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Using the formalism of the dynamic theory of diffraction, we investigate surface guided 
electromagnetic modes (SGEM) in finite-thickness layers having dielectric permittivities that 
are periodically modulated in the transverse direction. We analyze the conditions for the 
existence of TE- and TM-type SGEM and their dispersion relations as a function of the phase of 
the dielectric permittivity modulation for semi-infinite structures, and find how the dispersion 
laws of the SGEM and the conditions for their existence change in layers of finite thickness. We 
discuss the optimal conditions for observing SGEM as a function of the phase of the dielectric 
permittivity modulation; in particular, we identify a strong dependence of the SGEM attenuation 
on this phase, associated with finiteness of the layer thickness. 

INTRODUCTION 

Surface guided electromagnetic modes (SGEM) at the 
boundary of a semi-infinite periodic medium have been in- 
vestigated by a number of authors'-6 and were observed ex- 
perimentally in Ref. 8. The physical phenomena that lead to 
the existence of SGEM are total internal reflection from 
within the periodic medium toward the boundary and dif- 
fractive reflection of the waves in the bulk of the periodic 
medium. Theoretical investigation of SGEM has been limit- 
ed to semi-infinite media for the special case of periodic 
characteristics, i.e., for layered media, and several questions 
remain which to date have received little attention: specific 
features of TE and TM SGEM, their differences and general 
properties, and how the SGEM characteristics depend on 
the phase with which the periodic modulation of the proper- 
ties of the medium terminates at the boundary. 

As for SGEM in structures of finite thickness, only two 
~ a ~ e r s ~ , ~  have been published on this topic. In these papers 
the practical importance of taking into account the finite 
thickness of the periodic structure was demonstrated, in par- 
ticular its role in producing SGEM attenuation in these lay- 
ers even when the medium is nonabsorbing. These papers 
show the importance of detailed theoretical investigations of 
SGEM in such structures in connection with their potential 
use as waveguides that can be controlled by small external 
perturbations (the latter primarily involving chiral liquid 
crystal films). 

In this paper, we use the formalism of the dynamic theo- 
ry of diffraction to carry out a detailed theoretical analysis of 
TE and TM SGEM, which reveals how their characteristics 
depend on the modulation phase of the dielectric permittivi- 
ty of the periodic medium, both in semi-infinite structures 
and in structures of finite thickness. By identifying the de- 
pendence of the SGEM parameters on the phase of the mod- 
ulation and thickness of the periodic structure, we are able to 
optimize the corresponding experiments. 

the upper half-space (z > 0)  be filled with a uniform isotrop- 
ic medium with dielectric permittivity E, , while the periodic 
medium fills the half-space z < 0 and is described by a scalar 
dielectric permittivity modulated along the z axis: 

where E is the average value of the dielectric permittivity, S is 
the modulation parameter, which will be considered small in 
what follows, T is a vector of the reciprocal lattice of the 
periodic medium (7 = 27r/d, where d is the period), and q, is 
the phase of the modulation at the boundary of the periodic 
medium. 

We will assume that total internal reflection is possible 
at the boundary of the periodic medium, i.e., E, <E,  and as- 
sume for simplicity that the magnetic susceptibility equals 
unity. 

Expression ( 1 ) for the dielectric permittivity allows us 
to isolate the polarizations and solve the problem separately 
for TE and TM waves. 

Let us seek a solution to the Maxwell equations in the 
form of a monochromatic wave of frequency w propagating 
along the surface parallel to the x axis with wave vector q, 
using the two-wave approximation of the dynamic theory of 
diffraction.' For a TE wave, we will write the field in the 
uniform medium in the form 

and write the field in the periodic medium in the form 

1.SGEM IN ASEMI-INFINITE MEDIUM ( 3 )  
1.1. Fundamental equations where 

We first discuss SGEM at the boundary between two q=q,+Ay. q,&; - -, T~ x,L=t.- o2 
media, one uniform and one periodically nonuniform. Let 4 c2 ' (4)  
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The parameters Aq and yare defined by 

6 xu! 
Aq = -- cos p: 

4 YD 

where the relation cos@ = - a connects@ with the follow- 
ing parameter, which is commonly used in the dynamic the- 
ory of diffraction:' 

7 (~+2:.(,) 
a =  

6 .  
( 6 )  

This parameter determines the departure from the Wolf- 
Bragg condition in optical problems. 

