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We study the local and statistical characteristics of the zeroes of the amplitude of a wave field in 
which strong distortions (dislocations) of the phase front occur. We obtain for the usual case of 
stable dislocations expressions for the curvature, the torsion, and the velocity of the zero-lines 
(lines on which the amplitude of the wave field vanishes) of the corresponding scalar complex 
field satisfying a wave equation. We propose a method for evaluating the average values of various 
quantities given on the zero-lines of a spatially uniform and stationary random field. For a 
random field obeying Gaussian statistics we obtain expressions connecting the dislocation 
number density, the total length of the zero-lines, and their mean square velocity with the spectral 
and angular dependence of the radiation intensity. We give and discuss the results for these 
quantities in the particular cases of isotropic and planar distributions of the radiation intensity, 
for paraxial beams, for monochromatic radiation, and for white noise. 

INTRODUCTION ZERO-CARRIER AND PROPERTIES OF ZERO-LINES 

In interference fields there exist practically always sin- 
gular points in space in which the field intensity vanishes 
exactly. Near the field zeroes the wavefront (the equiphase 
surface) undergoes characteristic distortions which have 
been called dislocations of the phase front.' The existence of 
these singular points in the field which are stable to small 
perturbations is a characteristic feature of any physical kind 
of ~avefield.'-~ In many cases the space-time distribution of 
the dislocations reflects the global structural singularities in 
the field configuration, being a "skeleton," to use Berry's 
graphic expression, on which to hang the wave picture of the 
field.5 An elucidation of the basic properties of the space- 
time distribution of the field zeroes and a study of the motion 
of the dislocations caused by varying the parameters of the 
interference fields is therefore a very interesting and promis- 
ing problem which will open up a qualitatively different as- 
pect of the structure of wave fields. The properties of the 
dislocations are also of practical interest: dislocations are 
very noticeable "markers" of the field (when one goes 
around a zero the phase of the field undergoes a rotation' of 
+ 27r),  and using dislocations one can detect the variation 

of the wave field and thereby the causes for these changes. 
As we have said the problem of finding the statistical 

characteristics of the singular points of a random field is very 
important for a clearer understanding of the general picture 
of the behavior of the phase and the amplitude of the wave 
field. In an earlier paper Zel'dovich and Baranova3 calculat- 
ed the density of the zeroes of a statistically uniform random 
wave field (speckle structure of a laser beam). It is that pa- 
per which stimulated us in our study of calculating averages 
on zero-carriers (using the terminology of Ref. 3 ) . We were 
able to improve the approach proposed in Refs. 3 and 6 and 
to obtain new results. The main one of those is an estimate of 
the density of dislocations for broad beams ( a  weak diver- 
gence of the beam was assumed in Ref. 3). Another result is a 
derivation of general expressions for various functionals giv- 
en on the zero-carrier of a field with dislocations. In particu- 
lar, in this paper we calculate the total length of the zero- 
lines (lines on which the amplitude of the wave field 
vanishes) per unit volume and the mean square velocity of 
the shift of the zero-lines in random Gaussian fields. 

We consider some properties of the zeroes of a scalar 
complex field 

g (R, t )  =u (R, t )  +iv (R, t )  , 

satisfying the wave equation 

where c, = const is the wave velocity in the medium. We 
"freeze" the picture of the field at some time t. The set of 
equations 

determines implicitly the set of points R = { x , ~ , z }  in which 
the field vanishes exactly (zero-carrier). This set has in 
three-dimensional space a dimensionality between zero 
(point) and two (surface) (we exclude here the case of an 
exponentially small field in some regions in space). 

A zero-dimensional zero-carrier is unstable against 
small changes in the parameters. A stable two-dimensional 
zero-carrier often occurs as an artefact of the idealization of 
the conditions (e.g., modes in a waveguide), but in most 
other problems it also shows instability. For these reasons 
we exclude points and surfaces from our considerations and 
restrict ourselves to an analysis of the characteristics of zero- 
lines. 

