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We show that the dielectric grating induced by an external probe in a photorefractive crystal with 
the period of the external probe can be unstable against period multiplication. We investigate 
analytically and numerically the conditions for the excitation of the resulting spatial 
subharmonics and their properties, and explain the basic behavior observed in experiment. 

INTRODUCTION 

The primary source of the giant optical nonlinearities 
exhibited by photorefractive crystals (PRC) such as 
LiNbO,, BaTiO,, and BSO is the creation by two waves with 
wavenumbers k ,  and k, of a refractive index grating with 
period given by the difference vector K = k ,  - kZ, as shown 
in Fig. 1. The change in index of refraction of a PRC is linear- 
ly related to the electrostatic field E(r)  arising from charge 
separation under the action of light. The frequencies of the 
optical wave are so close that their difference has no effect on 
the common magnitude of the wave vectors k,,, . 

Many important nonlinear-optics effects are associated 
with the creation of a refractive index grating and Bragg 
diffraction by this grating: amplification and correction of 
weak optical beams,Ix2 phase conjugation,394 photo-induced 
s~attering,~.>tc. In PRC effects connected with the higher 
space harmonics 2K, 3K, ... are also well kn~wn.~*'Such 
gratings form because of the nonlinearity of the constitutive 
equations which describe the charge separation. 

I n  1988, Mallick et a/.' conducted experiments on BSO 
crystals in which they observed the spontaneous appearance 
of additional optical beams, which corresponded to diffrac- 
tion of the pump waves by gratings with fractional spatial 
frequencies K /2, K /3, and K/4  (see Fig. 1 ). The experi- 
ments were carried out in the presence of an external field 
Eh = 8 kV/cm and a frequency detuning fl on the order of 10 
Hz. The angle between the pump beams was small enough 
that these authors observed not only the process of mutual 
Bragg diffraction of the waves k,,, by the grating K, but also 
scattering of the pump waves by gratings with vectors cK 
(cS 1), i.e., ultra-Bragg diffraction. A characteristic of 
these experiments is that as the detuning R increases there 
first appear additional waves that correspond to the first 
subharmonic (K/2),  followed by second (K/3) ,  and third 
(K /4) subharmonic waves. The optical beams that appear 
have small angular divergence, comparable to the diver- 
gence of the pump beams. In Refs. 9-12 many of the results 
of Ref. 8 were confirmed, and a number of additional data 
were obtained that added detail to the picture of the effect. 

Several attempts were made to explain the data ob- 
served. In Refs. 13-1 5 the appearance of spatial subharmon- 
ics was associated with "optical" instability of the two-beam 
configuration. In other works, model relations were used for 
the nonlinear response (corresponding only to gratings at 
the spatial difference frequencies of the waves), while the 
fact of the instability was associated with the structure of the 
equations for the optical wave amplitudes. However, this 
approach does not allow one to give even a qualitative expla- 

nation of the fundamental experimental regularities. In Ref. 
16 the hypothesis was advanced that the observed effects 
were a consequence of instability of a PRC located in the 
field of two optical waves k,,, relative to the generation of 
spatial subharmonics of the electric field at K /2, K /3, K /4. 
This assumption goes beyond the boundaries of traditional 
descriptions of PRC nonlinearity, and is a photoelectric phe- 
nomenon new to physics." Confirmation of the hypothesis 
given above was provided by the authors of Refs. 10 and 16, 
whose numerical data indicated amplification at the first 
subharmonic K /2. 

In this paper we propose a first-principles theory of 
these PRC spatial subharmonics based on a combination of 
analytical and numerical results. Some of the results we pre- 
sent here were previously published in Ref. 20, while several 
analytical results applying specifically to the first subhar- 
monic K/2 were published independently in Ref. 2 1. 

The article is structured as follows: in Ref. 1 we present 
the basic equations for the space charge field, introduce di- 
mensionless variables, and discuss possible simplifications. 
Those properties of a grating without subharmonics that are 
required for further discussions are discussed in Sec. 2. In 
Sec. 3 we use an elementary mechanical analogy to demon- 
strate that strongly nonlinear steady-state subharmonic so- 
lutions are possible, and investigate the coarse structure of 
the subharmonic branches. In Sec. 4 we obtain simple ana- 
lytic expressions for the 1/2 and 1/3 steady-state subhar- 
rnonics. In Sec. 5 we show that a grating without subhar- 
monics is unstable against the creation of new spatial 
frequencies. In Sec. 6, we analyze the conditions for realiza- 
tion of the subharmonic regime in terms of the fundamental 
characteristics of the PRC and the experimental parameters. 
It is here that we compare the theory and the basic experi- 
mental results. Results of numerical modeling, presented in 
Sec. 7, show good agreement with the analytical theory and 

FIG. 1 .  Descriptive sketch of the grating and subharmonic generation 
process. 
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illustrate how the steady-state subharmonic regime is estab- 
lished, along with some nontrivial properties of the transient 
processes. In conclusion we summarize the fundamental re- 
sults of the paper and indicate prospects for further investi- 
gations. 

