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A one-dimensional model of multiphoton ionization of atoms in a laser field is investigated by 
numerically solving the time-dependent Schrodinger equation for a quantum system in an 
electromagnetic wave field. The temporal dynamics of the photoelectron spectrum is analyzed for 
various intensities of the laser radiation. The photoionization of a quantum system by a laser pulse 
of finite duration is considered. 

1. INTRODUCTION 

The availability of powerful lasers makes possible the 
experimental and theoretical investigation of the atomic 
processes of multiphoton ionization.' At low intensities of 
the laser radiation, atoms are ionized by absorbing the mini- 
mum number of photons needed for their ionization. This 
process is well described by standard perturbation theory. 
At higher laser intensities the absorption of a number of ad- 
ditional photons has been observed experiment all^,^-^ and 
the energy spectrum consists of peaks separated from each 
other by the amount of energy in a photon. The amplitudes 
of the peaks depend on the field intensity, and there are cir- 
c u m s t a n c e ~ ~ ~ ~  under which the less energetic peaks appear 
inhibited by comparison with the more energetic ones. This 
phenomenon of above-threshold ionization cannot be ex- 
plained by standard theories, and a number of authors have 
attempted to model it (see the review in Ref. 1 ). 

In low-frequency strong fields the atomic ionization has 
a tunneling nature. In Ref. 5 one can find the general expres- 
sion for the probability of transition from the discrete states 
of atomic electrons to the continuum, described in various 
limiting cases as either a multiquantum photoeffect or tun- 
nel ionization of the atom in the radiation field. 

Advances in the generation of supershort laser pulses 
makes possible the study of atomic photoionization by 
pulses of femtosecond duratiom6 Such pulses are charac- 
terized by record high laser intensities, which may have a 
considerable effect on the dynamics of the photoionization 
process and on the time evolution of the energy spectrum of 
photoelectrons. Moreover, the use of femtosecond laser 
pulses allows an ab initio comparison of the experimental 
results with numerical calculations based on the time depen- 
dent Schrodinger equation for an atom in the field of an 
electromagnetic wave. 

The phenomenon of above-threshold atomic ionization 
was investigated7 by this approach for lasers with pulse du- 
rations on the order of ten wave periods. The photoelectron 
spectra were calculated by expanding the wave function in 
eigenfunctions of the unperturbed Hamiltonian. In Ref. 8 
the rate of ionization of the hydrogen atom was calculated by 
numerically integrating the time-dependent Schrodinger 
equation in low-intensity laser fields. 

In the present work, by numerically integrating the one- 
dimensional time-dependent Schrodinger equation for an 
atom in the field of an electromagnetic wave, we shall pro- 
vide a consistent space-time picture of the atomic ionization 

by a femtosecond laser pulse for a broad range of field inten- 
sities. The results thus obtained will be compared with those 
obtained from analytic calculations. 

2. THEORETICAL MODEL 

We consider an atom with only one valence electron, 
and describe its interaction with the electromagnetic field of 
a wave in the dipole approximation. The evolution of the 
atomic system is governed by the time-dependent Schro- 
dinger equation: 

in which U(r) is the potential energy of interaction between 
the electron and the rest of the atom, 

V =  - (dE) 

is the operator describing the interaction between the elec- 
tron and the electric field E ( t )  of the electromagnetic wave, 
and d is the dipole moment of the system. 

Unless otherwise explicitly specified, the electric field 
will be considered harmonic 

E ( t )  = E, cos wt. 

We assume that initially the system is in the ground 
state, the wave function of which is an eigenfunction of the 
unperturbed Hamiltonian 

9(r ,  t=O)  =rpl ( r ) .  (2) 

The basic idea of Ref. 5 is to view the photoionization 
process as a transition from the initial state cg, to a state in 
the continuum, described by the wave function of a free elec- 
tron in the field of an electromagnetic wave: 

gp (r, t )  =exp [ - ; ( P ( t )r -  j --- '- 2m (") d t l  )I ,  
where 

eE" 
P( t )=p  -- - - -  --sin cot, 

with p the initial electron momentum, the transition being 
induced by the perturbation K 

The nature of the photoionization process depends on 
the adiabatic parameter 
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where I is the ionization potential. For y < 1 the transition 
between a state of the discrete spectrum and continuum is a 
form of tunnel ionization; in the opposite case ( y s  1 ) it is a 
multiquantum photoeffect. 

