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Using the atom-photon density matrix formalism in the resonant radiation transfer theory, we 
obtain explicit expressions for the photon frequency redistribution function in the presence of a 
laser field. We show that the presence of the laser field significantly changes not only the shape of 
the redistribution function, but also its structure. We also show that the four-wave interaction, 
which occurs in this case, has an important effect on the reabsorption of the radiation. 

1. INTRODUCTION no= -,A&G;, if.= vkakia,. 
The problem of the transfer of resonant radiation in the k 

presence of a laser field has been studied in a number of 
papers.I4 The problem was solved in Refs. 2 and 3 by using 
the approximation that the saturation parameter is small: 
R /y4  1, where R is the Rabi frequency for the amplitude of 
the laser field strength and y is the spontaneous relaxation 
rate. The assumption that this parameter is small was not 
made in Ref. 4, but this paper did not obtain an explicit 
expression for the frequency redistribution function of the 
noise photons (we call it simply the rescattering function in 
what follows) which is very important and convenient for a 
practical description of radiative transfer. Keldysh's dia- 
gram technique for nonequilibrium Green's  function^,^ 
which was used in Ref. 4, had earlier been applied successful- 
ly in Refs. 6 to 8 for a description of radiation (or phonon) 
transfer. An important difference between the problem of 
radiative transfer in the presence of a laser field and the usual 
radiative transfer problem is that the structure of the radi- 
ation is significantly more complicated-anomalous corre- 
lators appear corresponding to four-wave interaction pro- 
cesses. Moreover, the single-loop approximation turns out 
to be insufficient for the description of the polarization and 
mass 0~erat01-s.~ Because of these purely technical difficul- 
ties no analytical expression was found in Ref. 4 for the re- 
scattering function, although the basic processes were stud- 
ied. 

In the present paper we use Scully and Lamb's atom- 
photon density matrix formalism9 to describe the transfer 
processes and obtain the rescattering function. This descrip- 
tion was developed in Ref. 10 in a form which is closest to the 
present problem; in those papers the problem was studied of 
a quantum description of several modes of a resonator in 
which a resonant gaseous medium was present. Note that the 
description used is close to the perturbation theory method 
for quantum fields in the density matrix framework for com- 
pound systems." This approach has been used to calculate 
the rescattering function in Refs. 12 and 13. 

2. BASIC EQUATIONS 

Here a: and a, are the creation and annihilation operators 
for photons with wavevector k and frequency w, and the a 
are the usual Pauli matrices. The atom and photon energies 
are reckoned from the energy of the quanta of the monochro- 
matic electromagnetic laser wave with frequency w,: 
Y,  = wk - wL ; AL = wL - w0, where w, is the transition 
frequency in the atomic subsystem. The last two terms in Eq. 
( 1 ) describe the interaction of the atomic subsystem with 
the laser wave and the quantized radiation field. Using the 
rotating wave approximation we write them in the form 

where we have V = - pEL/2+i, EL is the amplitude of the 
laser wave field strength, p the dipole moment matrix ele- 
ment for the 1 - 2 transition, andg = p ( 2rmk/?iL 3 ,  "' is the 
coupling constant (vacuum Rabi frequency ), which we as- 
sume to be the same for all modes, and L is the quantization 
volume. 

The equation for the atom-photon density matrix has 
the form 

@at ph = [mat ph ] + ir (pat ph ) 9 ( 5 )  

where rat ,, is an operator describing relaxation processes. 
Contracting in (5  ) over the photon variables we get an equa- 
tion for the atomic density matrixp and, on the other hand, 
taking the trace over the atomic states we have an equation 
for the photon field operator P. As a first step we follow Ref. 
10 and write the atom-photon density matrix in factored 
form: pa, ,, = Pp. We neglect here effects connected with 
radiation capture and also with the saturation of the atomic 
subsystem by quantized fields (it is natural to assume them 
to be small) and we arrive then at the results of Ref. 10 and 
particularly of Ref. 4. In that case we have for the atomic 
density matrix the usual equation: 

We write the Hamiltonian of this system in the form 
ib= [H,+H,; ~ ] + i l ' ( p ) .  ( 6 )  