1. FUNDAMENTAL EQUATIONS 

In order to describe the photoinduced field E(r,t)  we 
must augment the equations of electrostatics and continuity 

4np 
div E = 2+ div j=O, 

e 0 I 

where Z is the dielectric permittivity, with model relations 
for the charge density p and the electric current j. In the 
simplest and most widely used PRC models, the density p is 
represented by contributions from free electrons, ionized ac- 
tive centers (donors), and compensating centers (accep- 
tors), while the current is associated with diffusion and drift 
of free carriers. The relations for j and p that correspond to 
this model have the form' 

where q is the absolute value of the electron charge, p is the 
mobility, n (r,t) is the number density of free carriers, T is 
the temperature in energy units, N,f  (r,t) is the density of 
ionized donors, ND is the total donor density, NA is the den- 
sity of compensating acceptor centers, Z(r,t) is the light in- 
tensity, and s,,, are the ionization and recombination rates. 
In (2 )  we neglect thermal excitation of electrons; usually 
this approximation is applicable for PRC even for very small 
light intensities. The constancy of the external field E, and 
the neutrality of the crystal are expressed through obvious 
relations for the spatial averages: 

In the absence of illumination we have N ,t = NA . The con- 
stants s,, can be related to the absorption coefficient of the 
crystal a and the lifetime of a photoelectron T:  

where h is the energy of the incident photons. 
In accordance with the primary scheme illustrated in 

Fig. 1, we choose the light intensity in the form of a traveling 
grating: 

l=I,, [ I  +m cos (Kr-Qt)] , 

The parameter m, which depends on the ratio of the intensi- 
ties of the pump waves I,,, characterizes the modulation 
depth of the grating. The case of uniform illumination corre- 
sponds to m = 0, E = E,, n = Z. In the region of not-too- 
great intensities, i.e., when ?i < N ,t z NA , we have 
?i = no = aZ,r/h. 

Let us now simplify the original system of equations ( 1 ) 
and (2).  We will make use of the usual adiabatic approxima- 
tion for the density of free electrons, neglecting dn/dt in 
comparison with n/r. The conditions for this approximation 
are that the lifetime r be small compared to the remaining 
characteristic times (in particular compared to f l  - ' ). If we 

limit ourselves to the region of not-too-large intensities 
(when n a I ) ,  we may also neglect contributions from free 
carriers to the space charge density for E. The conditions 
under which these approximations are valid, which are ful- 
filled quite well in the majority of experiments on PRC, are 
specified in Secs. 2 and 5. A second general assumption will 
be that the problem be one-dimensional; i.e., all quantities 
are assumed to depend only on a single space variable Kr (in 
this case we obviously have EIIK). 

We now transform from n, E, N ,f to the dimensionless 
variables p, e, u ,  and from K, r, and t to the dimensionless 
coordinates x' and t ': 

As a result, the system of equations (1)  and (2)  takes the 
form 

u,r-~u, ,=p(l-qu)-f( l+u),  

p(l-qu) -f ( I fu )  =Klo(pe)x~-KZIDZpx~,~, 
(7 

Here A=fl/siZo is the dimensionless detuning, 
77 = ( N ,  - NA ) N 7 ', I ,  = prEo is the drift length, 
ID = ( , u ~ T / q ) " ~  is the electron diffusion length, 
0 = 437-9 ( N ,  - NA )K ZEo,and the subscripts x' and t ' de- 
note differentiation. The dimensionless function f ( x ' )  gives 
the spatial intensity modulation 

f = l + m  cos x'. (8  

The parameter 7 characterizes the degree of compensation 
of the crystal: for 79 1, most of the donor centers are occu- 
pied by electrons. In place of condition ( 3 ) ,  we now have - 
e = 1, ii = 1 for the dimensionless averages. 

Despite our simplification of Eqs. (7),  the latter are too 
complicated to be solved in closed form. Our analytical ap- 
proach will consist of the following procedure: we first iden- 
tify which independent contributions to (7 )  are responsible 
for the appearance of subharmonics, and which ones impede 
their appearance. We then discard the "harmful" indepen- 
dent terms, and reduce (7)  to a simplified system of equa- 
tions which we investigate in detail. We then develop a per- 
turbation theory with respect to the "harmful" terms, 
calculating the degree to which they influence the subhar- 
monics and the conditions under which we can neglect them. 

Let us first assume that the instability of the PRC 
against subharmonics is connected with the drift nonlinear- 
ity, i.e., with the term (pe),, in (7) ,  and at the same time 
classify reoccupation of traps and diffusion of photoelec- 
trons as "harmful" effects. Neglecting the quantities u and 
y u  compared with unity, and discarding the diffusion term 
p,.,. , we are led to the simplified system of equations 

From (9)  it follows immediately thatp = 1. For the steady- 
state solution of (9)  we have 
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where E and v, are two important dimensionless param- 
eters, 

and c is an integration constant which should be determined 
from the solution to Eq. ( 10) and the condition V = 1. 

From a formal point of view, the steady-state equation 
( 10) can be viewed as an equation of motion for a particle of 
unit mass placed in a potential field and subjected to the 
action of a force that is periodic in "time." The amplitude of 
this driving force is Em, and the shape of the potential is 
related self-consistently to the characteristics of the motion. 
The parameter v, has the sense of a friction coefficient. As 
we will see below, E is the fundamental parameter that deter- 
mines the appearance of subharmonics. 

With regard to this mechanical analogy, we note that 
the behavior of a nonlinear oscillator under the action of an 
external periodic force, which is described in great detail in 
the literat~re,".'~ is characterized by a variety of subhar- 
monic solutions. However, a direct analogy between ( 10) 
and the equations under study here is not possible. 

