

In the limiting case of the monatomic Toda lattice 
(m,  = m, = m) the two equations (1.3) become identical, 
and travelling-wave solutions exist? 

exp (-r,,) -l=mo2(dn2(qn-+ot) -K/E). (1.4) 

where w is the wave frequency, q is the wavenumber, K and E 
are the complete elliptic integrals of the first and second 
kind, and dn is the Jacobian elliptic function. The wavenum- 
ber and frequency are connected by the dispersion relation 

For q = constant, k+ 1 the periodic wave of (1.4) 
transforms to the single-soliton solution: 

However, in the case of unequal masses, exact solutions 
analogous to ( 1.5) and ( 1.6) cannot be constructed. There- 
fore analysis of the elementary excitations in such a system is 
carried out below on the basis of approximate relations ob- 
tained using such small parameters as the deviation of the 
wavenumber from limiting values. In considering a com- 
plete classification of the elementary excitations it is reason- 
able to also consider the mass ratio as a small parameter. 
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Case 2 

TABLE I. 

q - 0 y2, - yzn+z -- U mlv + mzw 7:: 0 uxp (- u + w)2 
= (K /E)  dn (oat + cpo) 

yzn-, . y2,+* = w (u-- I U ) ~ ~  = -- 2sh (v-w)/p COO := (IC/2EP)% 

Case 3 

Wavenumber 

4 = K/2  Yzn-1 - - Y,,,,, -= P ( ~ 2 , )  = 0 '=P (- P) 
= (KIE)  dn"(ozt + c p ~ )  

Yzn= h + z  = 0 (mzp)rt : - -2~h ( p )  o z  - ( ~ / 2 E m ~ ) %  

Case 4 

Case 1 

q - 0 I Yzn ; Yzl,+r = 0 - - Yzn+1 = Y 2 n  - I 

Type of motion 

Then the asymptotes corresponding to near and strongly dif- 
fering masses are complementary cases. The spatial and tem- 
poral characteristics of the motion, as well as the system of 
equations corresponding to the limiting cases, are presented 
in the Table. Herep = m,m,/(m, + m,); m, < m,. 

We note that in the linearized system obtained from 
( 1.3), cases 1 and 3 correspond to acoustic, and cases 2 and 4 
to optical vibrations. 

Thus, in the vibrational spectrum of the diatomic Toda 
lattice, as in the linear case, there exist acoustic and optical 
branches. The gap between their left- and right-hand boun- 
daries is given by the relations 

We now turn to an anaylsis of the elementary excita- 
tions based on the limiting cases in the table. 

Equations of motion 

2. LONG-WAVELENGTH WAVES 

Temporal characteristic 

the essential points of such an approximation applied to the 
monatomic Toda lattice, for which this very approximation 
was introduced in Ref. 6. 

The potential ( 1.2) in the limit a -. 0, b -. UI transforms 
to a potential barrier at r = 0 (for r > 0 there is no interac- 
tion). In other words, in this case the monatomic Toda lat- 
tice reduces to a system of hard spheres of a single mass in a 
straight line. The integrals of motion here acquire an espe- 
cially simple meaning: the interaction between particles re- 
duces to an exchange of momentum, the magnitude of which 
does not change with time. The single-soliton solution in 
such a system corresponds to the case when at each moment 
in time one particle is moving, and all the rest are stationary. 

An analogous situation arises in the case when the am- 
plitude of excitation in the system is very large. In fact, the 
single-soliton solution (1.6) with an infinitely small width 
(localization on a single site) and an infinitely large propa- 
gation speed corresponds to the motion of a single particle in 
the hard-sphere potential. 

Let us examine the ecluation of motion of the Toda lat- 
For long-wavelength acoustic waves, to which limiting tice in the dual variables fi = a [exp( - br, ) - 1 ] (see Ref. 

case 1 corresponds, we arrive at the well-known Boussinesq 6) : 
equation, which is completely ir~tegrable:~ 

i3z(ln(l+f,/a) )/at2=b(f.-l-2f,,+f.+I)m. (2.2) 
ut1=b(r2u,--r3u,u,+ +r4(1-3pIM) .u-, (2.1) 

Taking as the initial approximation for s, 
b=2/(l+ml/mz), p=mImzl(ml+mz), M=m,+m,; 

here r is the lattice parameter, and u is the continuous vari- 
able describing frequency shift. 