The condition - T <@ < 0 in ( 5 )  ensures that the field 
of the SGEM decays into the bulk of the periodic medium. 

We obtain the dispersion equation for SGEM from the 
condition that the tangential components of the fields E and 
H be continuous at the boundary z = 0. For the TE SGEM 
the dispersion relation has the form 

(D+B t 9+B (yl-y) cos - + -sin - = U, 
2 2 2 

(7)  

From Eqs. (2)-(8) it follows that the condition for the 
existence of SGEM is that the value of the SGEM frequen- 
cies exceeds a certain threshold value: 

The parameterg, which is found from (7)  for w > w,, 
by using Eqs. (2)-(5), completely specifies the TE-wave 
solution we are looking for. In explicit form the dependence 
of the parameters Aq and y on the phase of the dielectric 
permittivity modulation at the boundary and frequency has 
the form 

6 xoZ (t~/2--11~x~')sin cp+t cos (p ( 1 ~ ~ x ~ ~ - t ~ / 4 ) ~  
'=-TTL qlxoZ 

(10) 
Similarly, we can find the dispersion equation for sur- 

face waves with TM polarization. Let us write the field H in 
the form ( 3 ) .  The parameters Aq and y for this polarization 
are defined by Eq. (5)  if we replace S in them by 

6 [ 1 - ' 1. 
2xoZ 

The dispersion equation for TM SGEM has the form: 

The dependence of the parameters Aq and y on the phase of 
the dielectric permittivity modulation at the boundary and 
on frequency has the form 

The condition that Eqs. ( 7 )  or ( 1 1 ) have solutions for real 
values of Aq determines the region of existence of the SGEM. 

2. REGION OF EXISTENCE OF SGEM 

In Fig. 2 we show the frequency ranges where SGEM 
exist as a function of the phase of the dielectric permittivity 
modulation at the boundary between the media (z = 0)  for 
TE and TM waves. The lower threshold (9) of existence for 
SGEM with respect to frequency is defined as the minimum 
frequency (maximum wavelength) for which the conditions 
of total internal reflection at the boundary and diffraction in 
the bulk of the periodic medium (the Wolf-Bragg condi- 
tion) can still be combined. For frequencies close to w,, the 

width of the allowed band with respect to phase changes in a 
complex fashion as a function of frequency. For frequencies 
not close to this limiting frequency, the width of the allowed 
(forbidden) band practically coincides with the value T. In 
the zeroth approximation, the curves which bound these re- 
gions are described by the following equations: for TE 
waves. 

and for TM waves, 
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FIG. 1. Schematic illustration of the geometry of the problem. 

For certain phases (0" < q, < 180") there exists an upper 
frequency limit for the appearance of SGEM. For phases 
- 180" < q~ < 0" the smallest attainable frequency for the 
SGEM turns out to be larger than w,, and is determined by 
the phase. 

For every fixed frequency the regions of existence of 
SGEM with respect to phase overlap for TE and TM waves; 
however, they do not coincide. Therefore, ranges of vari- 
ation of q, can be exhibited for which only one of the two 
modes TE or TM can be excited. Both TE and TM modes 
can coexist over a relatively wide range of variation of q,. The 
sizes of these regions are determined by relations between 
the parameters E,  E ,  ,and 8. 

Figures 3 and 4 shows phase dependence of the devi- 
ation of the SGEM wave vector difference from its Bragg 
value (Aq) and the quantity (y)  that determines the decay 
of the field with the z-coordinate into the depth of the sample 
for various frequencies. For a given frequency there is a cer- 
tain phase q, for which Aq = 0, i.e., q = go; in this case, the 
field decays most rapidly into the bulk of the medium. As the 
phase varies over the allowed band, the quantity y varies 
from its frequency-dependent maximum value to zero. Near 
the edges, the field of the wave decays slowly into the depth 
of the sample. In the uniform medium, the decay of the 
SGEM field with respect to z depends only weakly on the 
phase of the dielectric permittivity modulation at the bound- 
ary, and is essentially determined by the frequency. 