2. STEADY-STATE SOLUTION WITHOUT SUBHARMONICS 

It is completely obvious that both the original equations 
(7 )  and the simplified system (9)  have solutions that do not 
contain subharmonics, and can be written in the form of a 
Fourier series 

rn 

Similar expansions are valid for p and u. 
In those cases where the amplitude of the periodic ex- 

ternal force Em is sufficiently small, we can expect rapid 
convergence of the series ( 12). Using an iterative procedure, 
it is not difficult to obtain from (7 )  the following expressions 
under steady-state conditions: 

E r n  
e, = 

2(1-c+iyt) ' 

where 

3. MECHANICAL ANALOGY 

Using the direct mechanical analogy described above, it 
turns out to be possible to identify a number of nontrivial and 
general properties of the spatial subharmonics. It is well 
known from the theory of nonlinear oscillations that the ex- 
citation of temporal subharmonics is usually a result of a 
nonlinear resonance between the frequency of the external 
force and the characteristic frequencies." In this case, in- 
creasing the friction coefficient suppresses the subharmonic 
oscillations; therefore, in order to clarify the conditions for 
appearance of steady-state spatial subharmonics in the PRC, 
it is very important to investigate the character of the period- 
ic motion of a particle subject to Eq. ( lo) ,  in the absence of 
an external force and neglecting the dissipative parameter 
v,. Replacing e+x, x l+ t  in this section for clarity, we have 
from ( 10) that 

.?=-?Utrfn., U=F (.) -c In x ) .  (15) 

Using ( 15) and the condition X = 1, the constant c is easily 
related to the characteristic intensity of the oscillations, 
which is the average value of the squared velocity: 

Thus, the form of the potential U(x) is self-consistently re- 
lated to ?. From the form of U(x) and Eq. ( 16), it follows 
that periodic motion is possible only for E > 0,0  < c < 1, and 
x > 0. In this case we have 0 < 2 < E (the positiveness of E 

implies that the intensity grating runs along the external 
field and not opposite to it). The minimum of U(x) corre- 
sponds to the value 

The dependence of the shape of the potential on the constant 
c is illustrated in Fig. 2. Note that as c-0 (i.e., when 2 
+E), the potential U(x) reduces to a semilinear form, in 
which the particle's motion to the left is bounded by a verti- 
cal elastically reflecting wall, and to the right by an inclined 
plane EX. 

Let us write the law of conservation of energy for ( 15) 
as 

8='/zri."U (x) -Uo=const. (18) 

The energy 69 must be treated as independent of the integra- 
tion constant c. In what follows, in place of the constants g , c  

Based on its structure, Eq. ( 13) is analogous to the expres- it will be convenient for us to use the equivalent set W, c, 
sion for the amplitude of forced vibrations of an oscillator where W= 69/~c. 
with characteristic frequency & and attenuation y,. It is Integrating (15), we find the oscillation period 
clear that the diffusion of carriers and reoccupation of traps W,c) simply: 
leads only to renormalization of the parameter y,. Within 
the framework of the simplified Eq. ( lo) ,  y, = &vE. Equa- 
tion ( 13 ) is valid for E 5 0.3 to 0.4, and y, 4 l ; &-dependent 
corrections to this expression begin with terms of order E ~ .  

The second harmonic of the field e,, in which we neglect 
the parameters v , , , ,  has the form e , z  - m * ~ ~ / 1 6 ;  it is 
obvious that le,lg /ell. 

We note that the search for a steady-state solution e(xr ) 
in the form of a series in powers of E leads only to a solution 
that does not contain subharmonics. This indicates that the 
subharmonic steady states is associated with a bifurcation of 
the solution, and can only exist starting with finite values of 
E. 

where = x - 1 - In x, while x,,, ( W) are the turning 
points (x, > x,) ,  determined by the equation 0 = W. In an 
analogous fashion, we find the average value of the coordi- 
nates 
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FIG. 2. Shape of the potential U(x) for different values of the constant 
c = 0.9 ( I ) ,  0.5 ( 2 ) ,  0.1 (3). Theray U =  EX (4) corresponds to thelimit 
of the branches as c-0 .  

Using the conditions Z = 1, we obtain from ( 19), (20) the 
important relations 

The functions @,,, ( W) are not difficult to find by numerical 
integration, and their asymptotic properties can be exhibited 
analytically: in particular, @,,, - 1 as W-0, while for 
W- co we have @,/@, - 0, -. ,,6/~,--0.55. Tak- 
ing (16) into account, we see that the case W-0 corre- 
sponds to that of small harmonic oscillations: 
2 - 0 , c - 1 ,  T,-2~/&. For W-w we have 
F+E, TO- 2 0 / & ;  this limit corresponds to motion in the 
semilinear potential (x, - 0, U, - 0).  

The fact that Eq. (21 ) allows us to express the oscilla- 
tion period To as a function of E and 2 has important impli- 
cations for understanding the physics. We may say that these 
variables specify the nonlinear shift in the frequency of the 
characteristic oscillations, i.e, the dependence of w,= 2r/TO 
on the characteristic intensity of the motion 2 for fixed E. 
Of course, it is necessary to keep in mind that the association 
x ( t )  is, generally speaking, not harmonic. Therefore, not 
only the frequency w,, but also the frequencies 2w,, 3w0, etc. 
are present in its Fourier spectrum. 

