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The temperature dependence of the tails on the density of electron states in noncrystalline 
materials is examined theoretically. The component of this temperature dependence which is 
associated with two-well atomic potentials is considered for the first time. When such potentials 
are taken into account, one should distinguish between two types of tails on the density of states: 
optical and thermodynamic. These two types should be manifested in different experiments. 
Their shape and temperature dependence are analyzed. The temperature-dependent effect of the 
two-well potentials on the tails on the density of states has a certain time lag, which could give rise 
to long-term relaxation effects. The theory is compared with experimental data on amorphous 
hydrogenated silicon. 

1. INTRODUCTION 

The extensive experimental evidence which has now 
been accumulated indicates that there are tails on the density 
of states in noncrystalline materials: amorphous semicon- 
ductors, amorphous insulators, glasses, and polymers. 
States arise in the tails because of fluctuations in the random 
potential U(r).  These fluctuations create effective potential 
wells which are capable of trapping an electron or a hole (for 
definiteness, we will speak exclusively in terms of electrons). 
With decreasing energy (E) of the trapped electron, the 
depth U(r) of the corresponding potential well should in- 
crease. The fluctuation probability falls off exponentially 
with increasing 1 U 1. Correspondingly, the density ofstates in 
the tails decays exponentially with distance into the mobility 
gap: 

where S(E) is usually a power function, and the energy E is 
reckoned from the mobility edge. 

The theoretical description ofg(E) is based on the opti- 
mum fluctuation method (see the reviews1-' ) . This method 
allows one to seek the most probable of all possible fluctu- 
ations which would lead to a given energy E. One can thus 
determine the function S(E) .  For comparatively shallow 
levels E in three-dimensional systems, the expression for 
S ( E )  is 

where 

and m is the effective mass of an electron. Expression (2) is 
valid as long as the characteristic trapping radius 

r,  - f i (m lE 1 ) -' exceeds the correlation radius r, of the 
random potential and the binding energy IE I is much smaller 
than the average value of the random potential.' 

In the present paper we analyze g (E)  in the region in 
which expression (2)  is applicable, for conditions such that 
the disorder depends on temperature. This dependence is 

generated by interwell transitions of atoms in random two- 
well potentials (Fig. 1 ). The presence of such potentials is a 
universal property of noncrystalline systems. They make the 
heat capacity a linear function of the temperature ( C  a T ) ,  
and they make the thermal conductivity a quadratic func- 
tion of the temperature ( X  a T 2 ) .  They give rise to distinc- 
tive features in the acoustic and microwave absorption, 
cause an unusual thermal expansion, and cause yet other 
effects (see the reviews5-' ). Our analysis is based on the 
changes which occur in the fluctuations of the electron po- 
tential U(r) in the course of transitions of atoms between 
wells. 

As we will show below, when the two-well potentials in 
these systems are taken into account, one should distinguish 
between tails of two types: optical and thermodynamic. 
These two types of tails are manifested in different experi- 
ments. We derive the shapes of these tails and their tempera- 
ture dependences. We compare the theoretical results with 
experimental data on amorphous hydrogenated silicon. 

2. QUALITATIVE CONSIDERATIONS 

Following the standard description of two-well poten- 
tials in glassesY5-' we assume that these potentials are char- 
acterized by probability distributions of two random param- 
eters: the asymmetry E and the barrier height v (Fig. 1 ). The 
distribution of E is nearly flat over a certain interval: 

p , ( ~ )  "const, OGEGE~. (4) 

The explicit shape of the v distributions will not be of impor- 
tance in the discussion below. Wishing to stress only that it is 
bounded, we assume for simplicity 

The energy of the interaction of a classical atomic particle in 
a two-well potential with an electron is 

where the index i corresponds to the two-well potential with 
the parameters ei and v i ,  ni and nOi = 1 - ni are the popula- 
tions of the upper and lower wells of the potential, and Voi 
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FIG. 1 .  Schematic diagram of a two-well potential. v-The height of the 
barrier; &-the asymmetry of the wells. 

and V l are parameters of the interaction of the electron with 
the atomic particle in the lower and upper wells. 