It is easy to see that for any mass ratio the signs of the 
coefficients in the equations, that is, the character of the 
solutions, does not change. The elementary excitations, as in 
the case of the monatomic lattice, are photon-type excita- 
tions and supersonic solitons. 

It is extremely important that in order to describe a 
given system using equations (2.2), we require not just small 
wavenumber and the acoustic character of the excitations; 
the transition to the continuum description can be success- 
fully carried out only on the assumption that the amplitudes 
of the particle displacement are small.9 The description of 
the case of large amplitudes, which up to now has not been 
studied for the diatomic system, requires another approach, 
using the approximation of hard spheres. We first explain 

where 6 = n - ut, as, /at = f, , we obtain after the first iter- 
ation 

- A ,  E ( - I .  
A {- 1 + 2 exp ( E  111 (E))}, - 1 < E< 0, 

E = 0, (2.4) 
-4 (1 - 2 nxp (- In (E))}, o<E<l, 
A, 1 .< g. 

Substitution of (2.5) in equation (2.3) gives 
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The expression (2.5) actually corresponds to the ex- 
pansion of the exact solution for s, 

s,,= sh (A)th(nh+ I t )  (2.6) 

with P =  (ab/m)sinh(R) for the case A +  1 with 
E = exp( -A). 

It is easy to verify that the second of the relations (2.6) 
corresponds to an expansion of the dispersion relation ( 1.6) 
in that same small parameter. Thus, the given approach is 
consistent and gives the correct asymptotic relation in the 
case of large amplitudes. 

It is obvious that an analogous process can be followed 
for the cnoidal wave, taking as the zeroth approximation a 
sequence of momenta. 

In the case of the diatomic lattice the system of hard 
spheres may also be taken as limiting for large amplitudes. 
However, now the system is nonintegrable. The nonintegra- 
bility is very intuitive-when particles with different masses 
collide an energy redistribution takes place which quickly 
leads to obliteration of the initial conditions. In a certain 
sense this case is the opposite of the long-wavelength acous- 
tic oscillations, which are described by the integrable Bous- 
sinesq equation. 

Naturally, an exact solution for the diatomic lattice 
similar to the single-particle excitation (2.3) does not exist; 
therefore it is not possible to construct an asymptotic limit 
like (2.6). Nonetheless, in the cases of near and strongly 
differing masses it is possible to estimate the rate of decay of 
an excitation initially concentrated at one particle. Analysis 
of these cases, as will be shown below, is important in ex- 
plaining effects connected with the thermal conductivity. 

a)The case of nearly equal masses 

Let a particle of unit mass propagate at speed u, toward 
a stationary particle of mass 1 + E, I E I 1 : 

where u, ,  v ,  are the speeds of the spheres with masses 1 and 
1 + E after the first collision. 

The solution for this system has the form 

Let us now examine the following collision: 

I We find 

To terms of order c3 we have 

u2=u(1.- ( ~ 1 2 ) ~ ) .  (2.11) 
I 

After transmission over 2k interatomic distances we have 

uz,=u(1- ( ~ / 2 ) ~ ) ~ .  (2.12) 
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For k)  1 we obtain 

b) The case of strongly diff ering masses 

In this case momentum transfer proceeds differently, 
by means of multiple collisions of light particles with the 
preceeding and succeeding heavy ones. These collisions oc- 
cur until the speed of the light particle becomes less than that 
of the succeeding heavy one. It is not possible, because of the 
large number of collisions, to evaluate the energy in the 
"tail" of the initial excitation directly, as in case (a) .  How- 
ever, this very fact allows us to assume that after propagation 
of the momentum, the energy is already equally distributed 
between light and heavy particles, and the speed of the light 
particles is of the order of the speed of the initial excitation. 

Let m, = E, m2 = 1, and E< I. Then in the "tail," in a 
primitive cell (two neighboring particles), the energy 

remains, where u is the initial speed of the heavy particle. 
The speed of the next particle of mass 1 is 

The corresponding decay law is 

uz,=u exp (-ke). (2.16) 

Therefore, exponential extinction is observed in this 
case also, but the exponent depends on the small param- 
eter E. 

