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This paper studies the anomalous behavior of the temperature dependence of the electron 
mobility p in HgSe:Fe in the model of short-range correlations between charged donors that form 
resonance levels in the semiconductor. The calculations are done in the approximations of direct 
ion-ion correlations and quantum screening. The electron-mobility values obtained through 
calculations that do not use a single fitting parameter are found to be in good agreement with the 
experimental data in the 4.2-80 K temperature range for values of the iron content in the 
important 1.8. 1019-5.3. lo2' cm - range. Thep ( T) dependence is also calculated by the method 
of long-wave fluctuations of charged-donor concentration, where it is assumed that at fairly low 
temperatures long-range order sets in the system of such donors, that is, a Wigner crystal forms. 
Finally, it is demonstrated that calculations ofp ( T) using this method with two fitting 
parameters yield results that agree qualitatively with the experimental data in a narrow low- 
temperature interval of 1.5-7 K and that the order-disorder transition temperature T, can only be 
lower than 1 K. 

1. INTRODUCTION 

At low temperatures HgSe:Fe crystals exhibit a concen- 
tration "anomaly" in electron mobility: within a certain 
range of concentrations N,, of the impurity iron atoms the 
mobility p increases with N,, (Refs. 1 and 2)." To explain 
such anomalous behavior, Mycielski3 suggested that the 
charged donors Fe3 + form a Wigner lattice (or a highly 
correlated liquid). The correlated positions of the donors 
result from the Coulomb repulsion between the donors, 
which tends to place the positive charges on the iron atoms 
that are the farthest away from each other. As a result of 
ordering of the charged impurity centers, electron scattering 
on these centers is weakened and the mobility increases in 
comparison to that in a crystal with randomly distributed 
impurities (say, HgSe:Ga). Mycielski's model seems attrac- 
tive but, being an idealization of a real crystal with defects, 
cannot be used directly to interpret the experimental data, 
especially quantitatively. Here are the main drawbacks of 
the model. 

1 ) Even for T-0 the lattice of charged donors has de- 
fects, since there is always a certain number of randomly 
distributed small donors in the sample, and in gapless semi- 
conductors these donors are always ionized. 

2) For HgSe:Fe crystals with NF,, + z 5. 1018 cm - 3 ,  the 
average distance between Fe3 + ions, r,, 2 r, of the Cou- 
lomb potential. In such conditions screening weakens the 
interaction between ions and there is little possibility of a 
regular lattice of charged donors forming in the crystal. 

3 ) The anomalous growth in p with the increase in iron 
content NFe in HgSe begins at NF, zz NTe = N,,, + z 5.10" 
cm-3 (for NFc > N & the electron number density n is con- 
stant: n = N ze ), while strict periodicity in the system of 
Fe3 + ions leading to an increase in p ( N  ,, ) can appear only 
as NF, /NFCl + -* co . 

Obviously, to describe the unusual behavior of p (NFc ) 
one must allow for the correlations in the spatial pattern of 

Fe3 + that are caused by ordering in the immediate vicinity 
of a given ion. Such calculations allowing for the Coulomb 
interaction between the nearest donors were recently done 
by Wilamowski et who described the degree of ordering 
in the system of ionized donors by a pair correlation function 
g ( r )  approximated by a theta function, g ( r )  = Q(r  - r,,, ), 
where r,,, is the radius of the correlation sphere. After se- 
lecting the pair correlation function in this simple way, they 
calculated the electron-momentum relaxation time T for 
scattering on ionized impurities and achieved rather good 
agreement between the calculated and experimental values 
of p at T = 4.2 K on the section of thep  ( N , ,  ) curve where 
5. 10'8(NF, <2. 1019 cm- 3 ,  that is, where Mycielski's mod- 
el, based on the assumption that there is long-range order in 
a system of charged impurities, is invalid. This approach, 
however, does not allow a description of all the electronic 
properties of the HgSe:Fe system either. For instance, the 
results obtained in Ref. 4 predict that thep (NF, ) curve has a 
plateau at N,, > NEe, while the experimental data suggest 
that mobility actually decreases in this concentration range. 
Wilamowski et aL4 were able to calculate the mobility and 
the Dingle temperature for only T = 4.2 K. At the same 
time, the unusual temperature dependence of p is obviously 
very important for establishing the reasons for the "anoma- 
lous" electronic prop~rties of HgSe:Fe crystals. 

