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We derive general phenomenological expressions for the angular distribution of electrons emitted 
when atoms or molecules are ionized by a light field containing the fundamental frequency w and 
the second harmonic 2w. The polar asymmetry in the angular distribution appears because of 
interference of the one-photon process in the second harmonic 2w and the two-photon process in 
the field of frequency w. We find the absolute phase of the interference term for alkali atoms in the 
quantum-defect approximation. 

1. INTRODUCTION 

Osterberg and Margulisl recorded a grating of the qua- 
dratic polarizability tensor x ' ~ '  (z) generated in a quartz 
fiber by the picosecond radiation of a neodymium-glass la- 
ser, E(w,z) ( A  = 1.06 pm),  and its second harmonic 
E(2w,z) ( A  = 0.53pm). In a number oflater papers devoted 
to this process attempts were made to explain the writing 
mechanism (grating f~ rma t ion ) .~  One hypothesis was that 
the grating is induced by the cubic electronic polarizability3 
of the static electric field E" (z) and the spatial grating writ- 
ten in the medium, i.e., SX") = x ( ~ )  ESt (z). It was assumed 
that by some mechanism the static electric field grating is 
induced in the medium and that this field is proportional to 
the product of the square of the fundamental-frequency field 
and the second-harmonic field: E" (z) a E 2(o)E * (2w). It 
was also assumed that the interference between the two-pho- 
ton ionization by the fundamental-frequency field and the 
two-photon ionization by the second-harmonic field leads to 
a polar asymmetry in the angular distribution of photoelec- 
trons. This results in the appearance of a nonzero average 
current whose direction depends on the phase of the interfer- 
ence terms E '(w)E * (2w). As has recently been shown,4 the 
process may be of higher order (three- and four-photon 
ionization). 

An earlier paper of two of the present authors (N.B.B. 
and B.Ya.Z.)' calculated the differential (in the scattering 
angle) photoionization cross section for an atom using a 
simplified short-range potential model for the case where 
there is interference between one- and two-photon ioniza- 
tion. The experiments initiated by these calculations (Refs. 6 
and 7) detected a polar asymmetry in photoionization de- 
pending on the phase shift between the fundamental fre- 
quency field (w) and its second harmonic (2w). Unfortu- 
nately, the experiments were conducted not for free atoms 
but for the cathode of a photomultiplier. In agreement with 
theoretical predictions, these experiments established that 
different phase shifts between the average of the cube of the 
field strength, E '(o)E(2w) and the photoionization cross 
section correspond to different polarizations of the light 
waves. 

The polar asymmetry of the photoelectrons excited to 
states in the continuum appears because of the interference 
of states of different parities (Pig. lb) .  Under one-photon 
ionization thep-state of an electron is excited. In the absence 
of any potential the electronic wave function of the p-state 
has the form 

cos kr sin kr 

k r" 
( 1  

where fik is the absolute value of the momentum vector. The 
ground-state wave function $,(r) is real; hence, the electric 
dipole matrix element (ICP /a I$,) of the transition to state 
( 1 ) is real, too. 

The parity and angular momentum selection rules al- 
low for a two-photon transition to the d- ands-states. For the 
sake of simplicity we consider the transition to the s-state. 
When there is no potential, the wave function of an s-state of 
the continuous spectrum assumes the form 

sin kr 
$ s ( r ) = - .  

r  
In the absence of an intermediate resonance of effective 

radial matgx element for a two-photon transition (see be- 
low), ($s I M I $,), is also real. As a result the wave function 
of the excited state is proportional to the following expres- 
sion: 

sin (kr) 
c e , l 8 1 c . ) ~ ~ ( o ) ~  

cos ( k r )  +<$,I 21 g, )~(2o)cos  0 ---- + 0 (r- ' )  . 

To calculate the probability of electron emission in the ex- 
pressions cos(kr) and sin(kr), only the terms with exp(ikr), 
which correspond to outgoing waves, must be retained. The 
probability of photoionization in the 0 direction is 

Clearly, the interference term responsible for polar asymme- 

From the viewpoint of atomic theory the appearance of try 
a phase shift is related to the quantum mechanical scattering W(n)-CV(-n)ocicos0E(2~)E'~(0) 

We discuss this fact for the simple case of an atom 
undergoing from the s-state (Fig. 1 ) . x < ~ ~ ~ A I I ~ , ) < ~ ~ ~ ~ ~ ~ ~ ) +  c.c., (5) 
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FIG. 1. (a)  An electron in the bounds-state may be emitted either to thep-state ofthe continuous spectrum via one-photon ionization by 2 h  quanta or to 
thes- and d-states via two-photon ionization by h quanta. (b) The interference of the electron s-wave a E '(w) andp-wave a E(2o)  of the states of the 
continuous spectrum leads to asymmetry in the angular distribution of the emitted electrons. 

has an additional phase factor i = exp ( i~ /2 ) .  Note that one 
of the matrix elements may prove to be negative, which 
would lead to a reversal of sign in the interference term (5).  