In our mechanical model, the periodic external force 
has unit frequency. Therefore, the condition for resonance 
with the characteristic oscillations has the form 

The case n = 1 corresponds to ordinary (linear) resonance, 
the case n = 2 to the 1/2 subharmonic, n = 3 to the 1/3 
subharmonic, etc. Nonlinear resonance can be viewed as de- 
cay of a pump quantum into n quanta of the characteristic 
oscillations. Combination nonlinear resonances are possible 
as well, corresponding to the condition nw, = n , (Ref. 17). 

Taking into account that the characteristic frequency 
w, is a function of& and 2, we see that each of the resonance 
conditions (22) gives rise to a branch 2 = F,, (E). It is 
noteworthy that all of these branches are similar: the func- 
tion F,, ( E )  is obtained from F, (E) by contracting the scales 
with respect to 2 and E by a factor of n2. It is easy to verify 

this using Eq. (21 ). The branch F,, (E)  taken as its origin the 
point E = l/n2, 2 = 0, and terminates at the point E = 2' 
= 3/r2n2. The first three branches are shown in Fig. 3. It is 

clear that the branch Fl (E), which corresponds to linear res- 
onance, is single-valued. However, for the subharmonic 
branches (n>2) there are both single-valued and multiva- 
lued intervals of E. For small E there is a crossing of the 
branches, and an increase in the multiple-valuedness of 2. 
The structure of the branches shown in Fig. 3 indicates un- 
ambiguously that a variety of hysteresis phenomena are pos- 
sible as E increases and decreases. 

From general considerations, we can expect that under 
the action of an external force Em cos t these branches un- 
dergo splitting and distortion. For small values of the modu- 
lation coefficient m, these effects will necessarily be small. 
However, we may hope that the distortions will be weak even 
for m z 1 due to the numerical smallness of E. The simplest 
treatment of the oscillating external force can be made in two 
situations-close to the origin of a branch, where the anhar- 
monicity is weak, and near the end of a branch, where we can 
use the semilinear approximation for U(x).  The first case 
will be treated systematically in Sec. 4. With regard to the 
second case, we will limit ourselves to a brief comment. For 
n = 2, integration of the equations of motion shows splitting 
of less than 1% near the end of the branch. In this case, the 
amplitude of the subharmonic oscillations with frequency 
1/2 is several times greater than e,; higher harmonics corre- 
sponding to frequencies 3/2, 2, etc. are numerically small. 

Inclusion of the attenuation associated with the dis- 
carded terms can cause the region in which the branches we 
have found to shrink. For sufficiently large values of the 
parameters v , , ,  the subharmonic branches can disappear 
completely. It is obvious that the higher nonlinear reson- 
ances, i.e, higher subharmonics, will be the first to be sup- 
pressed. Clearly the influence of dissipation effects will be 
stronger near the ends of the branches, since the semilinear 
approximation for the potential corresponds to an abrupt 
change in the velocity of particles near the left-hand turning 
point. 

FIG. 3. The functions F,, ( E )  for n = 1 ,2 ,  3 (corresponding to curves I. 2, 
3),  which correspond to linear resonance and the subharmonics 1/2 and 
1/3. 
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4. STEADY-STATE SMALL-AMPLITUDE SUBHARMONICS 

It follows from the mechanical analogy discussed in 
Sec. 3 that we should look for the 1/2 and 1/3 subharmonics, 
which have small amplitude, near the points E = 1/4 and 
E = 1/9, respectively. In what follows, we will investigate 
the steady-state regime, based on perturbation theory with 
respect to the subharmonic amplitude. The theory we pre- 
sent is analogous in its content to the theory of nonlinear 
resonances. "9"  

Subharmonic 1 /2 

Let us seek e(xl) in the form 

e-l=eB exp (ix1/2) +e,  exp (ix') + C.C.  (23) 

Substituting (23) into the simplified equation ( 10) and iso- 
lating the spatial frequencies 1/2 and 1, we can readily ob- 
tain the following expression for el,, when 1 4 ~  - 1 1 %  1, 
vE 4 1 hold respectively: 

In accordance with our expectations we have two nearby 
branches of the solution; as E decreases there is an increase in 
[el,, I .  This increase obviously takes place from a value of 
zero. 

Using perturbation theory with respect to the subhar- 
monic amplitude, it is not difficult to take into account the 
influence of the terms that were discarded in going from the 
general system (7)  to the simplified equation (10). Some 
uncomplicated calculations based on (7 ) show that Eq. (24) 
remains valid for v,, 4 1 if we replace VE by y,,, , where 

As follows from (24), the subharmonic 1/2 exists only for 
sufficiently small attenuation 

while as m -. 6yI,, the splitting of the branches reduces to 
zero. Setting [el,, 1' equal to zero, we obtain from (24) the 
limiting values E + given by 

These values characterize the threshold for the appearance 
of the subharmonic 1/2, and can be found from the condition 
that the system of equations be solvable with respect to e,,, 
and e:,,, without appealing to mechanical analogies. 

As we will see in Sec. 5 below, the range E - < E < E + 

corresponds to a temporal instability of the steady-state so- 
lution (12) with respect to the subharmonic 1/2. When 
m = 1, y,,, = 0 hold, Eq. (27) gives EY = 1/3, 
E'?' = 1/6. 