The interwell transitions which iccur in the two-well 
potential affect the electron states because the interaction 
parameters V,, and V,! are different in the two atomic con- 
figurations. These configurations differ in energy by an 
amount whose absolute value is E~ (by definition, E ~ > O )  and 
whose sign is random. Consequently, the larger of the two 
quantities VOi, V; may correspond to either the upper well or 
the lower one; it is natural to assume ( K )  = 0 .  The density 
of electron states is affected by the fluctuations Sn in the 
populations of the two-well potential, not by the mean values 
of these populations. At a nonzero temperature, there are 
thermal fluctuations Sn in the occupation numbers; these 
fluctuations lower the energy of the electron. As a result, the 
tail on the density of states should increase in size with in- 
creasing T. This increase reduces to a increase in the vari- 
ance B ,  of the electron potential in (3).  The reason is that 
the statistical independence of the fluctuations of the origi- 
nal potential U(r) and the temperature-dependent potential 
Van allows us to add their variances. Assuming 

we find 

In (7)  we have used 7i = [ 1 + exp(~/T)  ] ' as the equilibri- 
um population of the upper well, and we have assumed that 
the parameters V and E are statistically independent (this 
simplifying assumption is not of fundamental importance; 
where necessary, it can be abandoned). In Sec. 3 we verify 
the result in (8)  through a calculation of S(E) by the opti- 
mum-fluctuation method. 

We have been tacitly assuming that the trapped electron 
does not have an inverse effect on the occupation numbers ni 
of the two-well potential. The fluctuations in ni which arise 
without the involvement of the electron are important if the 
time scales for electron transitions are much shorter than 
those for atomic transitions in the two-well potential. The 
fluctuations responsible for the tails in the optical absorp- 
tion, for example, are of this type. The absorption coefficient 
for electron transitions to states with an energy E is propor- 
tional to the density of states go,, (E)  determined without 
consideration of the interaction of the electron with the mo- 
bile atoms. The function go,, (E) could naturally be called an 
"optical density of states." 

The interaction of an electron with mobile atoms in a 

two-well potential may lead to a displacement of these atoms 
and to the formation of a self-sustaining fluctuation Sn, 
which lowers the energy of the electron and that of the sys- 
tem as a whole. This distinctive type of self-trapping can 
occur only over a sufficiently long time interval determined 
by the rates of atomic transitions in the potential. This self- 
trapping must be taken into consideration when (for exam- 
ple) we are dealing with thermodynamically equilibrium 
states. In this case the probability for finding an electron in a 
tail state with an energy E is proportional to g,, (E) ,  where 
the self-trapping is taken into account in the determination 
of the density of states g,, ( E ) .  The function g,, (E) could 
naturally be called the "thermodynamic density of states." 

To clarify the qualitative behavior g,, ( E ) ,  we specify 
some radius r,  of the trapping state, and we examine the 
two-well potential in a volume r$ with asymmetries in an 
energy layer E < A. Roughly half of the total number (on the 
order ofp,r$A) of two-well potentials have that sign of V 
which lowers the energy of the electron upon a transition of 
an atomic particle from the lower well to the upper one. 
These transitions provide an energy benefit on the order of 
( ~ ~ ) ' / ~ r $ $ ~ ( r ) ,  pE A cc ( V2) lI2pEA, where $ is the electron 
wave function. In addition, there is an energy disadvantage 
+r$,pEA2, which is equal to the work (A/2 per two-well po- 
tential, on the average) which must be performed in order to 
move the atomic particles from the lower wells to the upper 
ones. The resultant change in energy upon self-trapping can 
then be estimated to be 