If one allows for the effect of an attractive potential on 
free-electron motion, the wave functions ( 1 ) and (2)  of the 
continuous spectrum are modified somewhat. At great dis- 
tances from the atom (r- cc ), however, this modification 
reduces to a shift in the phase of the arguments of sin(kr) 
and cos(kr) by what is known as the quantum mechanical 
scattering phase 6: 

sin ( k r f  6,) 
( r )  = . 

r 

cos (k r+6 , )  
$P (r) Ss - cos 8. 

I' 

The polar asymmetry is expressed in the following manner: 

iV(n)-W (-n) ai exp [i(6,-6,) ] 

Exciting the s- andp-states of the continuous spectrum 
of an electron near an atom does not change the phase of the 
wave function. As the electron moves away from the atom, it 
acquires a phase of ~ / 2  for the p-wave and, in addition, 
phases 6, and 6, owing to perturbation of electron motion 
by the atomic potential, all of which is reflected in Eq. (7). 

The present paper is devoted to studying the angular 
distribution of electrons for randomly oriented atoms or 
molecules ionized by the combined action of mutually co- 
herent fields E(w)exp( - iwt) and E(2w)exp( - 2iwt) of 
arbitrary polarization. Special attention is paid to the phase 
of the interference term and its polarization dependence. 

The interference of processes taking place in several 
channels with the participation of various fields and satisfy- 
ing the condition on the sum of frequencies, Zn, w, = const, 
has been extensively discussed in the literature.'-l2 For in- 
stance, Man'kin and Afanas'evs considered the interference 
of the virtual channels 8, - $, = &a + fiw and 
8, - Z?, = f i . 3 ~  - &a in the event of third-harmonic gen- 
eration in gases near a two-photon absorption resonance. 
Krasnikov et aL9 experimentally studied the interference 

tinuous spectrum there is degeneracy with respect to angular 
momentum and parity at a given energy. Hence, interference 
of processes when the numbers of participating photons are 
odd and even (in our case, one- and two-photon absorption) 
is possible. States with different parities are excited in differ- 
ent channels, and their interference produces polar asymme- 
try effects in the angular spectrum, effects that cannot exist 
on bound-bound transitions in atoms and spherically sym- 
metric molecules. 

In what follows we use the notation E(w) = E and 
E(2w) = B, so that the instantaneous value of the real elec- 
tric field vector can be written as 

E,,, ( t )  = (Ee-'"' + c.c.)/2 + (Be-,'"' + c .c . ) /~ .  
( 8  

To illustrate, in Fig. 2 we depict the time dependence of 
Ex ( t )  at E = 1 .ex and B = 1 . e x .  Despite the fact that the 
time average of the field is zero, ( E  ) = 0, the polar asymme- 
try in the Ex ( t )  dependence can clearly be seen. 

2. A PHENOMENOLOGICAL APPROACH 

The probability of one- and two-photon ionization with 
emission of an electron in the given direction n = k/k can be 
calculated within the framework of the perturbation theory 
in the optical E and B fields. We denote the wave function of 
the initial state by 11 )or qbo(r), and for the wave function of 
the final electronic state IF) we must take what is known as 
the "outgoing plane wave" $6-'(r) (see, e.g., Ref. 13), which 
exhibits the following asymptotic behavior as r -  cc : 

q',,(-) ( r )=  -eiknr+ h (n, n' ) e-ikr/r, (9)  

with n' = r/r. The potential of an atom or molecule is usual- 

$,-$,=&a,+&, and $,--i5',=&a,--&a4 pro- 
FIG. 2. The time dependence of the strength of the bichromatic light field 

cesses On a in The E ( t )  = cos wt + cos 2wt. Although it satisfies ( E  ) = 0, the field has polar 
present paper considers bound-free transitions. In the con- asymmetry characterized by the quantity (E3)  = 0.75. 
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ly invariant under time reversal t+  - t, and then 
h(  - n,n') = f(n,nl), where f(n,nf) is the ordinary quan- 
tum-mechanical amplitude for scattering on an atom or mol- 
ecule of a particle whose initial direction is specified by the 
vector n and final direction by n'. 