Ablyazov and Efros5 have calculated the tempera- 
ture dependence of p for HgSe:Fe. They assumed that at 
fairly high temperatures (lower, however, than the energy of 
the Coulomb interaction of the Fe3 + ions, e2 (NFel + ) 'I3/%, 
with x the dielectric constant) the mobility value is limited 
by the vibrations of the Wigner lattice of charges and at low 
temperatures by the nonideality of the lattice caused by the 
random distribution of iron atoms. The idea of explaining 
the anomalous behavior of the temperature dependence ofp 
for NF, > N :, , that is, the sharp increase in electron mobil- 
ity as the temperature drops (contrary to the predictions of 
the Brooks-Herring theory), suggested in Ref. 5, is interest- 
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ing, but on the whole this approach and it: realization con- 
tain essential faults. First, Ablyazov and Efros assume that 
the set of charged donors Fe3 + forms a regular Wigner lat- 
tice. Second, in calculating the p ( T) dependence they used 
two fitting parameters, one of which is rather artificial since 
it must allow for the additionally introduced mechanism of 
electron scattering on neutral impurity centers, which, we 
believe, plays no important role in the conditions considered 
here. Besides, this fitting parameter strongly varies with the 
size of N,, , by more than a factor of ten in the 1. 1019 to 
1. lo2' cm- range. 

We believe that to describe the system of iron ions with 
mixed valency in a self-contained manner it is expedient to 
employ methods used for systems with short-range order. 
Such methods have been developed in liquid state theory and 
proved useful, for one thing, in studying the electronic prop- 
erties of liquid metals and melts. One of the most productive 
is the method of integral equations. In it one looks for the 
approximate integral equations that link the radial distribu- 
tion function g( r ) ,  which characterizes the spatial distribu- 
tion of particles, with the interaction potential U(r) between 
the particles. The method of integral equations makes it pos- 
sible to establish the shape of U(r) from the function g( r )  
found from x-ray or neutron diffraction studies. Among the 
various nonlinear equations suggested by researchers the 
most exact is the Percus-Yevick equation.6 An analytical 
solution in explicit form has been found only for a model in 
which the liquid is described by a set of hard spheres with the 
interatomic-interaction potential in the form 

where d is the diameter of a sphere. The use of this model can 
be justified by the fact that the results obtained with it are in 
good agreement with the results of numerical modeling by 
the Monte Carlo method. As shown by Ziman,' the structure 
and properties of liquids are determined primarily by the 
rapidly varying repulsive part of the potential, which with 
sufficient accuracy can be approximated by the hard-spheres 
potential. This suggests that the approach will also be fruit- 
ful in describing systems of charged donors, whose spatial 
correlation is ensured precisely by the Coulomb repulsive 
potential. 

The expression derived by Percus and Yevick for the 
distribution function in the hard-spheres approximation 
does not contain the temperature explicitly; this function 
depends solely on the density of the system of particles. But 
then how is one to allow for the temperature? Several paths 
can be taken. We will discuss two that we believe most suit- 
able for the HgSe:Fe system considered here. 

2. THE APPROXIMATIONSOF DIRECT INTERIONIC 
CORRELATIONS AND QUANTUM SCREENING 

The total distribution function2' 

which characterizes the correlation between atoms 1 and 2 
(with coordinates r ,  and r,) caused by the acting forces, can 
be represented as the sumof two parts.8 One, c( 1,2), de- 
scribes the direct correlation between atoms 1 and 2; the 

other describes the indirect correlation emerging as a result 
of interaction with neighboring atoms, so that 

where N is the particle concentration. 
The function c( 1,2) is nonzero only at small distances 

and depends primarily on the potential U( 1,2) of direct in- 
teratomic interaction, which falls off to zero over several 
interatomic distances. Therefore, for a fairly low concentra- 
tion N the solution to Eq. (2)  can be represented in the form 
of the Mayer function: 

U(1,2) e ( l , 2 ) =  erp -----) - 1. ( kBT 

Approximation of c(1,2) by the Mayer function (3) is 
valid for particle systems of moderate density, where the 
probability that the distance between atom 3 and atom 1 or 2 
is smaller than the radius of potential U( 1,2) can be ignored. 
It is clear, therefore, that the structure factor 

r sin ( q r )  
~ ( q ) =  I+4nN Jh(r)  dr , (4) 

0 !l 

which enters into the expression for the electron-momentum 
relaxation time T,  is temperature dependent. 