In view of the applicability conditions for the theory we 
have developed above, which is based on perturbation theo- 
ry, we might expect that form = 1 the accuracy of Eqs. (24) 
and (27) will be rather poor. However, improving the per- 
turbation theory by including the harmonic e,,, and leading 
terms in the parameter E - 1/4 results only in corrections on 
the order of a few percent. Comparison with the results of 
numerical experiments also lead us to this conclusion. Thus, 
for m z 1 the smallness of higher-order corrections to per- 
turbation theory is ensured by the numerical parameters. 

Using (24) it is easy to find the values of the derivative 
d (ex. ) Z / d ~  for E = 1/4 and m, y,,, -+O. This value, which 
equals - 1.2, coincides to high accuracy with the initial 
slope of the curves in Fig. 3. Consequently, we obtain good 
agreement with the results based on our mechanical analogy. 
The relatively large extent of the initially linear segments of 
the branches shown in Fig. 3 attests to the very wide region 
of applicability of our perturbation theory expressions in the 
parameter E. We also note that the smallness of el,, and e, 
compare to unity guarantees the smallness of e3/2 . At the 
same time, it is possible to have el,, 2 el. 

Subharmonic 1 /3 

Let us seek e(xl)  in the form 

e-l=eli, exp (ix'l3) +ey, exp(2ix1/3)f e, exp (is') + c.c. (28) 

Assumingv, 4 1, E=: 1/9, we obtain from ( 10) the following 
system of equations 

6e213 + 2eIl3' + 20eIe,~, = me:,,, 16el + 10eI,,e,,, = m. 
(29) 

Taking into account the smallness of the amplitude, we have 
from this the following expressions for el,, , e,,, : 

Inclusion of the diffusion of electrons and reoccupation of 
traps based on system (7) reduces to the replacement 
YE + Y,,,, where 

It  follows from (30) that excitation of the subharmonic 1/3 
is "hard"; i.e., the minimum possible value of lel,3 I for fixed 
m and y,,, is nonzero: 

which is reached for E - 1 /9z  - 1.4.10- m2 
- 17yI,, '/m2. Thus, in order to realize the solution we have 

found we require the condition y,,, 40.1 m, which is more 
restrictive than the condition for excitation of subharmonic 
1/2. The behavior of ( E )  I for several values of the pa- 
rameters m, y,,, is shown in Fig. 4. 

As m-0, y,,, -0, both values of lel,3 l 2  reduce to 
3( 1 - 9 ~ ) / 5 .  This corresponds to ( c ) 2 = ; 2 ( 1  - 9 ~ ) / 1 5  
and once more we find agreement with the initial slope of the 
branch shown in Fig. 3. 

5. STABILITY OF THE STEADY STATE WITHOUT 
SUBHARMONICS 

Let us now investigate the temporal stability of the 
steady-state solutions found in Sec. 2. For simplicity we will 
start with the simplified system of equations (9).  

Let us first consider stability against the 1/2 subhar- 
rnonic. For this we write the system (9)  in the form of a 
single higher-order equation for e(xl,t '), substituting into it 
the expansion (23); we treat e l  as a constant quantity, and 
el,, ( t  ') as a small perturbation. After separating out the 
spatial frequency 1/2 we are led to a linearized equation for 
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6e=ex exp ( i x z ' )  +e,- ,  exp [ i  ( i - ~ ) ~ ' ]  + c.c. (34) 

FIG. 4. The subharmonic branch le,,, ( E )  I near E = 1/9; I-y,,, = 0, 
m = 1; 2-y,,, = 0.003, m = 1; 3-y,,, = 0.003, m = 0.5. 

the amplitudes el,, and e t ,  . Assuming these amplitudes are 
proportional to exp (I ' t  '), it is not difficult to obtain the 
following expression for the growth rate r :  

The same assumptions are true with regard to vE and E as in 
Sec. 4. The instability can correspond only to the plus sign in 
Eq. (33). 

It follows from (33) that instability occurs for 
E < E < E + where E, are the limiting values for the ap- 
pearance of the small-amplitude steady-state 1/2 subhar- 
monic solution given by Eq. (27). Within the interval under 
discussion we have r > 0; at its edges I' = 0 holds, and be- 
yond them Re r < 0. The maximum value of the growth rate 
r,,, = A(m/6 - vE ) is reached for E = 1/4. For 
vE > m/6, there is no instability for any E. We can include 
the dissipative parameters v, and vN by making the replace- 
ment vE - ylI2. Thus, the disappearance of the instability is 
simultaneously accompanied by disappearance of the 
steady-state solution for el,, . 

Starting from this analysis, we may expect that the up- 
per branch lelI2 (&) 1 ,  which corresponds to the plus sign in 
(24), is stable, while the lower sign corresponds to instabil- 
ity. If this is the case, it is possible for two stable states to 
coexist for E < E - , one containing the subharmonic 1/2, the 
other not. 

Investigations of stability against creation of el,, , e2/, 
can be carried out analogously. The fundamental results re- 
duce to the following: near E = 1/9 a steady-state solution 
without subharmonics is stable. This result should be ex- 
pected in view of the harness of the branch el,, (&); see Sec. 
4. Actually, the fact that the real part of the growth rate 
reduced to zero ought to imply the existence of a 1/3 subhar- 
monic solution with infinitely small amplitude. However, 
according to (32), the minimum value of le,,, I is finite. It is 
worth noting that a completely analogous situation occurs in 
the theory of nonlinear If we pursue this 
analogy, we may expect that the smaller of the two values of 
/el,, / in Eq. (30) corresponds to the unstable segment of the 
branch. 