Note that the phase of the modulation determines how 

y varies with increasing frequency. For certain phases (e.g.', 
q, = - 60", q, = - 30") the rates of decay increase with in- 
creasing frequency, both in the uniform medium and in the 
periodic medium. However, there are some values of q, (e.g., 
q, = 30", p = 60") for which the quantity y first increases 
with increasing frequency and then begins to decrease to 
zero. This implies that there exists an upper frequency limit 
for the appearance of SGEM in this case. The field E pene- 
trates into the depth of the medium, encompassing a large 
number of layers of the periodic structure. Whereas the elec- 
tric field of a TE wave is parallel to the surface and perpen- 
dicular to the wave vector of the SGEM, the field E lies in the 
xz plane for a TM wave, although its direction in the periodic 
medium varies with depth. In this case, the amplitude of the 
field E decreases exponentially into the depth, while the ra- 
tio E,/E,, varies periodically along z. In the xz plane the 
direction of the total field can take on all allowed values. 

3. SURFACE WAVES IN A FILM 

SGEM in periodic structures of finite thickness were 
investigated in Refs. 4 and 5. As we mentioned in the Intro- 
duction, in this case the most important peculiarity of 
SGEM turns out to be the appearance of attenuation even in 
nonabsorbing media, associated with "leaking" of the elec- 
tromagnetic field through the surface of a film for which the 
condition of total internal reflection (TIO) is not fulfilled. 
In the papers we cited, the analysis of these characteristics, 
which was carried out for the limiting case of a thick film, 
was only qualitative. Furthermore, the question of how the 
SGEM parameters depend on the phase of the dielectric per- 
mittivity modulation at the surface of the structure was left 
completely untouched. However, it follows from the materi- 
al presented in the previous section that the SGEM charac- 
teristics depend significantly on this phase. What is more, 
for certain values of the phase SGEM simply do not exist. In 
this section, we will analyze how the characteristics of 
SGEM in films depend on the value of the modulation phase 
at the surface, without restricting our discussion to the limit- 
ing case of a thick film. 

Let us consider the SGEM of a plane parallel layer of 
the periodic medium with properties that coincide with 
those of the medium used in the previous section to discuss 

47 ------------ 

0,6 - 
I FIG. 2. Existence region of SGEM. The curves are bounded by allowed 

a5 - bands with respect to phase and wavelength (frequency) for the appear- 
I ance of SGEM in the case of a semi-infinite medium. The horizontal 

0,4 - I crosshatching represents T E  waves, the oblique crosshatching TM waves; 
I 2=1.5,&, =l.O,S=O.05. 

0,J - 
a z -  
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FIG. 3.  Dependence of the diffraction correction Aq to the wave vector on FIG. 4. Dependence of the attenuation decay rate ( y )  of the SGEM field 
the phase p of the dielectric permittivity modulation at the z = 0 bound- into the bulk of the periodic medium on the phase of the dielectric permit- 
ary for various frequencies (TE SGEM, semi-infinite medium); Z = 1.5, tivity modulation at the z = 0 boundary for various frequencies (TE 
E ,  = 1.0, S = 0.05, x = 2o/rc. SGEM, semi-infinite medium); Z = 1.5, E ,  = 1.0, S = 0.05, x = 2o/rc. 

the problem of SGEM at the boundary of a half-space; we 
will assume that the properties of the z > 0 medium corre- 
spond to this case as well. We also assume that for z < - I 
(where I is the layer thickness) the homogeneous medium 
that surrounds the layer is characterized by a dielectric per- 
mittivity E~ (see Fig. 1 ). Let us seek the SGEM fields for TE 
modes in the following form: for z > 0 we use Eq. (2 ) ,  with 
the same parameter values as in the previous section, while 
for -l<z<Owewrite: 

where B, and B, are coefficients which remain to be deter- 
mined; the remaining parameters are defined by the same 
relations as in Eq. (3). Forz < - I we use Eq. ( 2 ) ,  replacing 
Y I  by - y, ,  where 

Note that in contrast to the semi-infinite case, where we 
were able to write the SGEM field within the periodic medi- 
um using a single eigenwave solution to the corresponding 
optical problem, in the film we require a combination of two 
eigenwave solutions to describe the field, one of which de- 
cays away from the first boundary, the other away from the 
second. 

