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It is shown that the equation of state of a classical Boltzmann gas with two-particle interactions 
can be written without any approximations in a one-particle representation or in terms of a 
phenomenological mean-field model. The use of this model makes it possible to formulate a 
thermodynamically consistent scheme for taking the finite size of the particles of the medium into 
account. The possibility of the appearance of intermediate statistics in the appropriate approach 
is pointed out. 

1. THE EXTENDED PHENOMENOLOGICAL MEAN-FIELD 
MODEL 

The problem of taking the finite volume of the particles 
of a medium into account has recently been actively dis- 
cussed in connection with investigations of the equation of 
state (ES) of nuclear matter,' the determination of which is 
one of the principal goals of heavy-ion physics. Explicit 
allowance for the hard core of the nucleons or for their in- 
trinsic volume is necessary to describe the high-density nu- 
clear matter that is formed when nuclei collide. At the same 
time, at low baryon-number densities and high temperatures 
serious problems arise if we regard hadronic matter as a sys- 
tem of point particles (for more detail, see Refs. 2 and 3).  

Approaches to taking excluded-volume effects into ac- 
count have been proposed in a number of papers."' The 
authors set themselves the goal of modeling the behavior of 
the basic thermodynamic quantities when the particles have 
finite sizes. In those papers this goal is achieved at the ex- 
pense of violation of the thermodynamic consistency of the 
quantities, and, therefore, from the point of view of statisti- 
cal thermodynamics, such approaches may be regarded as 
preliminary. 

In the present paper we propose a scheme for taking the 
intrinsic size of the particles of a medium (nucleons) into 
account, based on the use of a relationship between the one- 
particle spectrum (one-particle potential) and the excess 
pressure incorporating information about the collisionality 
of the gas. The one-particle spectrum, established in the 
Boltzmann region, is then used in the quantum region too, in 
a phenomenological mean-field model involving no viola- 
tion of thermodynamic consistency. We recall briefly the 
basic relations of this model. 

The mean-field model (MFM) is a rather popular theo- 
retical method for studying the ES of nuclear In 
this model it is assumed that in the system there is a certain 
mean (molecular) field U( n, T) (n is the density of the par- 
ticles and Tis the temperature) that reflects the interaction 
between the particles. The appearance in the system of a new 
thermodynamic degree of freedom (the mean field) leads to 

wherep is the chemical potential, g is the degeneracy factor, 
n = n(T, p ) ,  a = + 1 (the upper sign corresponds to Fer- 
mi-Dirac statistics and the lower sign to Bose-Einstein sta- 
tistics), and e , (k )  = k2/2m in the nonrelativistic case while 
e , (k )  = (m2 + k2)'" in the relativistic case (we adopt a 
system of units with f i  = k, = 1 ). The particle-number den- 
sity is expressed in the standard way in terms of the one- 
particle distribution function 

where 

is the distribution function, in which, for each fixed point in 
the ( T, p) plane, the free-particle spectrum has been shifted 
uniformly. 

In order that the expressions ( 1 ) and (2) be thermody- 
namically consistent, i.e., that the formula n = (ap/ap) ,. be 
valid, it is necessary and sufficient that the following differ- 
ential relation between the mean field and the excess pres- 
sure be f~lfilled:~~" 

aU (n,  T )  dB(n,  T )  n = -.___. 
an 3 n 

(4) 

The latter is the analog of the well known relationship be- 
tween the pressure and the chemical potential in the vari- 
ables n and T: 

The energy density, calculated using standard thermody- 
namic formulas, has the form 

the appearance of an excess pressure P(n, T )  . Consequently, 
whence it is easy to see that, if the mean field and excess 

if there are no other types of interaction in the system besides 
pressure are linear functions of the temperature, the last four 

those which are described by the one-particle potential U(n, 
terms in (5)  cancel each other and then, in a quantity such as 

T), the expression for the pressure has the following form: 
the energy density, the interaction manifests itself only 

d3k 
p ( ~ .  P)=e j-ln[l+o through the distribution function in the first integral term. 

a (2n)" As will be seen from the following, in the scheme proposed in 

eo(k)+U(lz,  T)-p the present paper this is a rather typical situation. 
x e x p  (- 

T ) ] + P ( ~ . T ) .  ( I )  Given the definite expressions ( 1 ), (2),  and (5) for the 
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pressure, particle density, and energy density, we can find 
the entropy density from the Euler relation 

