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A model is discussed in which a thermodynamical potential singularity results from a continuous 
change in the fractal dimensionality of the fluctuation phase in the vicinity of the transition 
temperature. The corresponding specific-heat singularity is found to be logarithmic. 

The use of the fractal dimensionality concept for de- 
scribing critical phenomena was first suggested in Ref. 1. 
The concept has received support from direct (numerical) 
Ising model calculations2 and is also corroborated by the 
scale-invariant theory of critical phenomena.3-7 In particu- 
lar, calculations of the magnetization M show evidence2 for 
fractal behavior of the form 

where L is the linear size of the system and d denotes the 
dimensionality of space. Since, on the other hand, the quan- 
tity ( M  ) should vanish at T = T, , it is immediately clear 
that the regions M < 0 and M >  0 must differ in their volume 
for any actual distribution resulting in M, by relating this 
difference to a certain type of clusters (known as "resultant 
dominant clusters"), a theory capable of explaining relation 
( 1 ) and consistent with the scaling concept7 may be devel- 
oped. 

It is clear, however, that the thermodynamic potential 
is by no means determined by the "dominant" clusters alone 
but, rather, by all physical units comprising the volume of 
the system. 

The present flucutation region model assumes that at 
T>  T, a D-dimensional fractal structure occurs for the low- 
symmetry phase which is stable for T <  T, . A similar model 
has in fact been used by AndreevX in his search for the ther- 
modynamic potential singularity involved in first-order 
transitions; also by Bruce and W a l l a ~ e , ~  in connection with 
second-order transitions. In both studies, fluctuation-in- 
duced droplets were introduced to play the role of the unsta- 
ble phase, and in the latter paper the idea of treating the 
droplets as fractals was (tentatively) put forward. 

Let V be the (constant) volume of the system and pi 
and p2 the potential densities of its pure phases; clearly, 
p, (T, ) = p,(T, ). In the region T >  T, (say) the potential 
of the system may be defined as 

Here u is the volume of the (unstable) fluctuation phase, and 
one readily sees that the fractal character of this phase corre- 
sponds, in a sense, to the lack of smoothness in the phase 
boundary; otherwise, a first-order transition would result. 
We denote by D the dimensionality of the set formed by the 
fluctuation phase, and we consider D to be a continuous 
function of temperature [D ED( T) I ,  so that D(  T, ) = d. 
This implies that D is not identical with the quantity 9 in 
( 1 ) and reflects the fact that not only clusters with a specific 
sign of M, but also the totality of all M # 0 and M = 0 clus- 

ters determine the magnitude of the thermodynamic poten- 
tial-as one might expect when the entire volume of the sys- 
tem is taken into account. 

Consider a fluctuation phase occupying a region with 
linear dimensions on the order of the correlation length r,. 
The exact dimensionality of a fractal set is known to be given 
by the limit 

In K(p) 
D= lim -, 

,,-. 111 (rrip) 

where K(p)  is the number of d-cubes covering the set. Clear- 
ly, however, this definition is of limited practical value be- 
cause there is actually no quantity available to use asp. To 
remedy this, we may replace (3)  by a formally equivalent 
definition 

In K ( r < )  
D = lim -, 

+- In (r,./p) 

and, because r, + cc in the limit as T- T,, it is precisely in 
the fluctuation region that (4) may be understood literally: 
the quantity p may simply be interpreted as representing the 
average interparticle separation. It thus follows that the 
present formulation is only adequate for sufficiently large 
ratios r,/p, that is, exactly in the immediate vicinity of T,. 

For a region whose d-volume is r:, the d-volume of the 
fluctuation phase is then given by 

note that the volume of the fractal set is identical to its d- 
dimensional measure" with this definition. Assuming 
d - D(t )  to be an analytic function of T =  T, [so that 
d - D (  T) = b( T - T, ) ] + ..., and remembering that 
r, cc IT- T,I-",werewrite (2)  intheform 

and set t = T - T, to obtain 

The singular part of the potential then follows, assuming 
pi - p, a t in the small t limit, as 

As is customary, we should not identify r: with the volume 
of the system [more precisely, though, it is the ratio of the 
potential (7)  to < which (automatically) yields the F den- 
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sity]. We find then that close to Tc the specific heat of the 
system behaves like 

and it is readily seen that the correct sign of c is ensured by 
the thermodynamic equilibrium condition p, - p, > 0 for 
T >  T, . An interesting point to note is that it is precisely the 
condition D( T, ) = d (see above) that gives our formulation 
a direct "mechanical" meaning; it can be seen, namely, that 
the ratio of the d-volume of the primary (stable) phase to the 
entire volume of the system (on the corresponding side of 
Tc ) remains finite-as indeed it should. This should be con- 
trasted with the case D(Tc ) <d, for which the ratio of the 
volume of the stable phase to that of the entire system goes to 
zero when the size of the system increases without bound. 

According to the above model, then, the thermodynam- 
ic potential singularity at T = T, results from an assumption 
concerning the fractal nature of (in fact, the shape of the 
"droplets" in) the fluctuation phase of the system (cf. the 
"ramified cluster" approach due to Domb," in which the 
surface-to-volume ratio remains finite in the limit as the vol- 
ume tends to infinity). 

It is easily seen, further, that the present result is by no 
means inconsistent either with ( 1 ) or, more generally, with 
the critical exponent concept;'' in the latter context, our re- 

sult is simply equivalent to specifying the value of one of the 
exponents (a = 0)  under conditions of constant volume. 

We note, finally, that the same results may of course be 
obtained directly from the partition function of the system 
by integrating over only those particle configurations in 
which some of the particles assemble to form a phase filling a 
set of dimensionality D such that D + d  as T+ Tc. 
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