H=H, , - I -11 , - I - I I ,+H, .  (1 1 
Assuming that the amplitudes of all fields change little 

where the first two terms describe the Hamiltonian of the during the characteristic lifetime of the atomic subsystem we 
unperturbed atomic subsystem and of the free radiation field can find a stationary solution of Eq. (6) and afterwards ob- 
(in rad/s ) : tain an equation for the photon field operator P. It was 
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shown in Refs. 4 and 10 that apart from the usual absorption 
and emission processes of the quantized field there are pro- 
cesses connected with four-wave interactions: k + = 2kL, 
w, +mi;  = 2wL, i.e., two photons of the pump wave are 
transformed into two photons of the quantized field. The 
equation for the two-mode photon field operator then has 
the form1' 

P= [ A ,  (akfPak-Pakn,,+) f B, (akPa,+ --uk+ukP) 

+Ck (ak'-ax' P-aifPuk') 

+ D k ( P a i ; f a k ' - a s t P a k t ) + h . c . ] + ( k ~ ~ ) .  

The expression for the photon occupation numbers is 
determined by the relation n = (a  +aP) .  Moreover, it has 
been shown in Refs. 10 and 4 that in this case there appear 
new correlators: ( Q ~ Q I )  = (akai;P) and 
(a: a$ ) = (a: a$ P ). Following Ref. 10 we shall call 
them combination tone operators. Their appearance is con- 
nected with four-wave interaction processes. From Eq. (7)  
we get the equation of motion for the photon occupation 
numbers n = ( a t a b )  (and similarly for the combination 
tone operators) : 

It is clear from these expressions that the coefficients B and A 
describe the absorption (amplification) of photons, Cand D 
describe four-wave coupling of modes, while A and C are 
spontaneous sources for photon occupation numbers and for 
combination tone operators, respectively. The structure of 
these coefficients has been well studied: the absorption and 
four-wave coupling coefficients are the same as the corre- 
sponding coefficients for classical test signals, symmetrical- 
ly tuned in frequency from the pump wave, while the expres- 
sion for A is described by the resonance fluorescence 
spectrum of a two-level atom. The spontaneous source for 
the combination tone was studied in detail in papers by the 
authors of Ref. 10, who showed, in particular, that this quan- 
tity is extremely important for the description of squeezed 
states in the resonance four-wave interaction mechanism.14 

It has been noted earlier4 that Eqs. (6), (8) ,  and (9)  
are not sufficient for describing the transfer of resonance 
radiation in the presence of a laser field: the appropriate 
equations must be linear in the photon occupation numbers 
(and in the combination tone operators, if wave synchro- 
nism is satisfied). Equations (8) and (9) contain spontane- 
ous sources in zeroth order in those quantities and for V = 0, 
for instance, they do not even describe the usual radiative 
transfer. 

It is thus necessary to supplement Eqs. (8) and (9) with 
expressions for spontaneous sources which are linear in the 
photon occupation numbers and in the combination tone 
operators. This problem is not solved by just taking into ac- 
count in the simplest way the saturation of the atomic sub- 

system by the quantized fields (this part of the problem is 
completely solved in Ref. 4).  The coherence introduced by 
the laser field significantly changes the emission spectrum of 
the atom and cannot be represented, as is done in the descrip- 
tion of radiative transfer with a complete mixing in frequen- 
cy, in the form of the product of the population of the excited 
level and the contour of the emission 

3. EQUATIONS FOR THE OPERATORS OF THE ATOMIC AND 
PHOTON SUBSYSTEMS 

To solve our problem we must generalize the photon 
operator P from the single- or two-mode case, considered in 
Ref. 10, to a continuous photon distribution. 

In the single-mode case we have 

In the two-mode case we have 

We define the multimode photon operator 9 as the 
product of two-mode operators ( 11 ) or single-mode ( 10) 
operators, if for a given wavevector there are no waves satis- 
fying the wave synchronism condition (note that we use the 
resonance approximation) : 

In the present case we assume that coherence (i.e., off- 
diagonal matrix elements) occurs only for those pairs of 
modes which satisfy wave synchronism. Coherence for 
modes which do not satisfy this condition or coherence be- 
tween more than two modes corresponds to correlators of an 
order higher than the second in the photon creation and 
annihilation operators and that goes beyond the framework 
of our considerations. 