Note that in the phenomenological MFM the relation 
(2)  is an equation for the particle density n for each point of 
the (p ,  T) plane, solving which we can determine the re- 
maining thermodynamic quantities. In addition, in contrast 
to self-consistent approaches, e.g., the Debye-Hiickel meth- 
od,'* in the MFM formulation the mean field U(n, T) is an 
external quantity and is specified using additional physical 
considerations. For example, very often in the construction 
of the ES of nuclear matter the mean field is chosen as a 
polynomial in the nucleon density, and the coefficients of 
this polynomial are determined from normalization to the 
properties of normal nuclear matter. Thus, it may be said 
that the MFM is formulated if the function U(n, T )  or 
P(n, T) is specified. 

To conclude this section, we note that in the present 
paper we have extended the concepts of the mean field and 
excess pressure slightly in comparison with those in the liter- 
a t ~ r e , ~ * ~ . ' '  by including in these quantities a dependence on 
the temperature. As is easily seen, this generalization has not 
led to any fundamental changes in the formulation of the 
phenomenological MFM, which is contained in the relations 
( 1 )-(4), and only in derivative quantities such as the energy 
density and entropy density have new terms appeared (de- 
rivatives with respect to temperature). An argument in fa- 
vor of the generalization made is the fact that only in the case 
of this extended dependence is the correspondence principle 
for the MFM fulfilled in general form, i.e., in the passage to 
the Boltzmann limit the MFM reduces to the well-known 
"exact" theory. We turn now to the proof of this assertion. 

2. PHENOMENOLOGICAL MEAN-FIELD MODEL IN THE 
BOLTZMANN LIMIT 

In this section we show that in the Boltzmann limit the 
phenomenological MFM formulated above is an "exact" 
thermodynamic theory of a gas with two-particle interac- 
tion. In fact, the partition function of the Boltzmann gas in 
the grand canonical ensemble has the form 

where 
N 

is the pair-interaction energy of the system of N particles 
with two-particle interaction potential @(lrl)  and V is the 
volume of the system. When the conditions of the virial ex- 
pansion are fulfilled this partition function can be represent- 
ed in the following f ~ r m : ' ~ , ' ~  

and, in addition, the relation 

is fulfilled, where Bi ( T) are the virial coefficients, e.g., 

(for more detail, see Refs. 13 and 14), and z, is the one- 
particle partition function of the Boltzmann ideal gas: 

We introduce the following notation: 

With this notation we can rewrite Eq. ( 10) in the form 

and, usingp = (T/V)lnE, for the relation (9) we find the 
following form: 

P ( T ,  p)=Tn(T,  v )+PB(n ,  T). (15) 

As can be seen, the expressions ( 14) and ( 15) determining 
the thermodynamics of a Boltzmann gas of interacting parti- 
cles have been obtained here without any approximations 
and can be regarded as the one-particle form of the original 
partition function (7).  In addition, by direct inspection it is 
easy to establish that the functions P, (n, T) and U ,  (n, T) 
introduced in ( 12) and ( 13) satisfy the thermodynamic- 
consistency condition (4)  obtained in the MFM. Conse- 
quently, these quantities can be regarded as the Boltzmann 
excess pressure and the "exact" Boltzmann mean field, and 
the relations ( 12) and ( 13) as their virial expansions. 

The next basic step in establishing the correspondence 
between the MFM and the Boltzmann gas of interacting par- 
ticles is to take the Boltzmann limit in ( 1 ) - (3  ), which is 
formally implemented by letting a-0.  As a result, for the 
MFM we obtain 

Comparison with the corresponding expressions (14) 
and( 15) for the Boltzmann gas with two-particle interaction 
leads to the conclusio~ that, if the MFM does indeed give a 
correct description of the thermodynamics of the system in 
the Bpltzmann regime, the following asymptotic relations 
should hold: 
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U(n, T ) - U , ( n ,  T), P(n, T ) + P , ( n ,  T).  
a-O a-O (18) 

i.e., the mean field (one-particle potential) and excess pres- 
sure of the MFM have Boltzmann limits that are given, ac- 
cording to the virial expansions (13) and ( 12), in terms of 
the parameters of the two-particle potential @ ( r ) .  In addi- 
tion, the asymptotic relations ( 18) give sufficient grounds to 
assume that, in their general form, these quantities depend 
both on the particle density and on the temperature, inas- 
much as their Boltzmann limits depend in the general case 
on the temperature. 