We shall assume that the zero-lines are formed by the 
intersection of regular parts of the surfaces (2)  for which 

If the vector product of the gradients, C = [ AB] is nonvan- 
ishing, the vector 

l=C/C, C=[AB]=[Vu,  V v ] ,  C=ICJ#O (3  

is the only vector tangential to the zero-line and defines its 
direction. 

It is well known'.2 that the existence of directed zero- 
lines in space entails the existence of a conserved topological 

256 Sov. Phys. JETP 75 (2), August 1992 0038-5646/92/080256-07$05.00 @ 1992 American Institute of Physics 256 



"charge" of the dislocations in the points where the zero-line 
intersects with a chosen surface. And what is more, if, for 
instance, that plane isz = 0 with thezaxis directed upwards, 
the topological charge is the same as the quantity 
Q = sign (C, ). The sign of the charge Q = + 1 thus corre- 
sponds to the intersection of the zero-line with the surface in 
the direction from underneath upwards, and Q = - 1 to the 
direction from above downwards. In the definition of the 
number density of the dislocations the sign of the charge is 
usually negle~ted.~ 

We denote by s the natural parameter on the zero-line; 
let r (s) = {r, (s) ,ry (s),rZ (s)) be the parametric solution of 
the set of Eqs. (2).  The first derivative r' d r ( s ) / d s  is equal 
to the unit vector ( 3 )  tangential to the zero-line: 

The second derivative with respect to s defines the curvature 
vector: 

rf1=df  ( s )  IdsZ= Kn,, 

where K is the curvature and n, is a unit vector along the 
main normal. Substituting R = r(s)  into Eqs. (2) reduces 
them to an identity. Twice differentiating this identity with 
respect to the parameter s and adding the equation r"1 = 0 
we get a set of three equations for the curvature vector r", the 
solution of which has the form 

K=D/C, D=IDI, D=Av,.-Bu.,, (4a) 
n,= [ b l ] ,  b=D/D. (4b) 

We have here denoted by u, (and also by v ,  ) the value of the 
second derivative with respect to the direction of 1 in a point 
on the zero-line: 

U S a =  ( 1 V )  'U ( R ,  t )  I R=r(n ) .  

It is clear from (4b) that the vector b is the unit binormal 
vector. 

The solution of the set of equations obtained by differ- 
entiating the above mentioned identities three times with 
respect to s and adding the condition r;"l = 0 (here r;" is the 
projection of r "  on the plane which is orthogonal to the vec- 
tor 1) gives an expression for the quantity r;" and the torsion 
of the zero-line, x = K - [rlr"r;"] : 

Here we have 

U . ~ ~ = ( ~ V ) ~ U ( R ,  t )  I ~ = r ( a ) ?  ( n t v  ( l V ) u ( R ,  t )  I R = ~ ( . ) ~  

and the operator V is assumed to act only on the field u (and, 
respectively, on v for the quantities v, and v,,,, ). The values 
of the higher derivatives on the zero-line must, of course, 
satisfy equations following from the wave equation ( 1 ). 

The time-dependence of the field causes the zero-line to 
move in space. After a time dt  the total change of the real and 
imaginary parts of the field on the zero-line r(s)  is equal to 
zero: 

Not being interested in a glide of the dislocations (a  displace- 
ment of the zero-lines along themselves), we analyze the 
shift d R at right angles to the vector 1. Adding the equation 
Id R = 0 to (6) and solving the resulting set of equations for 
d R/dt we obtain an expression for the rate of displacement 
of the points of the zero-line in space: 

E 
w ( R ,  t )= -  n,, E= I E 1. E=Avl-Bu'. 

(7)  
urn= [ e l ] ,  e=E/E,  n,?=l. 

We note the equation 

I sin X I  =.( [be] - / -=  21 v'u,,-u'u,,,l, 
DE (8)  

where ,y is the angle between the velocity vector w and the 
curvature vector (4) ,  Kn,. In those cases when the vector 
product of the gradients, C = [AB], tends to zero while the 
quantities D and E remain finite, the curvature (4)  and the 
absolute magnitude of the velocity (7)  of the zero-line (4)  
and (7 )  tend to infinity while the angle between them (8)  
tends to zero. This can occur, for instance, when from a point 
on a plane contour the zero-line (see the numerical example 
in Ref. 2) broadens swiftly, remaining approximately 
planar. 