The single-mode photon field operator is obtained by 
summing over all other modes, i.e., P (k )  = Sp,.,, ( 9 ) . 

The equations for 9 have the form 

where we have followed Ref. 10 and introduced auxiliary 
operators F, f  = a:p ,,,,. and F ,  = a,p,, ,,. and the sub- 
script of the trace sign indicates summation over atomic 
states. In the present case these operators are functions of an 
infinite number of variables (since the atom-photon density 
matrix contains a continuous photon distribution). 

The equation for the F ,  operator has the form 
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A A A  

where V,  = Ho +Hi .  We get the single-mode (or two- 
mode) operator by contracting over all photons with wave- 
vectors k1#k(k'#G,k + k = 2kL ): 

Note that these operators differ from the purely two- or sin- 
gle-mode operators @, which were considered in Ref. 10, 
since they contain corrections connected with the rescatter- 
ing of the radiation from other modes or with the parametric 
action of these modes on the given one. These corrections are 
important for calculating the rescattering function. 

The equation for the atomic density matrix has the form 

cp=[3,, p l  + S P , ~  ( [ I ! , .  P a t  I )+ i r (p ) .  (17) 

One can easily transform this equation to the form 

To solve the problem posed in the present paper we must 
obtain equations for the atomic density matrix which are 
linear in the photon occupation numbers and in the combi- 
nation tone operators. This means that we must use in Eq. 
(18) instead of the G,  operators the @, operators, since 
taking these corrections into account in this case would ex- 
ceed our accuracy. The equations for the components of the 
atomic density matrix thus have the form 

(19) 

where (@, ) equals ( k l @ ,  Ik) or ( k l @ ,  IE). Assuming the 
factorization of the atom-photon density matrix in the third 
and fourth terms of Eq. ( 15 ), we get from Eqs. ( 15 ) and 
( 16) the evolution equation for the @; operator of Ref. 10: 

We understand here by @; the column of the projection of 

I that operator on the atomic subsystem states: 

where the p,$'' are the stationary solutions of the equations 
for the atomic density matrix (6) ,  the exact expressions of 
which are given in the Appendix; we have A = A, + iy2 and 
y, and y2 are the longitudinal and transverse relaxation 
rates (in the radiative regime we have y, = 2y, = y). As- 
suming that the radiation field changes slowly during the 
characteristic lifetime of the atomic subsystem we find from 
the set (20) a stationary solution for the CP, operators. The 
explicit expressions which are important in what follows for 
the description of the dynamics of the atomic and photon 
subsystems are given in the Appendix. These expressions 
determine for the two-mode case the kinetic coefficients in 
Eqs. (7)  to (9).1° If we write the expression for S - as a 
sum: 

where S ,  contains the elements of the column proportional 
to aka: P and a ,  Paz,  and S ;  those proportional to a ,  Pa: 
and ai; a ,  P, the solution @, corresponding to S ; describes 
the A ,  and C, coefficients in Eqs. (7)  to (9)  and the solution 
corresponding to S ;  describes the B, and D, coefficients. 
These coefficients have the form (cf. Refs. 4 and 10) 

( 01  (0 )  Ak=Ng2i (p,, rn,,-p,~ rn,,), C,=-N~~~(P!;' mzg+ p:?0' n b ) ,  

B,=--Ng2i (pi:' rn,,+p,':' nt,,) , D,=~,g ' i  (p!:' ntr3--p:~' in,,),  

(22) 

where N is the number of atoms interacting with the radi- 
ation. 

4. EQUATIONS FOR THE ATOMIC SUBSYSTEM 

Using the explicit form ( A l )  to (A4) of the @, opera- 
tors we can write Eqs. ( 19) for the components of the atomic 
density matrix to first order in the quantities n, and ( a k a L )  
in the form 

(23) 
ibz2=-iy,pzz+ V*pl?-p2J 

where mji = mjk + m,, . The explicit form of the expres- 
sions for the mjk can be found in the Appendix. 