Expression (9)  is formally the same as that which describes 
the self-trapping of an electron in an elastic medium; A is 
playing the role of the strain. On this basis we might expect 
the problem of determining the function g,, (E) to reduce to 
the problem of the tail on the density of states in a disordered 
system with an ordinary polaron effect. The latter problem 
has been solved by Kusmartsev and Rashba.' They showed 
that, when a polaron effect is operating, the tail on the den- 
sity of states has a sharp cutoff, so there is a gap in the spec- 
trum below a certain energy. The reason for this cutoff is that 
the fluctuation states are unstable with respect to polaron 
collapse at sufficiently small values of r, -fi(mlE l)-1'2. 
This collapse occurs if the reduction of energy which occurs 
as a result (the polaron shift) at r, -a is greater in absolute 
value than the work fi2/ma2 which would be required to trap 
the electron in a region of atomic size, a. 

In the case under consideration here, the polaron shift, 
which is equal to the absolute value of the minimum energy 
in (9 ) ,  is 

This quantity increases with increasing I E I. At r, -a (with 
suitable parameter values), it may be greater than the work 
fi2/ma2. In contrast with the ordinary polaron effect-the 
case in Ref. 8-however, a gap does not form in the density 
of states in the case at hand. The reason is that among other 
fluctuations in this system there are some at which the po- 
laron effect is relatively small, because of random small val- 
ues of the local concentration of two-well potentials with the 
sign of V which is favorable for self-trapping. This circum- 
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stance is not reflected in ( 9 )  and ( l o ) ,  which incorporate 
only the average concentrations of the two-well potentials 
and are therefore valid only at sufficiently large values of r,. 
In other words, the polaron effect fluctuates in this system. 
It follows that for any energy there exist fluctuation states 
with a polaron effect small enough that collapse does not 
occur. 

Summarizing, we can say that at low energies, at which 
expressions ( 9 )  and ( 1 0 )  hold, the behavior g,, ( E )  should 
be qualitatively the same as the behavior of the tails in disor- 
dered systems with an ordinary polaron effect.' However, 
the states in the high-energy region are approximately the 
same as the fluctuation states without a polaron effect, and 
there is no gap in the spectrum. 

3. OPTIMUM FLUCTUATION METHOD 

Our problem is to find the explicit functions g,, ( E )  and 
go,, ( E )  in the region of an exponentially small density of 
states, g ( E )  <go. We consider the Gaussian part of the spec- 
trum, in which the density of states is still of appreciable 
magnitude. This region is dominated by fluctuations which 
result from relatively small deviations of the parameters 
from their average values. 

We begin with an analysis of the optical density of 
states. If self-trapping is ignored, the electron energy is 

under the condition slCr2d 3 = 1. The quantity 
ANi = N, - in ( 11 ) is the deviation from the average 
concentration of two-well potentials of type i in the excited 
state. Here we are using 

The random quantities fluctuating in ( 1  1 ) can be described 
in the Gaussian approximation by a probability distribution 
exp( - S ) ,  where 

The variance Bni can be found directly from a binomial dis- 
tribution: 

where ci is the local concentration of two-well potentials of 
type i. In the Gaussian approximation we can set ci = Ti  in 
( 1 3 ) .  

The problem of optimizing the functional S under con- 
dition ( 1 1  ) is equivalent to that of seeking an absolute extre- 
mum of the functional 

where v and A are undetermined Lagrange multipliers. A 
variation of @ with respect to the variables U, ANi,  and $ 
leads to the equations 

Comparing ( 16) and ( 1 1 ), we verify that the equality v = E 
holds. Substituting ( 1 5 )  into ( 1 2 ) ,  we find 

A nonlinear Schrodinger equation of the type in ( 1 6 )  has 
been studied in detail in papers on the standard optimum- 
fluctuation The results of importance to the pres- 
ent discussion can be summarized by the expressions 

Using these expressions, we find expressions ( 2 )  and ( 3 )  
again, except that B ,  is replaced by the quantity 

Since the second term in ( 1 9 )  is the average value of 
V 2 E ( l  - E), we arrive at the result (8) .  