In the general case, we should investigate stability by 
looking for perturbations ve in the form 

Doing so, we find that for ~ < 1 / 4  and sufficiently small 
v , , , ,  the perturbation is unstable for 
x = (1  - ,,-)/2. The growth rate r in this case is a 
complex quantity, r = I" + i r " ,  where 

The width of the region of instability ax(&)  is rather small, 
increasing with increasing m and decreasing with increasing 
v , , , .  For x = 1/3, the instability begins at E = 2/9, while 
for E = 1/9 perturbations are amplified for x ~ 0 . 1 3 .  

The nature of these instabilities is not difficult to under- 
stand once we realize that (7) implies the following circum- 
stance: for m = 0 and v , , ,  -0 a weakly attenuated bulk 
space-charge wave appears in the PRC with frequency wx 
and decay rate yK2' where 

Then we may view the instability as a result of the decay of a 
spatially oscillating field of zero frequency, e,exp(ixl) 
+ c.c., into two eigenwaves which satisfy the nonlinear syn- 

chronism condition for a quadratic nonlinearity; i.e., 
w, + w, -, = 0. We also note that the parameters y,,, and 
y,,, that we have used are the values of y, for x = 1/3 and 
1/2. 

In summing up our stability analysis we note that the 
subharmonic 1/2 occupies a special position, arising as it 
does from the linear instability with the maximum growth 
rate. We should expect that the upper branch el,, (E)  will be 
stable, at least for small amplitudes. As for the branches 
el,,, e ,,,, ..., the analytic investigation we have presented 
here gives us no reason to expect stability. However, it also 
does not prove the contrary, i.e., that higher subharmonics 
correspond to hard excitation. 

6. CONDITIONS FOR THE EXISTENCE OF SUBHARMONICS 

Let us discuss the experimental consequences of the 
theory presented here. To do so, we express the fundamental 
dimensionless parameters E and v , , , ,  of the theory in terms 
of the PRC characteristics and the physical quantities E,, fl, 
K, I,. Using ( 1 1 ) and ( 14), we have 

It is clear that the light intensity and detuning enter into 
(37) only through the ratio I,/fl. Therefore, in order to 
describe the subharmonics it is sufficient to use the three 
experimental parameters E,, K, and I,/fl (the fact that large 
values of the modulation depth m favor subharmonic gener- 
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ation is completely understandable and will not be discussed 
here 1. 

Let us note the useful identify E = vE/Rt,, which fol- 
lows from Eq. (37); here t, is the dielectric relaxation time, 
which is easily measured in the experiment. This identity 
implies that for the first subharmonic the detuning f l  cannot 
exceed t 7 '. In addition, it is useful for estimating YE in 
terms of the experimental data. 

It is important that the microscopic characteristics of 
the crystal only enter into (37) in the form of two combina- 
tions. Typical values of the product pr are known for the 
most important PRC (see Table I ) .  the combination 
NDs,/NA -a/&NA is known with less accuracy; however, 
information on it can also be found in the literature.2s4 For 
BSO we will use the following parameters taken from Refs. 
22 and 23: 

- ~ = 3 6 ,  a = 1 - 2  cm-', ND/Na=103, 

The simplest necessary condition for the existence of 
subharmonics can be obtained even from the inequality 
Y, 5: 10- I. Taking into account that the maximum value of 
K is comparable to 2r//Z, where A is the wavelength of the 
light, while E, can only barely exceed lo5 V/cm due to 
breakdown, we obtain prs  lop9 cm2/V. 

For BSO, this condition is quite well fulfilled. However, 
according to Table I, crystals such as LiNbO,, LiTaO,, 
BaTiO, are not promising candidates for observing subhar- 
monics. 

In general, each subharmonic corresponds to a three- 
dimensional region in the parameter space K, E,, and I,/R. 
The size and shape of this region depends on the crystal char- 
acteristics (and the modulation depth m). For unfavorable 
characteristics the region may disappear. We should regard 
the relations y,,, < 1/6, E = 1/4 as sufficient conditions for 
the existence of the 1/2 subharmonic. Expressing I,/fl in 
terms of E and KE, using (37), we can write these relations 
in the form of restrictions on K and E,. When these restric- 
tions are obeyed, the thickness of the region of existence of 
the 1/2 subharmonic with respect to the parameter Io/R is 
finite. Figure 5 demonstrates the restriction for K and E, in 
BSO. It is clear that as pr decreases, the region of existence 
contracts and shifts in the direction of large E, and small K. 
When the condition 

is fulfilled, this region disappears entirely. For the value of 
NA chosen here, the critical value of pr comes to roughly 
1.1 10- ' cm2/V-'. In an analogous fashion, using the rela- 
tions E = 1/9, yl,, 50.03 (see Sec. 4) ,  we may investigate 
the conditions for existence of a steady-state 1/3 subhar- 

TABLE I. Typical values of pr for several photorefractive crystals. 

FIG. 5. Existence region of 1/2 subharmonic for T = 293 K, m = 1 ,  and 
various values of the parameter pr. Curves 1.2, 3, and 4 are bounded by 
the regions corresponding to p r  = 10. l o 7 ,  2.  1.25. lo-', and 
1.15.10-' cmZ/V. 

rnonic. In this case, the restriction o n p r  is much more strin- 
gent, pr 2 10- cm2/V- '. The shape of the allowed region 
in the K,E, plane is similar to what is shown in Fig. 5. 