These expressions are the same as the results of Ref. 4 in 
which equations for the atomic subsystems were obtained 
which were accurate up to first order in the occupation 
numbers. 
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5. EQUATIONS FOR THE ATOM-PHOTON OPERATORS 

For a correct description of the radiative transfer we 
must evaluate the A and C coefficients in Eq. (7) for the 
photon field operator to first order in the occupation 
numbers. This equation follows from ( 14) when we sum it 
over all modes except those whose dynamics is described by 
the Poperator. For the solution of the problem we need thus 
find expressions for the G, operators, which determine the 
dynamics of the P operator after Eq. ( 14) has been summed 
over the other modes, to the same accuracy. 

We use as zeroth approximation for the G , quantities- 
@, the stationary solution of the set (20) with the inhomo- 
geneous column S , which determines the spontaneous 
sources A and C in that approximation [see (22) 1 .  We then 
write G , in the form 

where 

is the stationary solution of Eq. ( 15) in the second order of 
perturbation theory in the coupling constant with zeroth ap- 
proximation &; . The equation for the quantity 0 has the 
form 

The quantities $- -, $- +, f - -, and f - + are defined as 
follows: 

9--= arakr pat. , $-+=ahak*+ pat. ,h., 

E-+=akpat. %'+, E--= ahpat. ~ h .  a*' 9 

and we have for them the following equations: 

ig = 14 (~,+v')t--+g(of<aii;akk )aH- 
+ a-(n,r8i,-+akakfP< (OIL.+) >)  

- (a,Pa;<(@, - ) + ? + < a i , r a ~ ~ > c l ~ , ~ ) o ' - r ~ , , ~ Q k - o - )  

(30) 

Here (@; ) equals (kll@; Ik') or (kt[@; IG'), where@; is 
the solution of the set (20) for the mode k'; (a;) is thus 
proportional to n, , or to (a,, ,az, ). 

The quantity SF, which is the third term in Eq. (25) 
for G , is, like &, a solution of the set (20) with the same 
column S ;  but the components of the atomic density ma- 

trix p,$' are replaced by pj,. These are the stationary solu- 
tions of the perturbation theory set of Eqs. (23) and (24) 
with zeroth approximation p$". The explicit expressions for 
them have the form 

where the I,, are the integral terms in the expressions for p,, 
of Eqs. (23) and (24). 

The expression for G ;  obtained in this way makes it 
possible to describe expressions for the spontaneous sources 
A and C with the required accuracy. 

6. RESCATTERING FUNCTION 

We can now write the expression for the spontaneous 
source A for the photon occupation numbers ( C  for the com- 
bination tone operators) as a sum 

where A, and C, are proportional to 6;- and are given by 
Eqs. (22), a result obtained before." The quantities A ,  and 
C, (A, and C, ) which are, respectively, proportional to X ;  
and m, describe spontaneous sources associated with the 
rescattering from other modes. One can interpret the first of 
these as a characteristic connected with parametric (combi- 
nation) processes and the second we connect with the satu- 
ration of the atomic subsystem by scattered photons. 

We now introduce the rescattering functions for the 
quantities A and C as follows: 

Like Eq. (3 1 ) we write the rescattering functions as a sum: 

The explicit expressi. 1s for the rescattering functions in the 
spontaneous source for the photon occupation numbers 
have the form 

Rt(nk-)=iy ([mZ4(~)p3,-ln323L(~)p221 
X ( ~ Z ~ , ' ~ ( V )  m,,,(v-v') +m,,"(v-v') m,, (v))  
+ I m,, (v)pZl 

-m33(v)p22] (m1323(v) m,,"(~-v')+2m~~?~(v-v') n~33(v)) 

-[mziU(-v')pl,-mi,(- v ' )  (pi1-p2~)1 
x (m1323(~)m24(v-~')+~nl,2'(v--vr) m33 (v )  ) 
+ [ - m1123 ( - YO plZf mkl (-I) (PI,-~22) 1 (35) 

X (mr32J(~)m3k (~ -v ' )+ rn~~~ ' (v -v ' )m~~  ( v )  ) 

+ [ m , , ( ~ ) ~ 2 ~ - m a ~ ~ ~ ( ~ ) ~ 2 ~ 1  (-m1323(~) m 2 3 L ' ( ~ +  v') 