In the absence of intermediate resonances, the effective 
interaction Hamiltonian can be written as 

where the components of t)e dipole moment operator ii and 
of the symmetric tensor Mi, are specified by the respective 
matrix elementsI3 

Here we assume that the distribution of the orientation 
of the initial states of an electron in an atom or molecule is 
isotropic. The symmetry of the problem for electron emis- 
sion in a given direction n manifests itself most fully if we 
expand the vector d and the symmetric tensor Mi, in irredu- 
cible components along n and at right angles to n: 

where 
do= (dn) , u=d-nd,, 

The main property of the vectors u and p introduced by Eqs. 
(12)-(15) is their orthogonality to the vector n, that is, 
un = 0 and pn = 0. The Qik have nonzero components only 
in â plane perpendicular to n and, in addition, 
Tr Q= Q, = 0. An expansion similar to ( 12)-( 15 ) was used 
earlier in studying the molecular scattering of light.l4.l5 The 
probability of an electron being emitted into the solid angle 
A, is proportional to 

Averaging this expression over the isotropic distribution of 
the orientations of the initial states yields 

h 

The tensor quantities Tare the result of summing expression 
( 16) over all the final states of the ionized atom (or mole- 
cule) and averaging over all the initial states and orienta- 
tions. For instance, to within an unimportant numerical fac- 
tor, 

-- 

T:;') = <i-- 1 dt 1 I>*(F 1 d,: 1 I > ,  (18) 

where the horizontal line indicates the above-mentioned 
procedure of summation and averaging. The problem pos- 
sesses the symmetry of a small group, the group of rotations 

about the n axis and reflections in the plane containing n. 
Hence, as the result of averaging, the products of the compo- 
nents of n(dn) and u = d - n(dn) vanish and we get 

Here the nonzero coefficients appear as a result of averaging: 

A , ,  = l ( F I ( d n ) l ~ ) l ~ ,  (21a) 

A,='/ ,<Flrikll><FIick~Z)'.  (21b) 

Formula (19) describes the dichroism, so to say, of one- 
photon absorption of light with emission of an electron in the 
given direction n. 

The expression for the probability of two-photon ioni- 
zation may be derived along similar lines: 

The four nonnegative constants C,, C,, C,, and C, and the 
complex-valued constant C,, are determined by the follow- 
ing formulas: 

And, finally, the terms that describe the interference of one- 
and two-photon ionization are 

where 

All the formulas ( 12)-(25) employ the summation conven- 
tion for repeated tensor indices. 

Thus, we conclude that for an isotropic distribution of 
the orientations of the initial states the photoionization 
probability W(n) is characterized by two real constants A ,, 
and A,  (one-photon ionization), one complex-valued con- 
stant C,, and four real constants C,, C , ,  C,, and C ,  (two- 
photon ionization), and also three complex-valued con- 
stants G ,  , Go,  , and G ,  (interference terms). It is easy to 
show that all the real constants are nonnegative and all the 
complex-valued constants satisfy the following inequalities 

The interested reader can obtain the final expressions for 
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W(n) by multiplying the tensors T ::I), T ::z, and T j;f:' by 
the appropriate products of fields, B,B & EiEk E TE 2 ,  and 
B,E ZE T. The representation of tensor T adopted here has 
roughly the same justification as in the problem of molecular 
scattering of light.'4215 It is after averaging over orientations 
that the products of irreducible representations of the small 
group of rotations about n provide the only nonzero result. 
This result is obtained below in the framework of the stan- 
dard theory of angular momentum for the most interesting 
case where the initial state of the atom is spherically symmet- 
ric (s-state) and the final state of the atomic core has zero 
angular momentum. 

3. IONIZATION OF AN ATOM FOR SPHERICALLY 
SYMMETRIC AND NONDEGENERATE INITIAL AND FINAL 
STATES 

The general expression for the ionization probability 
W(n) simplifies considerably when the initial state of the 
atom and the final state of the atomic core after ionization 
have zero angular momenta. We denote the initial state of an 
electron in an atom by )I  ) or qo( lrl). Then the wave func- 
tions of the final state, IF ), describing the motion of the elec- 
tron in the spherically symmetric potential of the ionized 
atomic core can be represented in the formI3 

where Rkl ( r )  are the radial wave functions, and 
PI -PI (COS 0 )  are Legendre polynomials. If we assume n to 
be the quantization axis, states with different values of I but 
zero values of the projection m, contribute to $A- (r) .  The 
amplitudes (12)-(15) obey the following selection rules. 
The dipole moment ;1 is a vector, so that A1 = + 1, and 
Am, = p  for $an) and Am, = + 1 for 8 = a - n ( & n ) .  
Hence, do = (dn) and the term with I = 1 in (27) provide a 
nonzero contribution to the one-photon transition from the 
ground s-state to the continuum states (27). The selection 
rules for the scalar part M o  S, of the symmetric tensor Mi, 
are, obviously, A1 = 0 and Am = 0; hence, owing to a Mo a 
nonzero matrix element emerges only during a transition to 
the final s-state (27). The remaining part of tensor Mi,, that 
is, the symmetric traceless part, yields transitions to a con- 
tinuum state with I = 2 if the initial state is the s-state. The 
selection rules in the quantum number m are Am = 0 for 
M2(nink - S,/3), Am = + 1 forpink, and Am = + 2for 
Q,. Hence, of the traceless.part of Mi, only M,  yields a 
transition to the final state (27). 