Let us now consider restrictions on the parameters K, 
Io/R at constant E,. For this we make use of Eq. (27), which 
determines the limits of the region of instability against gen- 
eration of the 1/2 subharmonic. The value of y,,, in this 
expression must be calculated at the resonance point, i.e., for 
E = 1/4. From (27) and (37) it is completely obvious that 
for 6y1,, <m, the permitted values of K, I,/n are bounded 
by two nearby rays which leave the coordinate origin. How- 
ever, for sufficiently small and sufficiently large values of K, 
the condition that y,,, be negligible ceases to be fulfilled. 
Because of this, the rays bend and close up. AS pr (or m) 
decreases, the region of permitted values shrinks and disap- 
pears. Typical results of analytical calculations are also 
shown in Fig. 6. To an accuracy of (5-10%) they coincide 
with the results of direct numerical modeling. Figures 5 and 
6 are connected by a simple relation. If we extend the hori- 
zontal line E, = 8 kV/cm in Fig. 5, the points where it inter- 
sects the curves that bound the region of existence of the 1/2 
subharmonic (for fixed values o f p r )  will correspond to the 
minimum and maximum values of K in Fig. 6. 

Note that the 1/2 subharmonic can exist in the region of 
linear stability of the unperturbed solution for E < E - as 
well. Therefore the region of existence of the 1/2 subhar- 
monic can in practice be somewhat wider than what is shown 
in Fig. 6. 

If the characteristics of the crystal are such that the 
parameters K, E,, I,/R lead to an attenuation y that is negli- 
gibly small, we can use scaling relations to describe the 

Crystal I u r ,  cm2 v - ~  1 crystal I iLr- cm2 V-l 
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FIG. 6 .  Region of instability against the 1/2 subharmonic for E,, = 8 
kV/cm and various values of p r .  Curves 1, 2, and 3 correspond to 
pr = 2.10. 7 ,  5 . 1 0 ' .  and 10. l o 7  cm'/V. The dots indicate the limits 
of the region f o r p r z  1 . 2 6 . 1 0  cm2/V. 

steady-state properties of the subharmonics. These derive 
from the fact that the invariant steady-state characteristics 
require only constancy of the quantity KRE,/aZ,. 

It follows from expression (37) for E that knowledge of 
the experimental parameters a ,  I,, E,, K, and il allows us to 
calculate the threshold detuning value R. In this case, how- 
ever, it is necessary to keep in mind that the model we are 
investigating does not take into account the possibility of 
passive channels for optical absorption, which do not lead to 
the generation of free carriers. In order to include this possi- 
bility we must make the replacement a -Xa, where x is the 
quantum yield. 

In concluding this section, let us discuss comparison 
with experiment. With regard to the first experimental paper 
(Ref. 8), the absence of quantitative data in this paper on a ,  
and R, along with the fixed values of K and I,, allow us to 
make only crude qualitative comparisons. The detunings co- 
incide in order of magnitude. In accordance with the theory, 
there was an increase in the subharmonic index as R in- 
creased. References 10-12 contain more quantitative data, 
including the dependence of the subharmonic el,, on E,, R, 
and I,. In accordance with theory the detuning fl necessary 
for excitation increased as the intensity I, increased and de- 
creased as En increased. Also in agreement with theory was 
the decrease in the subharmonic amplitude as its index n 
increased, and as the modulation depth m decreased. The 
quantitative data of Ref. 12 allow us to verify the predictions 
of the theory regarding the dependence of the subharmonic 
characteristics on the ratio Z,/R. For values of the intensity 
I, = 1.75,3.5,5, and 7 mW/cm2 this ratio (calculated at the 
maximum El,, (0) ) was found to be 1, 1.2, 1, and 0.8 in 
arbitrary units. It is obvious that agreement with theory, 
which predicts constancy of this ratio, is satisfactory. 

The possibility of detailed quantitative comparison be- 
tween theory and experiment is hindered by the following 
circumstance. In Refs. 9-12 crystals were used with thick- 
ness I = 1 cm. The value of the absorption coefficient a was 
not given. However, it follows from data in the 
that for BSO typical values of a are (1-2) cm- '  when 
il = 5 14 nm. Consequently, the ratio I,,/R on which the sub- 
harmonic excitation depends changes significantly within 

the crystal, and the quantitative experimental data are un- 
averaged. 

Despite these difficulties, we will carry out a quantita- 
tive estimate of the optimum frequency detuning for the 1/2 
subharmonic and compare it with experiment. Assuming 
E = 0.2, a = ( 1-2) cm - ' , taking into account that x 
( A  = 514 nm) ~ 0 . 7  (Ref. 24), and using the experimental 
parameters from Ref. 11, we find from (37) that R = (9- 
12.5) sec-- I. The experimental value is R E  ( 11-12) s e c  I .  

7. NUMERICAL MODELING 

We carried out direct numerical modeling of the system 
of equations (7)  with periodic boundary conditions on the 
segment sA, where A = 2r/K is the period of the fundamen- 
tal grating, and s is an integer ( l<s<  12). For s = 1 we were 
able to investigate the solution without subharmonics, while 
in the remaining cases we studied the harmonics 
el,, , ... , el,,, . Knowing the solution without subharmon- 
ics allowed us to investigate its temporal stability with re- 
spect to period multiplication. Numerical noise served to 
initialize the subharmonics. Fourier analysis of the solution 
e(x,t) allowed us to track all the spatial harmonics of inter- 
est. The values of the coefficients in the modeled system (7)  
corresponded to the parameters of BSO chosen in Sec. 6. 