From the condition that the fields match at the boun- 
daries z = 0 and z = - I we obtain the dispersion relation 
for SGEM in the film: 

T ' P - B ]  'P-B + -s,n - ru[  (y,+y) cos 
2 2 

& + r l  T . c p + p + ~ l ]  
x[ (y.+r)cos - -s111 2 2 

- e-1' 'P+B 7 
2 2 

'P+B ] (y,-y)cos-+- sin- [ 2 

'P -$+Tl  T -- rp--P+rl 
x [ (rs-r)cos 2 

sin 
2 2 

]= 0. 
(18) 

In what follows we will investigate the case where 
SGEM are present only at the z = 0 boundary, i.e., 
E ,  < %E, .  Then the dispersion equation can be written in a 
form having terms that coincide with the dispersion equa- 
tion ( 7 )  for the semi-infinite medium, plus a correction pro- 
portional to the factor eZY'. From this it is clear that in the 
limit of a thick layer ( 1 yl I S 1 ) Eq. ( 18) becomes the disper- 
sion equation for the half-space, which was investigated 
above. In the zeroth approximation with respect to 6, the 
dispersion equation for TM waves is obtained from ( 18) by 
replacing y, by WE, )y, and y, by WE, y,. 

Let us investigate how the SGEM dispersion law in a 
layer with dielectric permittivity of the form ( 1 ) depends on 
the phase of the dielectric permittivity modulation at the 
boundary (z = 0) for which the T I 0  condition is fulfilled. 
For the case of layers that are not thick ( I yl I - 1 ) we were 
unable to derive an analytic expression for the dispersion 
equation; therefore the corresponding curves were found by 
numerical methods. 

In Fig. 5 we show the results of calculating the disper- 
sion curves for various values of the phase q, of the dielectric 
permittivity modulation at the layer surface (z = 0).  From 
the figure it is clear that the SGEM attenuation due to the 
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FIG. 5. Frequency dependence of the SGEM attenuation (Im(Aq)) in 
the film for various values of the phase g, of the dielectric permittivity 
modulation at the z = 0 boundary; Z = E, = 1.5; E ,  = 1.0; 6 = 0.05; 
d = 2n/r, I = 74d /3; g, = - 30", 0", 80". The values of Im(Aq) for the 
g, = 80" curve are scaled by a factor of 10. 

finite layer thickness (i.e., the imaginary part of Aq) and its 
frequency behavior are strongly dependent on the phase cp. 
This also applies to the renormalization of the SGEM wave 
vector due to finiteness of the layer thickness. However, 
since this type of SGEM attenuation associated with the fi- 
nite layer thickness is a qualitatively new effect, which is 
simply not present for the case of an SGEM in a half-space, it 
will be the focus of the analysis that follows. For thick layers 
( I yl I ) 1 ) an analytic expression for the SGEM attenuation 
and its dependence on cp can be found. In this case, the at- 
tenuation of the field is exponentially small and is deter- 
mined by the following expressions: for TE SGEM, 

- ~3[cos(&+Tf!)  (qlX: -') 
2 qf 2 

+ r sin (2cp+rl) ( q  

sin cp1r2/2-qlxo21+.c cos cp (qlxo'-t'/4)'h ( 19) sin p n  = - 
q13c02 

and for TM SGEM, 

sin c p [  ( 2 - 2 q ~ + q ~ 2 ) ~ z / 4 - q ~ ~ ~ Z 1 + ~ ( I - q l ) ~ ~ ~  cp ( q t ~ o ~ - r ~ / 4 ) "  
sin Po = - 

qi?coZ+ (qi2-2q1) 7'14 

Equations (19) and (20) give the dependence of the 
attenuation not only on the phase of the dielectric permittivi- 
ty modulation at the boundary, but on frequency as well. 
However, by varying the frequency at fixed phase we can 
convert a film that is diffractively thick ( 1 yl I ) 1) to one that 
is diffractively thin, i.e., one for which Eqs. (19) and (20) 
are outside their limits of applicability. A change in the 
phase can result in the same kind of behavior. For example, 
at the phase g, = - 30" the parameter 1 yl I increases rapidly 
with frequency and the film becomes diffractively thick, 
while at the phase cp = 80" the parameter I yl I decreases with 
frequency, i.e., the film becomes diffractively thin. There- 
fore, before using Eqs. ( 19) and (20) to find the attenuation 
it is necessary to check that the condition 1 yl I & 1 is fulfilled. 