+2m2i2'(v+v') ~ L J , ,  ( v )  ) 

+ [ml,Z~v')p2,+m3,(v') (P;~-PII) 1 

236 Sov. Phys. JETP 75 (2), August 1992 A. A. Panteleev and A. N. Starostin 236 



~ ( r n , ~ ~ ~ ( v ) n z ~ ,  (v+vr)  +~n,,"(v+v') nl,., ( v ) )  
-+ [ (rn,12i(v') +rnaZ2' ( v )  ) p21-m3Z3' ( v )  pzZ+m3, (v ' )  (psi-p2,)  ] 

X (rn1323(v) ma3 (v+vr) +n~,, '~ (v+v') nzQL ( v )  ) -c.c.), 
R2(nh~)=r((m,,(v)+2'V*nzz3(v)lA) 

X (VA ' [p2 ,mI~2(v ' )  + ( p I ! - p 2 ? )  m3?(vr) 1 
+ ~ 4 ~ ~ ~ , 1 m 1 3 " ~ v ' ) + ( p I I - p Z ~ )  n ~ ~ ~ ( v ' )  1-C.C. I /  
(41 i7("r,+JAIZyt) 

+im,, ( v )  [pz,rn13Z:'(v' )+ (p,,-pz2) rns3 (v ' )  ]/A+ C.C. ). 

Here thepjk are the stationary solutions of the equations for 
the atomic density matrix ( 6 )  (before we used the notation 
p$''). Explicit expressions for the other functions in Eqs. 
(33)  and (34)  can be found in Ref. 17. 

The expressions (35)  given here for the rescattering 
function in the spontaneous source for the photon occupa- 
tion numbers are the main characteristic in the description 
of the transfer, since they describe the action of quantities 
with an arbitrary angular distribution and therefore give the 
main contribution, in contrast to the contribution from the 
combination tone operators whose angular distribution is 
strongly restricted by the wave synchronism condition. 

For V-0 (i.e., without a laser field) Eqs. (35 )  for the 
rescattering function change, apart from a normalizing fac- 
tor (2 r l2 ,  into the well known result:'' 

K, = i' ( 1 - -) 1 + c.c., 
I v ' f  A 1 7-\>'+iO -,A-A 

R2 = 
2iysy + C.C., 

y,Iv'+A I2(rf A) 

and in weak fields, V< y, agree with the results of Ref. 2. In 
strong fields, V )  1 A 1, the rescattering function has the fol- 
lowing asymptotic form: 

R-iy ( ( a - ( v )  /2+a- ( v )  12-ao(v) ) ' ( a ,  (1)-v') +a- (\)-\.I) ) 

-,'a, (v)+a+(v)/2+a-(v) /2]  [ (a+  (v) 

-a- (v ) )  (a+(v-v')-a-(v-v') ) (37)  

+a(,, (v)+a+ (v)/2+a- ( 1 7 )  12) ( a ,  (v-vl)+a-(v-v') ) ] 
- [aT (v)  -a- ( v )  ] [ (a+ ( v )  -a-(v)  ) (ao(  1'-2") +a+(v-v') 12 

+a- (v-v')/2tao (v+vl) +a+ (v+vf) 12+a- (l!+v1)!2) 
+ (a+(v+vJ)  -a-(v+vr))  ( a ,  ( v )  +a-(v) -2a, ( v ) )  ] - C.C. ) ,  

where 

while fl z 2 V is the Rabi frequency. 
It is clear from Eq. (36)  that the rescattering function 

contains two kinds of terms: one of them is proportional to 
S ( v  - v ' )  and describes coherent rescattering of photons, 
while the second describes incoherent rescattering. In the 
strong collision regime, i.e., for y, , y, the second type is the 
deciding one and one can say that there is a complete mixing 
in frequency. In the purely radiative regime the rescattering 
relaxation is coherent. 