The constructive element of the relations obtained is 
clarified if we formulate in these terms the inverse problem 
of statistical thermodynamics-the restoration of the one- 
particle spectrum (mean field) from the known ES. In fact, 
if the ES ( 15) of a Boltzmann gas of interacting particles is 
known, then, according to (4),  which, as we have seen is 
fulfilled for the quantities ( 12) and ( 13 ), we can determine 
the mean field 

1 aPB(n l ,  2') 
u R ( n . ~ ) = j  dn', 

0 

in which it is entirely natural to take U, (n = 0, T) = 0. 
With the function U, (n, T) found in this manner, the rela- 
tion (14) is transformed into an equation for the particle 
density for each fixed pair ( T, p ) .  Consequently, the solu- 
tion of this equation is a function n ( T, p), knowledge of 
which makes it possible, according to ( 15), to find the pres- 
sure as a functionp(T, p) of the temperature and chemical 
potential, and also the energy density and entropy as func- 
tions of these variables. In other words, this scheme makes it 
possible to go from the ( T, n )  ensemble to the ( T,p)  ensem- 
ble without explicit use of the Helmholtz free energy. 

We shall consider a system in which the interaction be- 
tween the particles is determined by a short-range two-parti- 
cle potential @(r) .  Suppose that for such a system the ES in 
the Boltzmann regime is known. Then the mean field U, (n, 
T) can be found by the inverse technique of statistical ther- 
modynamics. In addition, the mean field can be determined 
approximately [see ( 13) ] if the two-particle potential @ (r) 
is known explicitly. The principal assumption, important for 
the subsequent analysis, is as follows: For the class of short- 
range two-particle potentials (or for the short-range part of 
the potential) we can set 

U(n, T ) - U B ( n .  T),  (20) 

where U(n, T )  is the mean field used in the entire range of 
the variables n and T, including the quantum region. In es- 
sence, the approximation (20) is the assumption that, for the 
system under consideration, the manifestation of the inter- 
action of the particles on the level of the mean field is the 
same in classical and quantum statistics. 

The interactions that determine the intrinsic sizes of the 
particles, i.e., repulsive two-particle potentials with a hard 
core, can certainly be assigned to this class. It can then be 
assumed that, if the mean field U, (n, T) effectively realizes 
an interparticle repulsion such that the particles are not su- 
perposed in configuration space in the Boltzmann case, then 
in the case of quantum statistics too this mean field "works" 
in an analogous manner. In fact, despite the spatial overlap 

of the wave functions (packets) of the particles in the region 
of quantum statistics, the matrix element of the two-particle 
interaction potential is nonzero only in a spatial region close 
to contact between the particles, this being induced by the 
appropriate behavior of the potential @(r ) ;  i.e., as in the 
classical case, the particles begin to interact when they 
"touch" each other. These considerations can explain qual- 
itatively why, in the case of a short-range two-particle poten- 
tial, a formulation of the MFM is possible in which the inter- 
action is described both with quantum statistics (the 
symmetry of the many-particle wave function) and classi- 
cally (the properties of the matrix element of the interaction 
potential). It is clear that this approximation ceases to work 
only in the region of ultrahigh densities, similar to that for 
close packing of the particles of the system. 

Thus, the proposed scheme is a way of closing the MFM 
equations ( 1 )-(5). This approximation can be used in the 
case when the ES in the classical region is known. To de- 
scribe a system consisting of particles of finite volume, such 
an equation could be, e.g., the van der Waals equation of 
state. 

The second possibility of applying the proposed scheme 
arises when the two-particle potential is known, making it 
possible to calculate approximately the excess pressure and 
mean field from ( 12) and ( 13) with a degree of accuracy 
specified by the capabilities of the computer. 

3. EXAMPLESOFTHE CONSTRUCTION OF A MEAN-FIELD 
MODEL WITH ALLOWANCE FOR THE FINITE SIZE OFTHE 
PARTICLES 

Using the scheme proposed in the preceding section, we 
shall consider a few examples of the construction of a mean- 
field model in which the finite size of the particles is taken 
into account. 