The curvature (4), torsion (S), and velocity (7)  of the 
zero-lines do not explicitly contain the values of the field 
$ = u + iv and they are thus invariants of the global trans- 
formation $-+* = $elY, y = const. One sees easily that if 
y = y(R,t) is a single-valued function of its arguments, the 
space-time distribution of the zeroes of the field and their 
characteristics (4),  ( 5 ) ,  and (7 )  remain unchanged even for 
the more general transformation $+* = 3 exp[iy(R,t) ] 
since such a change of phase has no effect on the absolute 
magnitude of the field I $ / .  We use this property in what 
follows for evaluating averages on the zero-carrier. 

We note that since C # O  [see ( 3 )  1 holds on the zero- 
line we can always ensure through a choice of a suitable 
constant y and of the orientation of the cdordinate system 
{X,~,Z) that in a given fixed point R, on the zero-line all 
three vectors A, B, and 1 are mutually orthogonal. In that 
point the expressions for the curvature, the torsion, and the 
velocity of the zero-line then simplify considerably (the val- 
ues of the derivatives are taken in the point R = R,): 

and here we have 

P $=u,+iv,, $=I$ ( R ,  t )  e-'T, y = c ~ n s l  

AVERAGES ON THE ZERO-CARRIER 

We show how one can evaluate average values of func- 
tions given on the zero-carrier. To do this we need to intro- 
duce for the complex scalar field $(R) = u (R)  + iv(R) a 
"natural" coordinate system {u,v,s) in which in each point 
of space R = {x,y,z) the directions of the coordinate axes of 
the {u,v,s) system coincide, respectively, with the directions 
of the gradients of the real and the imaginary parts of the 
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field, A ( R )  = V u ( R ) ,  B ( R )  = V v ( R ) ,  and the direction 
C ( R )  = [ A ( R ) B ( R )  ] which is perpendicular to them (we 
neglect here an unimportant constant factor which equalizes 
the dimensionalities of the field and of space). The s coordi- 
nate is the natural parameter on a spatial curve which may be 
called a C-line on which u ( R )  = const, and v ( R )  = const, 
simultaneously. For u ( R )  = u ( R )  = 0 the curvilinear coor- 
dinate s goes over into the zero-line. The Jacobian of the 
transition from the {u,v,s) variables to the spatial { X , ~ , Z )  
variables is equal to 

a ( 1 1 ,  v. s )  
- C, du dv ds=C dx dy dz, 

a ( J ,  Y, z )  

where C =  ICI is the absolute magnitude of the vector 
C = [ A B ]  from ( 3 ) .  

The one-to-one correspondence {u,v,s)-{x,y,z) is a lo- 
cal property and when going over to the whole space the 
inverse functions x(u,v , s ) ,  y(u,v,s)  , and z(u ,v , s )  contain 
many (in the limit, infinitely many) branches. Moreover, in 
some points R of space (of measure zero) the vector product 
C = [ A B ]  may vanish. In statistical problems, when we 
average, these features of the {u,v,s)  coordinate system often 
turn out to be unimportant. 

We consider the number N of dislocations on some sur- 
face, for instance, the planez = 0. Following Ref. 3 we define 
the number N, by the formula 

If the field is given, by expanding the S function we obtain 
the obvious relation: 

iV = I 6 (x-xi)* ( , I - y i ) d x  dy,  

where the ( x i , y i )  are the coordinates of the zeroes of the 
field in the given region of the area So over which the integra- 
tion is carried out. 