The presence of a laser field leads to the appearance of a 
number of new effects. Firstly, there appear new channels 
for coherent rescattering: the first one is proportional to 
S ( v )  and describes coherent scattering of the laser field, the 
second one is proportional to S ( v - v' ) S ( v )  and is connect- 
ed with interference effects. And secondly, even in the purely 
radiative regime the relaxation of the rescattering function 
contains an incoherent component. In weak fields, V 9  y, 
this part of the rescattering function has a bell-shaped form. 
The same features are also found in the rescattering function 
for the spontaneous sources for the combination tone opera- 
tors. We show in Figs. 1 and 2 how the incoherent compo- 
nents of the rescattering functions R(n, ,  ) and Q(n,, ) 
change with increasing intensity in a purely radiative regime 
and for A, = 0. 

We note that in strong fields, V ,  y, the rescattering 
function ceases to be positive (see Fig. 1 ) . This is connected 
with the features of the interaction of resonance radiation 
with the atomic subsystem in the presence of a strong laser 
field: in particular, in some spectral regions we have amplifi- 
cation rather than absorption, which leads effectively to a 
decrease in the saturation of the atomic subsystem, i.e., the 
correction to the population of the upper level becomes neg- 
ative. In that case it is clear, for instance, that R,  (n,, ) be- 
comes negative. Parametric effects lead to R ,  ( n ,  , ) also not 
being positive. 

CONCLUSION 

The application of the operator method has turned out 
to be an extremely convenient procedure in the description 
of the transfer of resonant radiation in the presence of a laser 
field. This is connected with the fact that in that description 
the problem of evaluating the rescattering function, and also 
other kinetic coefficients, is reduced to a problem in linear 
algebra, in contrast to the cumbersome procedure of the esti- 
mating and calculating of integrals in Keldysh's diagram 
technique of Ref. 4. 

In the present paper we did not take into account the 
thermal motion of the atoms. However, it has been shown, 
for instance, in Ref. 4 that taking the thermal motion into 
account may significantly change not only the absolute mag- 
nitude and width of the lines, but also the sign of the effect in 
various spectral regions, so that this problem requires addi- 
tional studies. 

Notwithstanding the simplified nature of the proposed 
model the problem may be studied experimentally. The 
problem considered by us is close to the problem of resonant 
fluorescence of a two-level atom and the first term in Eq. 
(33 )  is described by the Mollow spectrum. l 9  This spectrum 
has been observed in experiments on the scattering of a laser 
wave by an atomic beam.20 The second term in Eq. (33 )  and 
accordingly the rescattering function we have obtained can 
be measured in an experiment on the scattering of a test sig- 
nal by an atomic beam in the presence of a laser wave. 

Finding how the rescattering function depends on the 
direction of the photons is connected both with the Doppler 
effect and with the polarization structure of the radiation. In 
the present paper we assumed a unique polarization struc- 
ture of the radiation. The generalization to the case of var- 
ious polarizations makes the problem considerably more 
complicated: a significantly larger set of combinations tones 
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FIG. 1.  Spectral behavior of the rescattering function R (n,. ) 
for a laser wave in exact resonance, A, = 0, and a radiative re- 
gime: y ,  = y, y, = y/2. The parameter V / y  equals: a: 0.01, b: 
0.5, c: 1, d: 3. 
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FIG. 2. Spectral behavior of the rescattering function Q ( n , .  ) for the com- 
bination tone operators. The conditions and the parameters are the same 
as for Fig. 1. 
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appear which is connected with the possibility of four-wave 
interactions involving different  polarization^.^' The proce- 
dure of evaluating the rescattering function remains as be- 
fore in that case. In view of the considerable complications 
this problem is of practical interest only in the context of 
describing the interaction between radiation with actual 
atomic subsystems and taking into account their more com- 
plex many-level structure. 

APPENDIX 

The stationary solution of Eq. (20) for the operator @, 
has the form 

(0)  ( 0 )  ( 0 )  
(I,zzh=(~kak+P(~~r21p21 -m3~pz3 ) + u k P a k + ~ m l l ~ 2 1  +rn31p1? ) 

where we have written mj, = M,,/det M, while Mj, is the 
determinant of the corresponding minor of the M(v) matrix. 
For these quantities we have the following expressions: 

For the componentsp,$" of the atomic density matrix which 
is the stationary solution of Eq. (6) we have the well known 
expressions (see, e.g., Ref. 11) : 
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