The most orthodox approach to the problem of taking 
the intrinsic size of the particles into account is the hard- 
sphere model (HSM) . The Pad6 approximation constructed 
on the first six virial coefficients of the HSM gives the excess 
pressure in the form15 

where x = u,n, u, = 3 r d  3, is four times the volume of a par- 
ticle with diameter d,, u (x )  = 1 + b,x + b2x2, 
d ( x )  = 1 - b,x + b4x2, and the coefficients bi have the fol- 
lowing values: 

The expression for the mean field corresponding to the ex- 
cess pressure (21 ) has the relatively cumbersome form 

where c, = b,/b4, c2 = (b,b4 + b2b,)/2b :, c, = 1 
+ (b1b3b4 + b,b : - 2b2b4)/2b :, and C4 

= (46, - b : ) - "*. Consequently, substitution of the mean 
field (22) and excess pressure (2 1 ) into ( 1 )-(5) leads to a 
formulation of the MFM in which the particles are repre- 
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sented as hard spheres. Here the result is undoubtedly no 
more accurate than the original equation of state, defined by 
(21). 

The next, historically important, example is the van der 
Waals equation of state 

where v, , as in the previous example, is four times the intrin- 
sic volume of a particle. We shall not consider that part of the 
equation of state that is related to the attraction of the parti- 
cles. From (23) we find the excess pressure 

V'yll 
PYaR (n, T )  = TI, --- 

I-uXrz 

and the corresponding mean field 
UN?l  c~~~~~ (n, T) =T ----- - 

1-v,n 

Equation ( 14), i.e., the equation for the density of the parti- 
cles in the ( T, p) ensemble, has the following appearance in 
this case: 

N=yvd,v (n ,  T) Vz,  exp (p/T), (26) 

where we have introduced the factor 

yv,, (n.  T) =esp (-UVdW (n, T) IT)  ? 

which is determined by the mean field and can be interpreted 
as the factor by which the configuration volume is reduced 
because the particles of the system have finite sizes. It is easy 
to see that the function 

depends only on the particle density and varies from unity to 
zero as the argument varies from zero to the critical density 
n, = l/v,. The figure shows the graph of this dependence. 

If we start from the physically natural point of view that 
the intrinsic sizes of the particles are a manifestation of the 
interaction between the particles (this is principally the 
short-range repulsive interaction), then, according to the 
general analysis of (7)-( 15), a Boltzmann gas of particles 
possessing intrinsic volume can be described without loss of 
generality in terms of a mean field. Then it must be recog- 
nized that the equation (26) for the density of the particles 
has a universal form and that the different approaches to 
taking the intrinsic sizes of the particles into account can be 
classified using the volume-truncation function-the free- 
configuration-space factory (n, T) . 

As a third example of the free-volume factor, consider a 
linear dependence on the particle density: 

This factor corresponds to a mean field 

In this linear case, Eq. ( 14) can be solved explicitly, and one 
can obtain expressions for the principal thermodynamic 
quantities in the Boltzmann regime: 

where nid ( T, p) and ( T, p ) are the particle density and 
energy density of the ideal Boltzmann gas. It is obvious that 
this model, like the two previous models, is thermodynamic- 
ally consistent. 

Thus, for the given examples we see that the approaches 
to the introduction of a finite particle volume can be classi- 
fied using the appropriate configuration-space-truncation 
function y(  n).  For comparison, plots of y,, (n ) (the solid 
lines) and y, (n ) (the dashed lines) are shown in the figure 
for three values of the characteristic size of the nucleon: 
dN = 0.6,0.8, and 1.0 fm (v, = +?rd ;; along the abscissa, 
the particle density is plotted in units of the normal nuclear 
density no = 0.16 fm - 3 .  As can be seen, the van der Waals 
free-configuration-space factor (27) is a more severe trunca- 
tion of the volume accessible to the particles of the system, 
this being explained by the presence of the additional expo- 
nential factor in (27) in comparison with (28). 