Another important parameter of the theory can be ob- 
tained by expanding ( 3 )  in a power series: 

The quantity 

in which 

E = p2/2m, and E, = e2E i/4mw2 

are the kinetic and vibrational energy of the electron in the 
field of the wave, respectively, will be called the multiquan- 
tum parameter. This parameter determines the probability 
of absorption of various numbers of quanta. As we shall see 
below, the above-threshold effect is observed in sufficiently 
strong fields when N> 1. 

3. NUMERICAL CALCULATIONS 

Following Ref. 7, in numerically solving the problem 
( I ) ,  (2),  we shall restrict ourselves to a one-dimensional 
model of the photoionization process. The atomic potential 
will be chosen in the form of a one-sided rectangular well 

In numerical calculations, we took V, = 7 eV and d = 5 A. 
In such a well there are two energy levels, at E, = - 5.87 eV 
and E~ = - 2.61 eV, respectively. The quantum energy of 
the field is chosen to be fiw = 2.5 eV. Consequently, the ioni- 
zation of the "atom" requires the absorption of at least three 
quanta if the "atom" is in the ground state, or of two, if it is in 
the excited state. 

In Fig. 1 we show the quantity Ip, (x)  I and the mo- 
mentum distribution I @ ,  ( k )  1 for the ground state. As it can 
be seen, the width of this distribution is -- 10 eV. Conse- 
quently, the absorption of quanta will appear in the electron 
energy spectrum as peaks separated by a quantity fiw, on the 
background of the unperturbed state I @ ,  ( k )  1 2 .  

The Schrodinger equation ( 1 ) with the initial condition 
(2)  was solved by the method of finite differences for 
x~(0 .170  A)  with a cubic approximation for the qb function 
on the element. The integration time step was 1/60 of the 
period T of the laser field. For fiw = 2.5 eV, time 

FIG. 1. Space ( a )  and momentum (b)  densities of probability distribu- 
tions for the ground state of the "atom." 

At = 0.0276 fsec. More details concerning the solution of 
the problem ( 1 ), (2)  are given in the Appendix. 

We now discuss the results obtained from this model of 
photoionization of the "atom" by the electromagnetic radi- 
ation. 

In the k-representation, the spectrum of electron states 
is defined by 

Since in free space the momentum operator commutes with 
the Hamiltonian, the momentum distribution also repre- 
sents the energy spectrum, for which E = fi2k 2/2m. 

In Fig. 2 we show the electron spectra in the process of 
interaction with the electromagnetic wave at time t = 4 T  
and for intensities between 3 -  1012 and 3 .  l O I 4  W/cm2. These 
curves allow us to follow the transition from the regime of 
the photoelectric effect (Fig. 2, a, b)  when the adiabatic 
parameter satisfies ~ $ 1 ,  to the tunnel ionization regime 
when y 1 holds. As an intermediate case we have the above- 
threshold ionization regime (Fig. 2, c, d) ,  when there are a 
large number of peaks in the electron spectrum, separated by 
a quantity h. As the intensity is further increased (which 
can be realized by reducing the frequency of the radiation), 
the peaks merge forming a complex spectrum corresponding 
to tunnel ionization in a variable field (see Fig. 2, e).  

Let us examine the photoionization process in the 
more interesting case of above-threshold ionization 
(Q = lOI4 W/cm2). 

In Fig. 3 we show the distribution of the probability 
density j$(x,t) 1 to find the electron at various points in 
space and at various times from the switching on of the laser 
radiation. The arrow indicates the extension of the potential 
well. In this case, the ionization of the "atom" occurs with a 
probability close to unity in a time on the order of five per- 
iods of the laser field. During this time, the quantity 
Iqb(x,t) I spreads out over a distance = 150 A. 

It is important to note that outside the "atom" the dis- 
tribution l+b can be represented by a superposition of dis- 
tinct wave packets traveling away from the potential well, 
equal in number to the laser field periods. The reason for this 
is that the electron leaves the well preferentially when the 
direction of the electric field coincides with the direction of 
the x axis. Such a representation of the process is typical for 
tunnel ionization, when the transition from discrete to con- 
tinuous spectrum occurs so rapidly that the field of the elec- 
tromagnetic wave appears to be practically stationary. 
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FIG. 3. Density of probability d~stribut~on to find an electron at various 
polnts at different tlmes in the field of a laser of intens~ty Q = 10'' W/cm2, 
with fiw = 2.5 eV. 