Figure 7 shows the steady-state function (e l  (E)  1, for 
solutions without subharmonics. The dashed curves corre- 
spond to the expressions from Sec. 2. It is clear that for 
E 5 0.3 the agreement is good between the analytic and nu- 
merical results even for m -- 1. As E increases the role of the 
higher harmonics grows. Near a certain critical value of E, 
which depends on m, a bifurcation of the solution occurs 
without subharmonics accompanied by hysteresis. This bi- 
furcation obviously corresponds to a transition from the 
branch of forced "oscillations" to the branch of intrinsic 
nonlinear "oscillations" obtained earlier from the mechani- 
cal analogy (curve I in Fig. 3 ) . 

Figure 8 shows the dependence of the steady-state am- 
plitudes el,, and e, (obtained from temporal evolution of 
the numerical solutions) on the nonlinear parameter E. The 
calculations were carried out on the interval 1212, i.e., under 
conditions in which higher subharmonics el,, , el,, , ... were 
allowed. In steady state these subharmonics were absent for 
the values of the crystal parameters chosen. As is clear from 
the figure, by allowing the numerical solution to evolve tem- 

FIG. 7. Comparison of numerical and analytical results for the solutions 
without subharmonics: I-m = 0.9, 2-m = 0.3, 3-m = 0.1. 
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FIG. 8. Structure of 1/2 subharmonic branch for rn = 1. Branch A corre- 
sponds to the 1/2 subharmonic, branch B to the fundamental e l  in the 
presence of el,, . The segments C and D of the branch correspond to the 
harmonic e l  in the absence of subharmonics, while segment D is unstable. 
Branch E is associated with the bifurcation of the solution without sub- 
harmonics. 

porally we obtain a solution similar to the 1/2 subharmonic 
branch obtained from the mechanical analogy (Curve 2 in 
Fig. 3 ) .  From the data shown in Fig. 8, it follows that the 

I smaller value of I in Eq. (24) corresponds to instability 
of the steady state, while the larger value corresponds to the 
steady-state segment of the branch. In agreement with the 
mechanical analogy (Sec. 3), near the end of the branch the 
harmonics e,,, and e,,, are not small compared to e , .  We 
note that the branch 1/2 found numerically ends at a some- 
what larger value of E than is predicted by the mechanical 
analogy. This is obviously related to inclusion of the dissipa- 
tive parameters v , , ,  . 

Changing the sign of the detuning fl, in agreement with 
the results of the analytic investigations (Sec. 3 ) ,  causes the 
subharmonic regime to disappear. 

FIG. 9. Transient processes for 1/2 subharmonic: I-le, l,2-je1,, 1,3- 
le1/3 1. 

The process of establishing the steady-state solutions 
described above is extremely nontrivial. At the intermediate 
stage, in addition to the fundamental harmonics and spatial 
frequencies of order 1/2, the 1/3 subharmonic is present as 
well, as is shown in Fig. 9, and is not small. It is a common 
feature of all the solutions that at least two characteristic 
times are present in the subharmonic temporal evolution. 
The rapidly varying time can be associated with the time 
constant t -  S2 - ' E  ' / 2 ,  which corresponds to Eqs. (33) and 
(35) for the growth rate I?. The slower variation is obviously 
connected with terms of higher order in the original system 
( 7  1. 

We observed the steady-state 1/3 subharmonic in a very 
narrow region of experimental parameters (corresponding 
to E < 1/9) for larger values o f p ~ .  Further investigations are 
required to determine the region of stability of this subhar- 
monic. 

CONCLUSIONS 

Let us summarize the basic results of this paper. Start- 
ing from constitutive equations that are standard for PRC, 
we have shown that solutions with the period of the external 
force A = 2 r / K  can be unstable against perturbations with 
new spatial frequencies, and in particular against the subhar- 
monics 1/2 and 1/3. We have found criteria for the instabil- 
ity, and have investigated the fundamental subharmonic 
branches. Direct numerical modeling shows the establish- 
ment of a steady-state regime for the 1/2 subharmonic. The 
results we obtain explain the fundamental observed regulari- 
ties, and give predictions for experiment. The simplest pre- 
diction is disappearance of the subharmonics when the fre- 
quency detuning or the external field changes sign. 

It follows from our investigations that it would be very 
interesting to study experiments with thin crystals of BSO in 
the region of Bragg diffraction. Such experiments would al- 
low us to identify the effects of instability of the constitutive 
equations on the effects of optical nonlinearities, and give 
nonaveraged results. Also promising would be investiga- 
tions of subharmonics in semiconducting PRC with large 
values of the produce p ~ ,  e.g., in GaAs.'" 

We submit that the observed instability against creation 
of weakly attenuated space charge waves can lead not only to 
subharmonic steady-state solutions, but also to more com- 
plicated regimes, including temporal oscillations, three-di- 
mensional structures, and chaos. 

"Temporal subharmonics are well known in the study of mechanical 
oscillatory systems;17." sometimes they are also encountered in distrib- 
uted systems as well.'" 

"Our use of dimensionless variables is an unnatural way to treat space 
charge waves, which contain the parameters K and 0, since the quanti- 
ties y,: t ' and (o,:t ' are actually independent of these quantities. 
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