Being interested in the average number of zeroes of a 
random field we average ( 12) ,  using the joint distribution 
function W of the field and its derivatives. Denoting the set 
of these derivatives by { we find from ( 12) that 

We have assumed in ( 14) that the characteristics of the ran- 
dom field are spatially uniform. Integrating over the u, v 
variables and noting that the "contracted" Jacobian 
b'(u,u)/d(x,y)  is equal to the z component of the vector C 
[see ( 1 1 ) ] we can write the average number ( 14) of disloca- 
tions in the form 

where the presence of 6 in the angular brackets indicates 
averaging over the derivatives: 

If we are interested in the number of dislocations taking their 
charge Q = sign ( C ,  ) [see ( 3 )  ] into account we must in 
( 15) remove the modulus sign of the Jacobian C,  . 

We can generalize Eq. ( 12) ,  obtaining other averaged 
characteristics of the field connected with the zero-lines. For 
instance, the total length of all zero-lines in a volume Vo is 
given by the expression 

L =I 6 ( u ) f i ( v ) d u d u d s  
a (u, U. S )  

= ~ ~ ( U ( X , Y , Z ) ) ~ ( ~ ( X , Y , Z ) )  - d ~  dy dz. ( 1 7 )  
v ,, 0 (x, Y. z )  

For an arbitrary random field we get by analogy with ( 14) 
and ( 1 5 )  

(L>= I t ~ ( E ) > d z d ~  dz, C(F)=C = 
a (u, v, S )  

d (x. y. z )  
, ( 1 8 )  

v ,  

and for spatially uniform statistics we have 

The integral ( 19) will be evaluated below for Gaussian sta- 
tistics. 

Let F(u,v , { )  be an arbitrary function of the components 
of the field and its derivatives. The average value of this func- 
tion on the zero-carrier, (F ) , , is given by the expression 

t ~ ( u ,  v. S ) . = ( ~ ) - t  J ( ~ ( 0 ,  0, F)c( : )  M X  dy d l .  ( 2 0 )  
Y. 

In the case of spatially uniform statistics ( 2 0 )  gives 

The factor F(u,v , ( )  can be the curvature ( 4 ) ,  or the 
torsion ( 5 )  of the zero-lines, the absolute square of the field 
gradient, IV$12 = A2 + B2, the velocity vector (7) of the 
shift of a zero-line, or its square, and also other quantities 
which are significantly connected with the zero-lines. 

We note the connection between the number of disloca- 
tions ( N ,  ) on the plane and the total length of the zero-lines. 
We multiply and divide the integrand in ( 14) and ( 15) by 
C ( { )  and integrate over a unit section lo of the z axis. Using 
the equation V,, = So I,, and Eqs. ( 18) and ( 2  1 ) we then ob- 
tain 

where cos 6, = C , / C  is the cosine of the angle 8, between 
the direction 1 of the tangent to the zero-line and the chosen z 
axis. 

GAUSSIAN NOISE MODEL 

We choose the simplest model of acoustic noise, which 
is a superposition of plane waves arriving from all possible 
directions n: 

$ ( R ,  t )  = u ( R ,  t )  f i v  ( R ,  t )  

In 0 

where a ( n , w )  is the random complex amplitude of a plane 
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wave, k = o/co is the wavenumber, n is a unit vector 
(n2 = 1 ), and d 'n = sin8dOdq is the element of solid angle. 
We assume the complex amplitudes a (n,o ) satisfy Gaussian 
statistics with a zero average and a phase distributed uni- 
formly over the interval ( 0 , 2 ~ ) .  We also make the usual 
assumption that the amplitudes of the plane waves are S- 
correlated in direction and frequency: 

<a (n,  o )a '  (n', o ' )  >=J(n,  o ) 6  (n-n')6 (w-a' ) .  (24) 

The angular brackets here indicate averaging over an ensem- 
ble and J(n,o)  is the ray intensity (the average energy flux 
per unit frequency range and unit solid angle). 