For these films the decay characteristics of the field into 

the bulk differ very little from the case of a semi-infinite 
medium if the film is diffractively thick ( I yl1> 1 ), but can 
differ strongly from the latter for diffractively thin films. 
Analysis of the field decay of SGEM into the bulk of the 
sample and the field distributions along the sample thickness 
show that for phases around g, = - 2 tan ' (2y, /T) + 1r/2 
the decay of the field into the bulk of the film is most rapid, 
while diffraction of the radiation that leaks out through the 
second surface (z = - I) is minimal. 

As we might expect, the SGEM attenuation depends 
strongly on the layer thickness. This assertion is illustrated 
by the plots of the attenuation versus frequency shown in 
Fig. 6, which we have calculated for three different values of 
the thickness. 

Figure 7 shows the dependence of the SGEM attenu- 
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FIG. 6. Frequency dependence of the SGEM attenuation (Im( Aq) ) in 
the film for various values of the layer thickness; .F = E, = 1.5; E, = 1.0; 
6 = 0.05; q, = 50", d = 2?r/r, 1, = 59d /3; l2 = 74d /3; 1, = 89d /3; 
I ,  = 104d/3. 

FIG. 7. Dependence of the SGEM characteristics of a film on the phase q, 
of the dielectric permittivity modulation at the boundary z = 0. I-phase 
dependence of SGEM attenuation (Im ( Aq) ), 2-phase dependence of 
the parameter 1 yl I, which characterizes the diffractive thickness of the 
layer (the thickness is measured in units of the extinction length); 
Z=E, = 1 . 5 ; ~ '  = 1.0 ,6=0.05,1=209d/3 ,2o/rc=2.0 ,d=2i~/~ .  

ation (curve I) and the decay of the wave field into the film 
(curve2) on the phase of the dielectric permittivity modula- 
tion at the z = 0 surface of the film. 

CONCLUSION 

The results we have presented here demonstrate that 
the SGEM characteristics depend significantly on the phase 
of the dielectric permittivity modulation at the surface of a 
periodic medium. The dependence we have identified allows 
us to connect the SGEM characteristics with the detailed 
structure of the modulation of the dielectric properties, not 
only for the well-investigated case of a layered medium'-3 
but also for the case of a medium whose dielectric properties 
are subject to modulation of more general form. 

In fact, it follows from the discussion we have given 
here that in general the characteristics of SGEM turn out to 
depend significantly on the phase of all the Fourier harmon- 
ics which enter into the expansion of the dielectric permittiv- 
ity, and which are responsible for diffraction scattering of 
the field in the periodic medium. This phase dependence, 
along with the effects of finiteness of the layer thickness, 
determines the optimum conditions for experimental obser- 
vation of SGEM. In particular, it is now clear that the de- 
tailed structure of the variation in dielectric properties, spe- 
cifically those properties near the boundary with the 
uniform medium, strongly affects the behavior of SGEM. 
This opens up the possibility of artificial variation of SGEM 
parameters by changing the profile of the dielectric permit- 
tivity at the boundary. 

Thus, the results we have presented here can be used to 
identify the optimum SGEM parameters for a structure of 
given thickness and with known dielectric permittivity pro- 
file; conversely, starting with a given set of SGEM param- 
eters, the equations can be used to identify a structure in 
which the SGEM will possess certain prespecified param- 
eters. 

It should also be noted that the study of SGEM in struc- 
tures with controllable periodicity parameters, e.g., chiral 
liquid crystals7 and media whose properties are modulated 
by ultrasonic waves, can be extremely useful in the experi- 
mental verification of the behavior we have discussed here, 
and also perhaps for future applications. 
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