In the expressions written above, the the energy E is in 
all cases reckoned from the mobility edge, as renormalized 
by the random potential. As was shown in Ref. 3, this renor- 
malization reduces to a downward shift 

of the mobility edge. Our analysis thus predicts not only the 
temperature dependence of the tails on the density of states 
but also a shift, which is linear in the temperature, of the 
edges of the mobility gap. 

We turn now to the thermodynamic tails on the density 
of states, g,, (E). According to the discussion in Sec. 2, the 
inverse effect of the electron on the two-well potential is im- 
portant in this case. The resultant energy of the system con- 
sisting of the electron and of the two-well potentials interact- 
ing with it differs from ( 1 1 ) by an amount equal to the 
minimum work required to create fluctuations. The latter is 
equal to the change in the free energy of the system of two- 
well potentials upon the appearance of a fluctuation. Adding 
this quantity to ( 1 1  ), we find 

under the condition st,h2d 3r = 1. From this point on, the pro- 
cedure for optimizing and determining the exponent for the 
density of states is similar to that described above, with ( 1 1 ) 
replaced by ( 2  1  ). As a result we find 
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FIG. 2 .  The dimensionless exponent of the density of states, S, versus the 
parameter x for various values of the parameter@: 1-5; 2-5.8; 3-7; 4- 
8 ;  5-9. 

where 

Expressions (22) and (23) constitute the final result, in pa- 
rametric form. They relate in the appropriate way the di- 
mensionless exponents of the density of states ,!?and the ener- 
gy E. 

FIG. 3. The dimensionless energy versus the parameter x for various 
values of the parameter p (the curve labels have the same meaning as in 
Fig. 2 ) .  

FIG. 4. Energy dzpendence of the exponent of the density of states, S, 
versus the energy E for various values of the parameter0 (the curve labels 
have the same meaning as in Fig. 2 ) .  The Roman numerals correspond to 
various branches of the functional dependence (see the text proper). 

Figures 2 and 3 are plots of ~ ( x )  and g (x ) .  They exhib- 
it a critical behavior; plays the role of the control param- 
eter. At /3> Po -5.8, extrema appear on both plots, at iden- 
tical values of x, which are the roots of the equation 

When extrema are present, the function S(E) has three 
branches (Fig. 4).  Two of them, I and 111, correspond to a 
minimum of functional ( 12), while branch I1 corresponds to 
a maximum of this functional and has no direct physical 
meaning. If we ignore branch I, we see that the functions 
~ ( 2 )  found here correspond entirely to the functions found 
by Kusmartsev and Rashba8 in an analysis of the tails on the 
density of states in a disordered system with an ordinary 
polaron effect. The presence of branch I guarantees that 
there is no gap in the density of states. 

The physical meaning of the solutions found here corre- 
sponds to the discussion in Sec. 2. The behavior of Q(E) at 
sufficiently small values of 2 turns out to be the same as in 
systems with an ordinary polaron effect (branch 111). There 
is a cutoff in the spectrum (the point at which branches I1 
and I11 intersect). However, the fluctuation states with a 
small polaron effect which correspond to branch I begin to 
play a leading role even before this cutoff occurs. Near the 
intersection of branches I and 111, the dimensionless deriva- 
tive d [In g,, (2) I/& changes by a finite amount, approxi- 
mately equal to P 2/2 (for P> Po ). In the limit E-0, the 
behavior g,, (E) is described by (2),  and (3)  (the two-well 
potentials have only a minor effect). As I E I + co , the behav- 
ior g,, (E) approaches the behavior go,, (E).  

4. PHONON CONTRIBUTION 

A temperature dependence of the disorder may stem 
not only from transitions of atoms in two-well potentials but 
also from vibrations of these atoms corresponding to phonon 
degrees of freedom. We will calculate the effect of these vi- 
brations for high temperatures at which phonons can be 
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treated as a source of classical fluctuations of the electron 
potential. In this case the phonon contribution can be dealt 
with by the optimum fluctuation method, which we have 
already used. We restrict the discussion to the deformation 
interaction with phonons, which is important for typical 
amorphous materials with predominantly covalent bonds 
(a-Si:H, a-SiO, etc. ). 