Let us also note that, during the action of the laser field, 

-20 -10 0 the relative amplitude of the various spectrum peaks varies: 
ID E,eV 

the height of the peaks at low energies gradually decreases, 
while the probability to find an electron in the high energy 

d region of the spectrum increases. It follows then that the 
electron continues to absorb energy even after the atom un- 
dergoes photoionization (e.g., as the result of an induced 
retardation effect). The average energy of the photoelectron - can be estimated from the spectrum or from the velocity of 

475 f,DO E,&V the wave packet to be of the order of 15-20 eV; i.e., the elec- 
tron absorbs above threshold 5-10 photons from the laser 
field. This value is in agreement with the value of the multi- 
photon parameter N, which determines the number of ab- 
sorbed photons in analytic theories. 

A detailed examination of the dynamics of the energy 
spectrum in photoionization, however, leads to a more com- 

FIG. 2. Spectra of the electron states at t = 4T for various wave field 
intensities in W/cmZ: a-3.10t2; b-10'"; c-3.10"; d-1014; e-3.1014. 

In this case, the adiabatic parameter is 

y = w(rn1) "'/eE=: 1, 

i.e., the photoionization process has the characteristics both 
of the tunnel effect and of the photoeffect. That this is indeed 
the case can be seen by inspecting the spectra of the electron 
states at various times, shown in Fig. 4. These are character- 
ized by a large number of sharp equally spaced peaks, which 
are typical for above-threshold ionization. The peak with 
zero energy corresponds to the bound state of the electron in 
the well, and the distance between peaks is approximately 
equal to h. Interestingly, such a spectral structure is 
formed in the time of one or two periods of the laser field, 
because as the duration of the interaction increases, the T 

peaks sharpen. This is easily understood: the longer the elec- 
I I t t L  

-20 0 20 40 60 E,  eV 
tromagnetic wave acts upon the electron, the more it appears 
to be monochromatic. FIG. 4. Spectra of electron states at t = T, 2T, 3T, 4T, and 5T. 
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plicated picture of the process. In Fig. 5 we give the spectra which confirms the numerically calculated results. As seen 
of the photoelectron states at various phases of the electro- from (8),  the movement of peaks in the spectrum of electron 
magnetic wave. It can be seen that the energy interval be- states is significant only in sufficiently strong fields, when 
tween neighboring peaks oscillates in time and equals fiw the oscillation energy of the electron is comparable with the 
only twice during a period, i.e., from photon energy: E, >h. Precisely such fields are required for 

ot = 0.37 the above-threshold ionization to occur. 

(see also Ref. 7 ) .  This effect can be explained by the exis- 
tence of an oscillation energy of the free electron in the field 
of the electromagnetic wave. Indeed, it follows from ( 3 )  that 
the energy of an electron with momentum 

Hence, the separation between neighboring maxima in the 
spectrum is 

eEo 
4 e  ( t )  = F  - F , - , = h o -  (p,,-pn-,)-sin a t .  

m o  
(8) 

In addition to the peaks separated by fiw, one can also 
notice in the spectrum of photoelectrons some "extra" peaks 
in Fig. 2 c. The appearance of these peaks is related to the 
photoionization of the "atom" from the excited state of 
- 2.61 eV, induced by the strong radiation field. The dy- 

namics of the population densities of the ground, W,, and 
excited, W,, states for Q = 3.10') W/cm2 is shown in Fig. 6. 
These population densities are defined as 

in which pi ( x )  and E~ are the wave function and energy of 
the ith stationary state (i = 1,2). The calculations have 
shown that these populations oscillate with the Rabi fre- 
quency 

where d,, is the matrix element of the dipole moment opera- 
tor, and 

is the deviation from resonance. Although the average popu- 
lation of the excited state is smaller than the population of 
the ground state, its ionization requires the absorption of 
only two photons, which leads to the appearance of addi- 
tional peaks in the spectrum. Experimentally, such interme- 
diate resonances in the above-threshold atomic ionization 
appear as a fine structure of the s p e ~ t r u m . ~  

In contrast with the predictions emerging from calcula- 
tions, the dynamic mixing of peaks in above-threshold ion- 
izations, which should spread out the resonance structure of 
the photoelectron spectra in sufficiently strong fields, has 
not been observed experimentally. As mentioned before,' an 
agreement between calculations and experimental data must 
take into account the change in the energy distribution of 
electrons which occurs when they move towards the detec- 

FIG. 5. Spectra of electron states at various phases of the field period: 
ot = 0 ( a ) ,  7r/2 (b),  P ( c ) ,  3 ~ / 2  (d) .  Radiation intensity Q = 1014 
W/cm2. 

FIG. 6. Population dynamics of the ground ( 1 )  and excited ( 2 )  states 
during a laser pulse of intensity Q = 3.  lOI3 W/cmZ. 
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tor, through the spatially inhomogeneous field of the focus- 
ing laser, and/or the variation of the intensity of the electric 
field of the wave during the laser pulse. In femtosecond 
pulses, during which the displacement of the electrons is sig- 
nificantly smaller than the size of the focusing region ( z 10- 
100pm,) the investigation of above-threshold ionization ne- 
cessitates a more realistic profile of the laser pulse. 