The relaxation time r can be calculated by the formula 
for scattering on a system of ionized impurities: 

where E, and fik, are the Fermi energy and momentum, m 
the effective mass, and V ( q )  the matrix element of potential 
U. This formula can be used to calculatep = e r / m  as a func- 
tion of temperature for different values of the iron concen- 
tration N,, . This last quantity does not enter into Eq. ( 5 )  
explicitly. It is easy to see, however, that both E, and k,  
depend on N,, . Indeed, the electroneutrality equation 

where n = J,"pCon (E) f ( ~ ) d ~  is the electron number density 
(p,,, is the density of states in the conduction band, and f the 
Fermi distribution function), can be used to find E,. These 
calculations assume that the band parameters of the nonpar- 
abolic Kane band are the same as for HgSe. To calculate the 
number density of the donors occupied by electrons (i.e., 
neutral donors), N,,? + = S;pF, (E)  f ( ~ ) d ~ ,  we must know 
the density of statesp,. Assuming that the ground state of 
iron donors is sufficiently sharp, we can put 

For high N,, present in HgSe samples formula (7) is a rath- 
er crude approximation since it does not allow for the natu- 
ral and concentration broadening of a level or for Coulomb 
correlations between the charged donors. However, calcula- 
tions that use a constant value ofp,, in an interval of finite 
width (this requires introducing an additional unknown pa- 
rameter, the level broadening) lead to practically the same 
results as formula (7).  
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Now let us consider the important problem of choosing 
the interaction potential U( 1,2). For the system of charged 
donors ~e~ + considered here it is natural to describe the 
interaction energy between the donors per donor via the 
screened Coulomb potential in the Thomas-Fermi approxi- 
mation: 

where rIg2 = lr, - r21. 
Allowing for the fact that Eq. ( 8 provides an approxi- 

mate representation of the true interaction between the 
Fe3 + ions and that the Mayer function (3)  is also an ap- 
proximation, we can attempt to "correct" the function (3)  
or the Thomas-Fermi potential via fitting parameters. Such 
parameters were introduced into the exponential and the 
pre-exponential factor in (8 1. It was found, however, that no 
values of the fitting parameters yield agreement between the 
calculated and experimental temperature dependences of 
the electron mobility p .  Not only is there no quantitative 
agreement; even qualitatively the theoretical and experi- 
mental p ( T )  curves are different: one is convex, the other 
concave. 

Note that the Mayer function (3) constitutes a rather 
good approximation for the function c( 1,2) since, as noted 
earlier, r, 5 ri, that is, the radius of the sphere within which 
U( 1,2) acts is of the order of, or less than, the average dis- 
tance ri between two ions, which means that a third ion does 
not enter the sphere. 

As for the Thomas-Fermi approximation, it is clearly 
insufficient for the present case. This approximation is valid 
when the potential varies rather slowly in space, that is, for 
large wavelengths: q-0. For fairly small q, that is, q 4 l/ri, 
when the Thomas-Fermi approximation is valid, the Four- 
ier transform of the screened potential (8) is 

For vectors q of the order of the inverse of the average intera- 
tomic distance, q- l/ri, the potential U,_, ( r )  cannot be 
thought of as slowly varying. Since in our problem the radius 
of the potential is fairly small, r, 5 ri , we must allow for the 
contribution of large values of q when calculating V(q) . This 
means that rather than the semiclassical Thomas-Fermi ap- 
proximation one must use an expression given by the quan- 
tum screening theory in which the respective self-consistent 
Hartree equation is solved. Here neither the smallness of 
potential U, needed by the Thomas-Fermi equation to lin- 
earize the Poisson equation, nor the slow variation of U (this 
is achieved by allowing for the contribution of large q) is 
assumed. The solution to the Hartree equation is 

where 

In the long-wave limit, V, (q) and V,-, coincide: 
V(q-0) = 4?re2/(xr; '). 