In the adiabatic approximation the energy of an elec- 
tron changes by an amount 

upon a dilatation u( r ) ,  where Q is the strain-potential con- 
stant. The probability for a classical fluctuation correspond- 
ing to the dilatation u( r )  can be expressed in terms of the 
entropy in the standard way: 

uz (r) 
t ? \ p ( - ~ p h ) =  exp{-J - ~ r }  

2<u2> 

The variance is 

where K is the elastic modulus. 
To cal~ulateg,~, (E) by the optimum fluctuation meth- 

od, it is sufficient to add (26) to functional (11) for the 
energy and to incorporate the phonon contribution S,, in 
the entropy in ( 12). The functional found in place of ( 14), 

should be varied with respect to the variables U, ANi, $, and 
u. The result for the optical density of states again reduces to 
expressions (2)  and (3) .  However, instead of ( 19) the role 
of the variance is played by the quantity 

When this replacement is made, expression (20) remains in 
force. 

In the limiting case B = WT the result found for 
go,, (E) is the same as the corresponding result of Refs. 9, in 
which a study was made of the shape of a tail due exclusively 
to phonons (no structural disorder was involved) on the 
optical absorption. The case under consideration here, of 
classical fluctuations, corresponds to the static regime found 
in Ref. 9. 

As for go,, (E l  above, we can incorporate the phonon- 
disorder component of the thermodynamic density of states 
g,, (E). For this purpose we should again include the 
phonon contribution Sph in the entropy. In the functional for 
the energy, however, we need to add [in addition to (26) 1 
the energy of the deformed medium: 

The problem then reduces to one of finding the absolute ex- 
tremum of the functional 

where the functional E is given by (2 1 ) . The results of this 
calculation again lead to expressions (22)-(25) and to Figs. 
2 and 3, in which the role of 0 is played by the quantity 

In analyzing the optimum fluctuation of the strain ener- 
gy above we actually assumed that the typical lifetime of 
such a fluctuation, rph , is long enough that the energy of the 
electron can adjust the altered potential. A necessary condi- 
tion here is that the time scale (T, ) of the inelastic interac- 
tion of the electron with the phonons (the time scale for 
relaxation of the electron phase) be much shorter than T,, 

(this condition corresponds to the condition for a static re- 
gime in Ref. 9).  The time T,, can be estimated as the time it 
takes a sound wave to propagate across a fluctuation region 
of size r+, i.e., rPh -61, 'r+/a, where w, is the Debye fre- 
quency. The estimate of T, is extremely sensitive to the de- 
tails of the electron-phonon interaction and of the phonon 
spectrum. We will use the estimate from Ref. 10 for the de- 
formation interaction, with a violation of the selection rules 
in terms of momenta in amorphous materials (see also Ref. 
11). We find T, -&&/ WT. As a result, the inequality 
T, <rph leads to the condition T& (h, ) 2a/ Wr+. This con- 
dition is no more stringent than T&fi/rph, which is the con- 
dition under which a phonon fluctuation is of a classical 
nature. 

5.TlME LAG IN THE TEMPERATURE-DEPENDENT DISORDER 

It follows from the discussion above that the tempera- 
ture dependence of the disorder (and of the tails on the den- 
sity of states) stems from atomic degrees of freedom which 
correspond to (first) two-well potentials and (second) 
phonons. An important feature of the component associated 
with the two-well potentials is its time lag, which exists be- 
cause the barriers between wells must be overcome. The time 
scale T, for the tunneling through the barriers or for sut- 
mounting them in an activation process may be much longer 
than the experimental times involved (e.g., the times over 
which the temperature changes). In this case, one should 
observe effects stemming from a long-term relaxation of the 
measured quantities. A well-known example of this situation 
is the dependence of the low-temperature specific heat of 
amorphous materials on the measurement The ob- 
servation of time-lag effects might make it possible to experi- 
mentally distinguish a contribution from two-well potentials 
and from that of phonons. 