The second limiting case in the Table is that of long- 
wavelength optical waves. According to Ref. 8, they are de- 
scribed by the following relationships: 

exp (-r2,,) = (K/E)dn"z) (1+2qm,kz sn (z) cn (z)/M 
X dn(z) +q2(-3m12dn2(z)/M+m, (4m,--mi) ( 4  
-k"M2dn2 ( ~ ) + 2 m , ~  (2-1cZ-2m2E/m,K)/MZ) ) ; 

(2.17) 
exp ( -r , , - , )= (K/EdnZ(z) ) (1+2m,qk2 sn(z) 
x cn(z)/Mdn(z)+ q2(-3m,"l-kz)/Mdn2(z) 

+m, (4mz-m,)dnz(z)/MZ+2m, (2-kZ 
-2m&/mlK)lMZ) 1. 

Here, z = 2nq - wt, and sn and cn are the Jacobian elliptic 
functions. 

The dispersion relation for this system is of the follow- 
ing form: 

3.THE CASE OF SHORT WAVELENGTHS 

We note that for m, = m,, the limiting cases 3 and 4 in 
the table are identical and correspond to a wave number K /2 
in relation ( 1.4) for the monatomic Toda lattice. Taking into 
account that for short wavelengths in the diatomic lattice the 
wavenumbers must differ slightly from K, and transforming 
to the model variables 

we obtain the following system of equations: 
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Since in the present case the model variables (in con- 
trast to the initial variables) vary smoothly with index n, it is 
possible to transform to the continuum approximation, 
which in fact describes the behavior of the envelope of the 
actual displacements: 

m,d2v/dt2=exp (-w) (-2 sh v+2w, ch v+w, sh v), 
(3.3) 

m2d2wl~t2=exp(v) (-2sh w-2 v.ch w-u,sh w). 

This system of equations cannot be solved analytically 
for an arbitrary mass ratio. Also, it is obvious that in the case 
of nearly equal masses the behavior of the system will be 
practically the same as in the case of the monatomic lattice. 
Therefore subsequent investigation will be directed primar- 
ily towards the case of very diferent masses. 

a) Acoustic waves 

To treat the limiting case 3 from the table we introduce 
the parameter a such that 

The only consistent value is a = 1. 
In further analysis in this section it is more convenient 

to use the initial system of equations ( 1.1 ) as the equations of 
motion. Nonetheless, all the conclusions reached for (3.3) 
on orders of magnitude of terms are true for ( 1.1 ) , because 
in the present case these systems differ only by terms of order 
E ~ .  Keeping terms up to order E~ in system ( 1.1 ) , we have 

Transformation leads obviously to the system 

The first equation of this system formally agrees with 
the exact equation for the monatomic Toda lattice consisting 
only of the particles with larger masses. The second equation 
determines the displacements of the smaller masses. 

From the above, it is obvious that the long-wavelength 
(close to K/2) solutions of equations (3.6) should first be 
investigated. They are very similar to those studied in Ref. 6; 
therefore we will not discuss them. 

2) Optical waves 

This type of motion corresponds to case 4 in the Table. 
We introduce parametersp and q such that 

m,im,=~, d l d t ~ e - ~ . ,  d/ax=&, W = E ~ V ,  L ~ = E ~ .  (3.7) 
We substitute (3.7) in (3.3). Consistent values are 

p = 3 , q =  1. 
Keeping terms up to order E~ inclusive in (3.3), we ob- 

tain 

The solution of this system in the class of travelling 
waves has the form 

Here, Z ( l )  = $ dn2{dl - E l / K  is the Jacobian elliptic 
function. 

System (3.8) has no soliton solutions in this class of 
waves. 

4. NUMERICAL MODELING OF THE THERMAL 
CONDUCTIVITY OFTHE DIATOMIC TODA LATTICE 

The first work on numerical modeling of heat transport 
in the diatomic Toda lattice was Ref. 1; however, substantial 
anomalies were apparent in the work of Ref. 2. It was shown 
that for a specific value of the mass ratio a transition oc- 
curred, from the infinite thermal conductivity characteristic 
of integrable systems to the usual picture of heat transport 
by a diffusion mechanism, the existence of which is indicated 
by the applicability of Fourier's law. In this work a method 
of computational study of stochastic processes in a system, 
based on scanning in phase space for regions in which the 
phase trajectories exponentially diverge, was applied. For 
parameter values which lead to normal thermal conductiv- 
ity, the situation in phase space corresponded in fact to dy- 
namic chaos. 