We assume that the generating pulse has a Gaussian 
form: 

where 27 is the length of the pulse, and Q, its rnaximum 
intensity, reached at a time t,. 

The main results obtained in calculations assuming a 
10 fs pulse duration and a peak intensity of 3.10'' W/cm2 
(see Fig. 7) are the following. After the pulse has passed, the 
photoionization probability is ~ 0 . 8 ,  and the probability of 
finding the electron on the excited level is practically zero. 
The effective photoionization of the "atom" occurs only for 
radiation intensities close to their maximum, whereas transi- 
tions between the discrete levels occur also in weaker fields. 
The de-excitation of the "atom" in the "tail" of the pulse is 
due to the fact that, at this stage, the induced emission of 
photons dominates their absorption. 

To conclude, let us examine the evolution of the photo- 
electron spectrum during a realistic pulse. In establishing a 
connection between the experimental data and the theoreti- 
cal modeling it is most essential that when the electromag- 
netic field is turned on smoothly, i.e., when wr& 1 holds (a  
condition which is fulfilled even in the considered case of 
ultrashort pulses) there appears a gradual "switching on" of 
the oscillatory motion of the electron and that the stationary 
spectrum with peaks separated by f h  is established (see Fig. 
8) .  The "switching on" effect ofthe oscillation energy can be 
understood in classical terms. The equation of motion of a 
free electron in the field of an electromagnetic wave is 

Setting 
1 1- 

and assuming ~ 7 %  1 (i.e., that the wave field is switched on 
adiabatically) we find that 

FIG. 7. Time dependence of the probability of finding the electron in the 
ground ( 1 ), excited ( 2 ) ,  and continuum ( 3 )  states during a laser pulse of 
10 fs with a peak intensity of 3.10" W/cm2. (The maximum radiation 
intensity is reached at t = 12 fs.) 

lps!.; arb. units 

FIG. 8. Spectrum of the electron state at the end of a laser pulse of 10 fs 
and a peak intensity of 3.10" W/cm2. 

eh' 1 t" 
- ( -  --) cosctli dt 

( 3  
2 T- 

When the field is switched on instantaneously, the pho- 
toelectron spectrum is determined by the phase of the oscil- 
lation velocity at the end of the pulse. 

A comparative examination of the Figs. 3 and 7 shows 
that in the case of a realistic pulse the peaks corresponding to 
the absorption of several photons dominate, which shows 
that the photoeffect with the absorption of a minimum possi- 
ble number of photons in the front and back of the pulse is 
the dominant mechanism. 

APPENDIX 

In the numerical solution of the equation ( 1) we used 
the method of splitting up the physical processer each step. 
Thus, the equation during the step 

~ t =  t k + '  - f k  

is replaced by a coupled system of equations, the first of 
which describes the motion of electrons in free space, and the 
second the change of phase of the wave function of the elec- 
tron in the potential field: 

dq?" ,2 ,Zt"M .>. L , )  ----- = - ---- $FA' (5, t l i )  =$ (x, fk), 
a i 2m ax2 ' 

The equation for f S  is an ordinary differential equation 
with respect to time. For potentials of the type used in this 
work 

V(x,t) = - exE, cos wt, 

the integration can be done analytically: 

i 
t (i. t * + ~  =+(-T. t?)exp{- - - [ ~ Z E ~  fi (sin artl 

where 
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$(x,t) - ?hFS(x,t). 

If the amplitude Eo depends on time, its change during 
the step At is neglected, and we set 

Eo = Eo(t". 

The equation for llFM is solved by the method of finite 
elements. The finite element approximation refers only to 
the spatial variable. The difficulty in solving this problem 
consists in the fact that the function +(x,t) is rapidly oscil- 
lating in space, so that a satisfactory solution requires a con- 
siderable numerical effort. 

Numerical calculations using various approximating 
polynomials showed that the best is the cubic approximation 
of the function $ F M ( ~ , t )  (from now on the superscript FM 
will be dropped) on the element. By using the method of 
finite elements, one obtains the discrete form of the 
Schrijdinger equation: 

where 

q ( t )  = ,~),...,$(XN?~)) 

is the vector of nodal solutions, N the number of nodes in the 
spatial mesh, M is the analog of the weight matrix, and D is 
the evolution matrix." 

For the integration with respect to-time of the equation 
( 14) we used the Crank-Nicolson difference scheme: 
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