With an eye on the experimental data to be described in 
the following section of this paper, we look at a simple prob- 
lem concerning the time-lag properties of atomic particles in 
an ensemble of random two-well potentials. We assume that 
the system of two-well potentials is initially at thermody- 
namic equilibrium at the temperature T, . We are to deter- 
mine the average change in the variance of the populations of 
the wells, ( [An  ( t )  ] 2 ) ,  at a time t after an abrupt lowering of 
the temperature to a value T <  T,. It follows from ( 7 )  and 
(8)  that the slow component of the variance of the electron 
potential also varies in proportion to this quantity. 

Since the values of Tare fairly high ( > 300 K) ,  we con- 
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sider only the activation mechanism for the surmounting of 
the barrier: 

%=to exp ( u l T )  (33 

The condition r,<t determines that fraction of the total 
number of two-well potentials, 

which has undergone randomization over the time t .  Ac- 
cording to (7), the average change in the equilibrium popu- 
lation is f n-p, ( T - Ti ). Multiplying this quantity by the 
factor in (34), we find ([An(t)I2).  As a result, the slow 
component of the variance of the electron potential changes 
by an amount 

over a time t after an instantaneous lowering of the tempera- 
ture. Here 

An interesting aspect of the behavior in (35) is that it is 
not monotonic: Thought of as a function of T, the quantity 
AB goes through a minimum at a temperature 

The physical origin of this minimum can be explained as 
follows. If the cooling (Ti - T) is sufficiently small, the 
freezing of two-well potentials is inconsequential. As a re- 
sult, ( [ An(t) 12) is basically proportional to the difference 
between the equilibrium variances, 
( [Sn ( Ti ) ] 2, - ( [Sn ( T) 1 2). This difference increases with 
increasing value of the difference Ti - T. If the cooling is 
instead substantial, the changes in ( [An ( t )  12) are dominat- 
ed by the randomization over a time t. The rate of this ran- 
domization increases with increasing T. The extremum of 
( [An ( t )  ] 2, is reached at the temperature T,,, which corre- 
sponds to the optimum combination of rate of randomiza- 
tion and rate of change in the equilibrium population. 

We think that observing a minimum in the temperature 
dependence AB( T) is the best bet for experimentally identi- 
fying a contribution of two-well potentials to a temperature- 
dependent disorder. It would be considerably more difficult 
to detect a slight logarithmic dependence of AB on the ex- 
perimental time. 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

Tails on the density of states in amorphous semiconduc- 
tors are usually seen in the spectra of the absorption coeffi- 
cient, a (fiw ). These tails correspond to an exponential decay 
of a (fiw ) with decreasing photon energy. Experimental data 
in the region of the exponential decay of a ( h )  for amor- 
phous semiconductors are customarily described by an 
expression a a exp(fiw/E, ). It is usually a ~ s u m e d ' ~ - ' ~  that 
this expression corresponds to the tails on the density of 
states in ( 1 ), for which we have 

where E, is the width of the optical gap. The values of El for 
various materials range from 0.03 to 0.15 eV (Refs. 12-1 5). 

Strictly speaking, the dependence a(%) should reproduce 
the convolution of two band tails: that of the conduction 
band and that of the valence band. That circumstance is fre- 
quently ignored, and it is assumed that only one tail is impor- 
tant. This would be the larger tail, e.g., the tail on the valence 
band in a-Si:H (Refs. 12-15). We adopt that simplifying 
assumption here. We recognize that in adopting this as- 
sumption we are limiting ourselves to only an approximate 
comparison of theory and experiment. 