In the work of Ref. 10 several new phenomena were 
detected. In particular, for a mass ratio of 1/2, which in 
Refs. 1 and 2 corresponded to the case of normal thermal 
conductivity, an anomalous thermal conductivity was de- 
tected a low temperatures. In addition, it was noted that in 
regions of stochastic behavior, a certain part of the energy is 
transmitted by so-called ballistic heat flux, which does not 
obey Fourier's law. This anomalous flow at sufficiently high 
temperatures of the ends of the lattice is negligibly small 
compared to the normal flow, which obeys the classical heat 
diffusion law. However, at low temperatures it becomes the 
principal carrier of energy. It has also been established that 
in the case of normal thermal conductivity its size is inverse- 
ly proportional to the temperature of the system. The results 
of Ref. 2 were confirmed as regards the structure of phase 
space in the system. 

We now turn to a discussion of results of these numeri- 
cal experiments based on the information, obtained in sec- 
tions 2 and 3, on the behavior of systems close to the limiting 
cases for the diatomic Toda lattice. 

We will first examine the case of low temperatures. For 
this case, small deviations of the atoms from their equilibri- 
um positions are characteristic; this makes it possible to lim- 
it the potential expansion to cubic terms, and thus to use the 
continuum approximation for acoustic waves of small wave- 
number. These considerations lead to the Boussinesq equa- 
tion, as noted above. The integrability of this system insures 
that it will have an anomalous thermal conductivity, due to 
transport of heat by supersonic compression solitons and 
phonon-type travelling waves. This mechanism is realized at 
low temperatures regardless of the mass ratio. Anomalous 
thermal conductivity is in fact observed in such a system 
even for a mass ratio of 1/2 (Ref. lo),  that is, for the maxi- 
mum deviation from the completely integrable case (the 
monatomic Toda lattice). 

With reference to the case examined in Ref. 2, it can be 
asserted that it is describable as an asymptotic "potential 
wall" for the diatomic Toda lattice. This is confirmed by 
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numerical analysis of the decay of a solitary excitation prop- 
agating across the lattice (see Fig. 8, Ref. 2), that is, of the 
inelastic interaction of a solition with phonons. In the figure 
it can be seen that the character of the decay of an excitation 
near the limiting values of the mass ratio (0  and 1 ) differs, 
and that the difference is well described by relations (2.13) 
and (2.16). This indicates that the interaction between par- 
ticles can be approximated as a collision of hard spheres of 
different masses. I t  is evident that the long-wavelength ap- 
proximation, good for small amplitudes, cannot describe 
such processes. 

The question arises as to how the presence in the system 
of small-amplitude waves influences the decay of a strong 
excitation. The collisional mechanism of momentum trans- 
fer leads to the condition that the rate of decay of an excita- 
tion influences only the state of particles ahead of the region 
in which the excitation is localized. Their speed in this case is 
small compared to the speed of the excitation itself. In other 
words, in the case examined, the most important condition 
for stochastic behavior in the diatomic Toda lattice is that 
the limiting hard-sphere system is far from integrable. 

It is also interesting to trace the decay of a soliton in a 
system of hard spheres from the point of view of the momen- 
tum conservation law. The initial momentum is redistribut- 
ed among the particles located in the "tail" of the soliton. 
This means that a "big" soliton breaks up into a sequence of 
"small" ones, and their momentum is conserved. These 
small solitons are decribed by the long-wavelength approxi- 
mation, and thus satisfy the Boussinesq equation and propa- 
gate without dissipation through the lattice. As noted in Ref. 
6, as the amplitude of a soliton increases, its energy grows 
faster than its momentum. Therefore "small" solitons can 
transport a significant part of the momentum of the initial 
"big" soliton excitation, taking only an insignificant part of 
its energy. This fact allows us to associate with them the 
"ballistic flux" of heat observed in Ref. 10, which dominates 
at low temperatures and becomes negligibly small at high 
temperatures. 

A simple estimate shows that the temperatures of the 
lattice ends in the numerical experiment of Ref. 3 are in fact 
rather high for the "potential wall" approximation to be ap- 
plicable. 