The correlator of the field (23) equals 

Equation (25) is in accordance with radiative transfer 
theory.' The correlator (25) depends only on the differ- 
ences in the coordinates of the points R, - R, and in the 
times t, - t,, and its value at equal times and for R, = R, 
equals 

m 

1 1 
W," (9 = e x  (- - K )  (29) 

(an)' (det g )  # 2 

where 6 = {g, ,g,) and 

a v  a v  au av 
EV - { u .  - -- . -- , -} = { U ,  v l B )  

at ' a x ,  ax ,  ax,  
are ten-component and five-component column vectors con- 
sisting of the components of the field and its space-time de- 
rivatives. We assume that the vector ( c  ) of the values of the 
random field (23) and (24) and its derivatives vanishes 
identically. The superscript "T" indicates transposition so 
%at the quantity < = (6 ;,c ,T) is a row vector. Finally, 
K-  ' is lhe matrix which is the inverse of the covariance 
matrix K, which has the form 

h h 

where the square 5 x 5 submatrices K, , K, are equal to 

(spatially uniform and stationary field). 
Averages of the products of the field and its derivatives 

and also the products of field derivatives, relating to the 
same point in space and to the same time, can be expressed in 
terms of averages over the angular and spectral distribution 
of the ray intensity, for instance (here R = {x,y,z) 
=CxI,x2,x3)) 

( t ,  I+.(R, t) ) =iJ  do$ #n kn.l (n, o)=iIokn,, 
a x ,  0 Cn 

(27) 

( W ! R ,  f )  _IpIp(R, 0 )  = j 0 P 

dzn okniJ (n. a )  =IOokrri. a s  at o kn 

where the bar indicates an average over angles and frequen- 
cies using the ray intensity as a weight function: 

P 

TheaveragesZ, Z2, k 'ninj ( i j  = 1,2,3), together with just 
the expressions (26) and (27) which we have written out, 
completely determine the parameters of the random Gaus- 
sian field (23) and (24). 

the k 'n,nj are the elements of a 3 X 3 matrix ( i j  = 1,2,3), 
and kwn, and kn, (i = 1,2,3) are columnzr row Lectors, 
depending on their position in the matrices K, and K2 . 

It  5 well known8 that any symmetric positive definite 
matrix K can be brou~ht  to diagpnal form by an orthogonal 

"P  transformation T KT (T  T = 1). For the quadratic form 
this peans a rotation of the base of the vector 

space, 6-g = TTc. We split off a partial rotation, leading to 
a decorrelation of the vectors <, and 5,. This is accom- 
plished by multiplying the field $(R,t) of (23) by a factor 
A=exp[- i (kcR-mot) ] ,  where kc-{(kc),)={kn,) 
and o, =Z. The probability density @(c) of the combined 
distribution of the "modified" field 4 = A$ and its deriva- 
tives is obtained from W(c) by the formal substitution 
kn, - kn, - (kc ),, o - oo .  For the no~mal distribution 
(29) this leads to putting the submatrix K2 equal t2 zero 
(decorrelation of 6, and 6,) while the submatrix K, be- 
comes equal to 

0 0 
- - - 
- - - - -  

0 - (koni - wkn, ) (k2uinj - kni knj) 

(32) 

DISLOCATION DENSITY, LENGTH AND MEAN SQUARE 
VELOCITY OF THE ZERO-LINES 

To calculate these quantities we need the ten-dimen- 
sional normal probability density of the field and its first 
derivatives which can be written in the following vector 
form: 

As noted above, multiplying the field $ by a "good" 
phase factor A leaves the space-time distribution of the 
zeroes of the field unchanged and in a number of cases also 
does not affect the shape of the function F(u,v,c) 
F ( $ , $ * , T , ~ * )  (curvature, torsion, zero-line velocity); 
here q is the set of the derivatives of the complex field $. In 
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the general case the condition for the invariance of the func- 
tion F($,$*,T,T*) I under the transformation 
$- $ = A$ can be written in the form 

since the nth derivative of the field, 

transforms for $ = 0 as q n  = AT,,. When this condition is 
satisfied the partial rotation of the basic, leading to a decor- 
relation of the vectors f ,  and {,, appreciably simplifies the 
calculation of averages (20) and (21 ) on the zero-carrier. 