We must mention the recent article of Rischke et al., ' 
which is devoted to the problem considered in this paper. 
The starting point of the approach proposed by the authors 
of Ref. 3 is a formulation of the partition function in which 
the intrinsic volume vo of the particles is included in the 
spirit of the van der Waals excluded volume. In the terminol- 
ogy of the present paper, we may say, conventionally, that 
the mean field is thereby rigidly fixed, i.e., the authors of Ref. 
3 make an attempt to describe the entire range of effects 
associated with the interaction of the particles at short dis- 
tances (interaction modeled by the finite volume of the par- 
ticles) by means of a single external parameter. However, as 
we have seen above, even for one and the same value of the 
parameter vo the character of the behavior of the free-volume 
factor (Fig. 1) can vary greatly, and this, in its turn, gives 

FIG. 1.  Dependence of the free-volume factor on the particle density [the 
solid curves arey,, (n), and the dashed curves arey, ( n )  ] for the follow- 
ing values of the characteristic nucleon size: dN = 0.6 fm ( 3  ); 0.8 fm (2) ;  
1.0 fm ( 1) (0, = +rd )N); here the particle density is in units of the nor- 
mal nuclear density n ,  = 0.16 fm -'. Each pair of curves crosses over the 
axis in the n = l/uN. 
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rise to differing physical properties of the system. Conse- 
quently, it appears to us that, despite the attractiveness of the 
program proposed by the authors of Ref. 3, their approach 
has a limited range of application. 

We wish to draw attention to one interesting phenome- 
non that can be explained using the approach described 
above. In the quantum-statistics region Eq. (2)  can be re- 
written as follows: 

J g:) [ (eO(kh--p)  +ay(n)]-' . 03) N = V y ( n ) g  7 exp 

where y(n)  = exp[ - U(n, T)/T] is a certain free-volume- 
reduction factor for the system [e.g., y (n)  = 1 - u,n, and 
then Vy (n ) = V - u, N] . If in the statistical description of 
some system the configuration-volume decrease that arises 
on account of the finite volume of the particles is taken into 
account only in the form of the factor Vy(n) multiplying the 
integral in (33), then it will be found, e.g., experimentally, 
that the system possesses intermediate statistics, since 
0 < y(n)  < 1. But if we replace y(n)  under the integral by 
unity, the thermodynamic consistency will thereby be violat- 
ed, and then, e.g., n # (dp/dp) T .  Consequently, in this ap- 
proach the phenomenon of the onset of intermediate statis- 
tics is induced by the corresponding way of taking the 
intrinsic volume of the particles of the system into account. 
At the same time, as follows from the above account, the 
scheme for including the intrinsic volume of the particles as 
a mean field makes it possible to perform a thermodynamic- 
ally consistent analysis in terms of the distribution function 
of an ideal gas with a uniformly shifted one-particle spec- 
trum 

4. CONCLUSION 

To conclude, let us enumerate the results obtained. 
1. In the case of Boltzmann statistics, the principal ther- 

modynamic quantities of a gas with two-particle interaction 
admit a one-particle representation that coincides with the 
basic relations of the phenomenological mean-field model. 

2. The mean field and excess pressure that are used in 
the MFM have Boltzmann limits. The latter quantities are 
the Boltzmann one-particle potential and the Boltzmann ex- 
cess pressure, and can be found from the known classical 
equation of state [Eq. ( 19) 1 or calculated approximately 
[the relations ( 12) and ( 13) ] for a known two-particle po- 
tential. 

3. It is assumed that for short-range two-particle poten- 
tials the mean field as a function of the variables n and T is 

approximately the same for the Boltzmann region and the 
quantum region. Use of this approximation makes it possible 
to give in terms of the mean field a thermodynamically con- 
sistent description of a system consisting of particles of finite 
size (a two-particle repulsive potential with a hard core), 
and also to include in the description other forms of interac- 
tions. 

According to the proposed scheme, to formulate a 
mean-field model describing a gas of particles of finite size 
one can take as the mean field (one-particle potential) 
U(n, T) one of the functions obtained in Sec. 3 [see (22), 
(25), and(29) I .  Substitution of this mean field into the dis- 
tribution function (3)  and subsequent solution of Eq. (2)  
give the dependence n ( T, p 1. The dependence n ( T, p ) found 
makes it possible to determine finally the mean field U[n ( T, 
p ) , TI and the corresponding excess pressure P[n ( T, p ) , TI 
as functions of the temperature and chemical potential, and 
then also to find as functions of these variables: 1 ) the distri- 
bution function (3 ); 2) the pressure p (  T, p)  ( 1 ); 3) the 
energy density E (  T, p)  (5);  4 )  the entropy density s( T, p)  
( 6 ) .  
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