5.THE ROLE OF NONLINEARITY IN THE THERMAL 
CONDUCTIVITY OF REAL CRYSTALS 

In the preceding sections we determined a series of fea- 
tures of the heat transport in a model system-the diatomic 
Toda lettice. The question naturally arises as to how the 
results obtained fit in with the generally accepted theories of 
the thermal conductivity of crystals. 

The classical theory of thermal conductivity examines 
the two principal different limiting cases of low and high 
temperatures; the Debye temperature is taken to be the cut- 
off. The first case implies a quantum treatment taking ac- 
count of phonon-phonon interaction as well as phonon scat- 
tering on boundaries and defects. The second case 
corresponds to the classical scattering of waves on lattice 
density fluctuations. 

a) The high-temperature case 

In the classical model it is assumed that dynamic chaos 
exists in the system, with equipartition of energy among the 

degrees of freedom. In this case the use of Boltzmann statis- 
tics for the vibrational spectrum is justified, and for the coef- 
ficient of thermal conductivity we get the relation 

where c is the lattice specific heat, v is the characteristic 
speed of the excitation, and A is the mean free path. For A we 
have the estimate 

where A' is the mean square fluctuation of the relative ex- 
pansion of the lattice. A well-known thermodynamic formu- 
la gives 

(A') =NkTP,  

wherepis the cyrstalline compressiblity. From (6.1), (6.2), 
and (6.3) we have 

for high temperatures. This conclusion is confirmed by nu- 
merical experiment for the diatomic Toda lattice as well." 

It is obvious that the mechanism of scattering on den- 
sity fluctuations dominates at high temperatures indepen- 
dently of the nature of the excitations studied, since its appli- 
cability only requires that the system be stochastic. 

However, from the above discussion it it clear that this 
is not always so, even for a system not showing complete 
integrability. In the diatomic Toda lattice, the chaos devel- 
oped appears at acoustic timescales only if the mass ratio is 
less than a critical value.' For monatomic systems with a real 
interaction potential (a  strong repulsion as atoms approach 
and a weak attraction at longer distances) the limiting sys- 
tem at high temperatures is one of hard spheres of identical 
mass in a straight line. Obviously chaotic behavior will not 
occur in this case. 

b) The low-temperature case 

The presently accepted microscopic thoery of crystal- 
line thermal conductivity at low temperatures takes account 
of the following phonon scattering mechanisms: 

( I )  defect scattering, 
(11) transfer processes upon phonon-phonon interac- 

tion, 
(111) reflection from crystalline edges. 
Mechanisms ( I )  and (11) also require energy equiparti- 

tion among the degrees of freedom, i.e., dynamic chaos. 
However, taking account of anharmonicity in one-dimen- 
sional models does not lead to the same results. Thus, for 
example, in Ref. 11 the behavior of a lattice of atoms with 
cubic anharmonicity was studied. Solution of the quantum 
problem showed that the elementary excitations in such a 
system have primarily a solitonic, and not phonon, charac- 
ter. Scattering processes are determined by soliton interac- 
tions, i.e., by a higher-order effect. 

Within the phonon model mechanism (111) results in a 
finite thermal conductivity even for the harmonic lattice, but 
it requires the existence of a large number of boundaries. 
Such systems are not discussed here. 

From the above we may reach a conclusion: at low tem- 
peratures, for one-dimensional regular lattices with nearest- 
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neighbor interactions, there is no mechanism that ensures 
normal thermal conductivity. Numerical experiments con- 
firm this conclusion. It appears that the only way to obtain a 
normal thermal conductivity in this case involves taking ac- 
count of long-range interactions in the lattice. The system 
can then no longer be described by the integrable Boussinesq 
equation.I2 A more detailed study of such systems lies in the 
future. 

In the high-temperature case, long-range interactions 
do not "save" the situation-in the limit a hard-spheres sys- 
tem is still obtained. It is significant here that heat transport 
processes in real crystals can very rarely be described as qua- 
si-one-dimensional. In fact, the two-dimensional system of 
hard spheres, in contrast to the one-dimensional case, is in 
general nonintegrable. This range of problems is also in need 
of study. 

In conclusion, the authors express their gratitude to 
V. V. Smirnov and V. V. Ginzburg for useful discussions. 
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