The purely linear dependence in (38) cannot be derived 
theoretically, for any type of disorder, in three-dimensional 
systems.' The approximate nature of this dependence has 
been emphasized in several p1a~es.l"'~ We have analyzed by 
computer a family of a(fiw) curves fitted by expressions (2)  
and (38). Figure 5 illustrates the results of this analysis with 
the particular example of an a(&) curve from Ref. 20. 
Expression (38) gives a good description of the experimen- 
tal curve over the fiw region from 1.4 to 1.7 eV. The quality of 
the approximation is of course independent of the choice of 
E,. When we use expression (2)  for the approximation, on 
the other hand, the agreement with experiment is sensitive to 
the choice of the energy E,. If we calculate E, by the Tauc 
procedure12 [in which a ( h )  is postulated to have a behav- 
i o r a a ( h -  Eg )2  at valuesfiw>E,], we find Eg=:1.7 eV 
and E, ~ 3 . 5  meV. The description of the absorption tail by 
expression (2)  is poorer than that by expression (38). If we 
instead use the value E, ~ 2 . 2  eV, on the basis of other data 
(e.g. the data in Sec. 3.4.4 in Ref. 12), we find a considerably 
improved agreement with experiment. In describing the ex- 
perimental data below we give preference to expression ( 2 ) ,  
since it has a theoretical foundation. 

Since the density of states in the tails is usually de- 
scribed by (38), as we mentioned above, the experimental 
data available correspond to specifically the energy param- 
eter El in expression (38). Treating that law as a linear ap- 
proximation of theoretical function ( 2 ) ,  we can write 

FIG. 5. Least-squares approximation of a ( h )  for samples of undoped a- 
Si:H. Points-Experimental data of Ref. 20; I-approximation by expres- 
sion ( 2 )  with E, = 1.7 eV and E,, = 3.5 meV; 2-approximation by 
expression ( 2 )  with E, = 2.2 eV and E,, = 1 meV; 3-approximation by 
expression (38) with E, = 1.7 eV and E, = 50 meV. 
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FIG. 6 .  The Urbach parameter E, versus the substrate temperature T, or 
the annealing temperature T, for amorphous silicon, from Ref. 14. The 
solid line corresponds to Eq. (40). 

where E is the energy near which the approximation is made. 
We will use (39) to compare the theoretical predictions 
made above with experimental data. 

Figure 6 shows experimental data from Ref. 14 on the 
parameter E l  for a number of samples of amorphous hydro- 
genated silicon. The maximum temperature reached in the 
prior treatment of the sample, T = max ( T, , Ts ), is plotted 
along the abscissa. The maximum temperature is either the 
annealing temperature T,, (the annealing was usually car- 
ried for t=; 10-30 min) or the temperature (T,) of the sub- 
strate on which the a-Si:H film was deposited from the gas 
mixture. In all cases, the temperature at which El was mea- 
sured was lower than T. It was found that the particular 
choice of measurement temperature had a much weaker ef- 
fect than the choice of Ton the value of E, . In other words, 
the test samples behaved as though they were frozen at the 
corresponding temperature T. 

The data reported in Ref. 14 were a summary of the 
results of numerous studies, which differed significantly in 
the conditions under which the a-Si:H was prepared. De- 
spite these differences, a correlation was found between El 
and T. According to Ref. 14, this correlation can be de- 
scribed by 

where the right side describes a parabola (Fig. 6).  
The minimum in the correlation dependence E l  (T)  is 

the topic of primary interest. We can explain the origin of 
this minimum by using the arguments in Sec. 5 regarding the 
time lag in the temperature-dependent disorder. For this 
purpose we ignore for the time being the random scatter of 
points in Fig. 6, and we consider relation (40) as a functional 
dependence [correspondingly, we change the inequality sign 
in (40) to an equals sign]. Since we have a functional de- 
pendence of this sort, we can introduce a common tempera- 
ture Ti (at least a fictitious one) from which the freezing to 
various values of Toccurs. The temperature Ti corresponds 
to a completely thawed equilibrium system in which all the 
potential barriers are overcome over the experimental time. 
In the case of infinitely slow cooling, this system relaxes to a 
state with an absolute minimum of the energy. This mini- 
mum corresponds to the crystal structure. It is thus natural 
to identify Ti as the crystallization temperature in the a-Si:H 
system; i.e., we set Ti ~ 9 0 0  K (Ref. 21). 