If the function F(u,v,fkis invariant under an arkitrary 
orthogonal transformation T the covariance matrix K must 
be brought to diagonal form: 

K = { K ~ ~ ) =  (1o/2)ha6~, a. B=1, 2, . . . , 40, 

where the A, are the roots of the characteristic equation 

det [ (211,) K - h l ]  =O. 

In this case the probability density (29) splits into a product 
of ten independent Gaussian distributions: 

10 

and the calculation of the averages on the zero-lines simpli- 
fies even more [the Jacobian C of ( 1 l l i s  invariant under an 
arbitrary orthogonal transformation TI. 

I. Dislocation density. In the {X,~,Z) coordinate system 
in which the matrix of the spatial derivatives 

is diagonal we find from ( 15) for So = 1 and from (33) the 
number density of the dislocations in the z = const plane: 

where the A, are the roots of the characteristic equation 

The coefficients G, H, and D, are invariant under a rotation 
of the {x,y,z) coordinate system; we shall use this in what 
follows. 

In an arbitrary coordinate system we obtain instead of 
(34) 

where A,, is the minor of thep, element in the determinant of 
- -- 

the matrix 3 = {pq), pq = k 2ninj - kn, kn,. If the angu- 
lar distribution of the ray intensity is spherically symmetric 
[J(n,w) = J( - n,w) ] we have kn, = 0 and Eq. (36) sim- 
plifies: 

-- 
<N,>= (2n) -' (k2rz~k2n~)'/' ,  

( i  j, and k are all different). 
In the particular case of an isotropic noise field when we 

have J(n,w) = J(w) the average number of dislocations per 

unit area is equal to 
% m 

For white noise concentrated in a frequency range 
w, - Aw/2(w<mo + A d 2  the quantity k, is given by the 
equation 

where k, = o,/c, is the wavenumber. If the ray intensity is 
uniformly distributed over the n, > 0 hemisphere, we have 

We note that the number density of the dislocations in the 
z = const plane has not changed [see ( 38) 1 .  

For almost monochromatic radiation ( Aw (w, ) we 
have k, z k, and in the case of a narrow beam propagating 
along the z axis when the radiation is concentrated in a small 
solid angle 8,8, the number of dislocations in the plane 
z = const is equal to 

This is equivalent to the results of Ref. 3. 
2. Length of the zero-lines. To calculate the total length 

(L ) of the zero-lines per unit volume we use the invariance 
of the Jacobian C of (1 1) under a rotation of the {x,y,z) 
coordinate system. We then find from ( 19) for V, = 1 and 
(33) 

where H i s  the coefficient of R in the characteristic equation 
(35) while the numerical factor (3'/2/2<6, < 1 ) is equal to 

where n and m are unit vectors over which we integrate in 
(41 ), while we have T={T~,T~,T,  )= [nm]. 

For an isotropic distribution of the ray intensity J(n,o)  
the numerical factor 6, takes its maximum value 1, and we 
have 

where k, is given by (38). 
The minimum value 3'/'/2 of the factor 6, is reached in 

the case of a "plane" distribution of the ray intensity, when 
the field (23) is independent of the z coordinate: 

<L>= (2n)-I (det A,,) Ib=<N,>. (43) 

The result (43) becomes clear, if we bear in mind that for 
such a distribution of the ray intensity all zero-lines are 
straight lines parallel to the z axis and the number of their 
intersections per unit area with az  = const plane is the dislo- 
cation density (N,) of (34) and (36) ((N,) = (N,) = 0). 
In that case we find from (22) for I, = 1 that 

as should be the case. 
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We note the following property. In contrast to the dislo- 
cation density (36), the total length of the zero-lines is by 
definition independent of the choice of the directions of the 
coordinate axes. However, the sum of the squares of the dis- 
location densities in three mutually orthogonal planes 
which, according to (36) and (35), is equal to 

is also independent of the orientation of these planes. Divid- 
ing (44) by (L ) from (40) and using Eq. (22) for I, = 1 we 
find that 

where 6, = 3/46; and the cos Bi are the direction cosines of 
the tangent vector of the zero-line. 