The resulting expression for the photoionization proba- 
bility has the form 

Here we have introduced the factor E, that assumes the value 
+ 1 or - 1 depending on the sign of the radial matrix ele- 

ment Mo. The factors E,, and E, have similar meaning. Since 
I E ,  exp(i6, ) I = 1, the right-hand side of (28) is determined 
by three independent "amplitude" factors A ;/', CA/2, and 

C :12 and two phase differences - i ~ ,  E, exp (is, - is, ) and 
- E, E~ exp (is, - isd ). This is much simpler than the gen- 

eral phenomenological expression, which depends en eleven 
"probabilities" and four phase factors. 

An important corollary of the fact that the ground s- 
state and the final state $, ( r )  (with fixed energy and direc- 
tion n) are nondegenerate and is the 100% "contrast" of the 
interference terms. This means the following: ( 1 ) In the ab- 
sence of the first harmonic, that is, when we have E(w) = 0, 
for the monochromatic wave E(2w) =B  one can select a 
polarization of B such that (Bn) = 0 and W(n) = 0 al- 
though (BB*) #O. (2) For the monochromatic field 
E(w ) = E (at B = 0)  one can select a polarization such that 
W(n) = 0 although (EE* ) #O. (3)  For the bichromatic 
field with arbitrary polarizations of B and E one can select an 
intensity ratio and a phase shift such that W(n) = 0 holds 
for (EE*) # O  and (BB*) #O. (4)  The same can be done for 
a fixed intensity ratio by varying the polarizations and/or 
phases of the fields. An expression of this type was obtained 
in Ref. 5 within the framework of the short-range potential 
model. In this model, which can be employed to describe a 
negative ion, S, = Sd = 0 and 6, #O. We will not give any 
explicit expressions for the phenomenologically derived 
constants S, , E, A i/2, E, C A/2, and E~ C :12 (see Ref. 5 ) . 

4. THE SCATTERING PHASE IN THE QUANTUM-DEFECT 
APPROXIMATION 

In spectroscopy a well-known formula empirically es- 
tablished by Rydberg gives the asymptotic behavior of the 
energies of highly excited states of atoms or ions: 

where Z is the atomic number of the atomic core, and pI is 
the so-called quantum defect. This formula (Eq. 29) is 
usually explained within the framework of the WKB ap- 
proximation or by employing the Bohr-Sommerfeld rule for 
quantization of the radial electron motion in the presence of 
the Coulomb and centrifugal potential, 
- Ze2/r + fi2(1 + 1/2),/2m?. For highly excited levels 

the departure from a purely Coulombic potential can be al- 
lowed for by introducing an effective phase shift - n-p, in 
the WKB wave function. It is natural to assume that the 
effect of the departure from the Coulomb potential on the 
phase of the wave function is the same for both positive and 
negative values of the electron energy, assuming 
I E I < Z  'Ry/2. Hence, if the kinetic energy T of an electron 
moving in a spherically symmetric potential of the atomic 
core is much less than Z 'Ry/2, the quantum-mechanical 
scattering phase can be expressed in terms of the quantum 
defect. All the details and limitations of quantum-defect the- 
ory can be found in numerous monographs and reviews, for 
instance, in Refs. 16 and 17. Here we give only the final 
expression for the scattering phase: 

In our case the kinetic energy is equal to 2 k  - / Z?, I, with 
I 8, I the binding energy in the initial s-state. Using the well- 
known formula for the Euler gamma function, 
T ( x  + iy + 1 ) = ( x  + iy) I? ( x  + iy), we arrive at the fol- 
lowing expressions for the phase differences of interest; 
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TABLE I. The size of the quantum defect p in alkali atoms for states with different 1 and j. 

Table I lists the data on ,u for alkali atoms and hydrogen 
obtained by spectroscopic measurements. 

Thus, for alkali atoms near the ionization threshold, the 
absolute value of the phase of interference term and the ener- 
gy dependence of the phase yield to an exact calculation that 
allows for the long-range Coulomb potential. 

5. CONCLUSION 

We have established the most general form of angular 
distribution of electrons when atoms or molecules are illumi- 
nated by a bichromatic field E(w) and E(2w) with 
allowance for one-photon ionization by field E(2w) and 
two-photon ionization by field E(w). We hope that the ef- 
fectsofpolar asymmetry in E(2w) E 2(w) in alkali atoms will 
soon be observed. 
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