The mathematical description of this interpretation re- 
duces to the problem, discussed in Sec. 5, of the freezing of 

atomic particles in an ensemble of two-well potentials. Using 
the result found there, (35 ), along with (39), we conclude 
that the functional dependence E l  (T)  is parabolic, with a 
minimum at T,,, [see (37) 1. The functional dependence 
which has been found is the same as the empirical depend- 
ence E, ( T) if we ignore the random scatter of points in Fig. 
6. From the standpoint presented above, this scatter results 
from technological factors which have been ignored and 
which are different in the different procedures for preparing 
the a-Si:H. 

Our interpretation makes it possible to find an indepen- 
dent estimate of the temperature of the minimum in Fig. 6. 
For this purpose we note that for the temperature corre- 
sponding to complete freezing of the system, T, [see (36) 1, 
there are experimental estimates over the interval 
T, =. 300-400 K, depending on the particular type of a-Si:H 
sample and the particular conditions under which it was pre- 
pared21922 (we are ignoring the logarithmically weak de- 
pendence of T, on t ) .  Taking T, = 900 K, we find the esti- 
mate T,,, ~600-650 K from (37). This estimate agrees well 
with the experimental value T,,, = 590 K from (40). 

Another possibility for testing this theory comes from 
the empirical relation23 between the parameter E l  and the 
width of the optical gap, E,, in the case of thermally stimu- 
lated changes in E, and El in a-Si:H: 

Assuming for the purposes of this estimate that both edges of 
the mobility gap shift upon a change in the disorder and that 
the shifts are identical, equal to dT, we find dE, = 2dT. 
From (20) and (39) we then find 

Since IE 1 ~ 0 . 2 e V  (Fig.5),andwehavefi2/2ma2~5eV (on 
the order of the width of the band gap), we find the estimate 
dE,/dE, z - 6 from (42). The exact agreement with the 
constant in (41 ) is of course just fortuitous, resulting from 
the latitude in the choice of the parameter values in (42). 
However, there can be no doubt that there is an approximate 
agreement. 

Using the parameter values adopted above, along with 
the data in Fig. 6, we find the estimate ( V2)p,/a3 - 10 eV 
from (35) and (39). This energy is of atomic scale. The 
energy W/a3, constructed from the atomic constants [see 
(29) 1,  should be on the same order of magnitude. On this 
basis we conclude that the two-well potentials and the phon- 
ons make comparable contributions to the equilibrium tem- 
perature-dependent disorder in a-Si:H. However, it would 
hardly be possible for the ensemble of two-well potentials to 
reach equilibrium conditions over the actual experimental 
times at temperatures well below T,. We would thus expect 
that the observed manifestations of the order would be sensi- 
tive to the history of the sample. 

In the numerical estimates in this section of the paper 
we have ignored the difference between the optical and ther- 
modynamic tails on the density of states. For the optical 
measurements used here, we should of course discuss only 
the optical density go,, (El .  However, the data of Ref. 24, 
found by photoelectron spectroscopy, should probably be 
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described by the thermodynamic density g,, ( E ) .  The results 
of Ref. 24 must be compared in detail with optical data in 
order to identify differences between go,, ( E )  and g,, ( E )  . To 
the best of our knowledge, no such comparison has been 
carried out. 

We also note that in discussing the experimental data 
above we assumed that a-Si:H contains two-well potentials. 
This assumption is supported by independent magnetic-res- 
onance  experiment^.^^-^' 

We conclude by pointing out a consequence of the ap- 
proach presented above. The disorder in a system can be 
altered by applying some nonthermal agent to the two-well 
potentials, e.g., photons or electrons of sufficiently high en- 
ergy. When such an agent is applied to the equilibrium sys- 
tem, the tails on the density of states should grow, and the 
optical gap should shrink. When a external agent is applied 
to a nonequilibrium frozen system, the system may undergo 
a relaxation as a result, accompanied by a shrinkage of the 
tails on the density of states and a widening of the optical 
gap. Effects of this sort do indeed occur in amorphous semi- 
conductor~. '~ 
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