It follows from (45) that in the case of a strongly aniso- 
tropic distribution of the ray intensity, when the values of 
the (Ni) differ greatly, the zero-lines are preferentially 
stretched along the normal to the surface in which the dislo- 
cation density reaches a maximum. We note that the differ- 
ence 1 - S, is equal to the sum of the dispersions of the 
direction cosines: 

3. Mean square velocity of the zero-lines. We calculate 
the mean square of the displacement velocity of the zero- 
lines in the case when the distribution of the ray intensity 
J(n,w) of (24) is in the form of a product of independent 
functions of the frequency and of the angular variables. The 
elements kwn, and kn, of the submatrix fi, of (32) then 
become equal to zero in the system of coordinates in which 
the matrix of the spatial derivatives, fi = {p i j  1, is diagonal, 
and we find from (7), (16), (21), and (33) that 

where G and H are coefficients in the characteristic equation 
(35) and 

6. = $$ ( g) d'n d'lalZ$$ y d'rz d'rn. 
4 

Here q: r (A,n: + A,n: + A,n; )/G while q is given by 
(41). 

For an isotropic distribution of the ray intensity we 
have 6, = 1 and the mean square of the zero-line velocity is 
equal to 

In the case of white noise in a frequency band Aw Eq. (48) 
for the velocity takes the form (w, =Z) 

and the velocity of the zero-lines for Aw g w, is thus much 
smaller than c, . 

If one narrows the angular distribution to a planar one 
when, for instance, A, gA,  <A, we get for A, -0 from (46) 
and (47) the estimate 

where 
i l / 2  

1 sin cp 4 
9(x )= l8n i  j- tanp1(;, ) d y l = 4 6 n ' 1 n ( ~ ) .  x e f .  

,, sin cp 

For A, - 0 the zero-lines are almost parallel to the z axis and 
(50) gives an estimate for the mean square of the velocity of 
the dislocations in the z = const plane which thus tends to 
infinity as A, -0. 

In the limit of monochromatic radiation we have 
- 
w2 - Z2 = 0 and the velocity (46) of the zero-lines is equal 
to zero. 

CONCLUSION 

The number density of the dislocations, and the length 
and the mean square velocity of the zero-lines are some of the 
many averages on the zero-lines which characterize the be- 
havior of the dislocations and the zeroes of a random wave 
field and they have an obvious physical meaning. For in- 
stance, in the case of monochromatic acoustic radiation 
propagating in a medium with a constant densityp the mean 
square of the field gradient, ( IV+1 2 ) ,  is proportional to the 
mean square of the vibrational velocity of the particles in the 
medium on the zero-lines and the mean value of the Jacobian 
C(6) = C of ( 1 1 ) on the zero-lines, (C(g) ). = ( C  2({))/ 
(C(6))  [see ( 16) and (21 ) ] differs only by a constant factor 
2pc, from the "intensity" of the vortex motion of the energy 
on the zero-lines: 

where I is the flux density of the power of the acoustic field. 
For fields with Gaussian statistics these and many other 
quantities can be evaluated using the formulae given above. 

As an exotic characteristic we give (without deriva- 
tion) the value of the mean square of the curvature (4)  of the 
zero-lines for a spherically symmetric distribution of the ray 
intensity J(n,w) [to evaluate it we need a 18-dimensional (!) 
probability density function W, ,  (6) ] : 

[k,  is given by (38)]  which in the case of white noise in a 
frequency band Ao takes the form 

For x-0 (almost monochromatic field) we have (K2), 
= 8k :/I5 and the mean square radius of curvature of the 

zero-lines is a quantity which is =A /4,6, i.e., roughly a 
quarter of the wavelength A. 

The approach developed in the present paper may turn 
out to be useful also for studying the behavior of the above 
mentioned C lines [$ = const; see before Eq. ( 1 1 ) ] which 
are connected with the local maxima and other interesting 
features of the wave field. 
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