If we represent (10) formally as (9 ) ,  we can easily see 
that the effective screening length r, is a function of q, grow- 
ing with q, that is, the screening of the short-wave compo- 
nents of the potential (q- co ) steadily weakens. The poten- 
tial U(r) in the quantum screening theory (the Hartree 
potential) is specified by the following f ~ r m u l a : ~  

For small values of r this potential falls off faster than 
the potential (81, and for large values of r, owing to the 
singularity at q = 2k,, it contains an oscillating term pro- 
portional to cos (2k,r). In contrast to the Thomas-Fermi 
potential, the curve representing ( 1 1 ) intersects the axis of 
abscissas at a certain point r = r,, . 

Using potential ( 1 1 ) for calculating the relaxation time 
r is difficult computationally. We, therefore, approximate 
( 1 1 ) in the following manner: 

For r < r,, this potential is smaller than ( 1 1 ) and tends 
to ( 1 1 ) as r- r,, . For r > r,, we have set U(r) equal to zero 
since the amplitudes of the oscillations in ( 1 1 ) are very small 
and, according to (3 ), c(  1,2) tends to zero. Such an approxi- 
mation appears reasonable because in the region where 
r-r,, and (U/k, T) < 1 potentials (1 1)  and (12) differ lit- 
tle. 

The interaction potential (12) is substituted into the 
Mayer function (3),  which is used to calculate the structure 
factor S(q) .  Of course, in (4)  N must be replaced with the 
concentration of the trivalent ions, N,,, + . The upper limit of 
integration in (4) is set at r,, = 0.6ri, since for r, < r,, the 
interaction between the closest Fe3 + ions is important. The 
value of r,, at which U(r) vanishes is calculated by formula 
(11). 

After combining the Mayer function ( 3 )  with the cho- 
sen potential, we calculate the correlation radius r,,, . Figure 
1 shows the temperature dependence of r,,, plotted as a re- 
sult of our calculations. We see that r,,, decreases as the 
temperature rises. The correlation function g( r )  spreads out 
in this case near r,,, , that is, it differs from the step function 
corresponding to the hard-spheres approximation. 

The physical meaning of the above approach to solving 
the problem of temperature dependence of the electron mo- 
bility is obvious. At finite values of t the electrons migrate 
between the Fe2+ and Fe3 + ions. As the temperature 
grows, the migration intensifies and, as Eq. (3)  shows, the 
correlations between the charged Fe3 + donors weaken, the 
correlation radius r,,, decreases, the system of impurity ions 
Fe3 + becomes ever more random, the probability of elec- 
trons scattering on these ions rises, andp drops. Here we can 
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FIG. 1. Correlation radius versus temperature. 

speak of a transition from the state of a correlated liquid to 
the gaseous state. 

The decrease in p with rising temperature follows di- 
rectly from the expression for the relaxation time ( 5 ) .  In- 
deed, as t grows, the only function in the integral in ( 5 )  that 
is temperature dependent, S(q) ,  grows in the important 
range of q values, which follows directly from Eqs. ( 3 )  and 
( 4 )  and is illustrated by Fig. 2, where S(q)  is depicted for 
two temperatures, 5 and 50 K ,  at N,, = 1.8. 10'9cm-3. The 
value of Snoticeably increases with temperature in the inter- 
val of values ofq where the integrand of ( 5 )  has a maximum. 
Since S ( q )  increases with T,  the mobility drops, in accor- 
dance with ( 5 ) .  

The results of calculations of the temperature depend- 
ence of the electron mobility p ( T )  with the iron content N F ,  
varying between 8.8.10'' and 5.3.10'' cm- are depicted in 
Fig. 3. Here we give the experimental values ofp  taken from 
Ref. 10 from which the phonon-scattering contribution has 
been subtracted, following Ref. 1 1 .  In calculating p ( T )  we 
used the following values of parameters: n = NFe3+  
= 5.10'' c m - 3 ,  x = 20, m = 0.07 m,, r, = 5.8.10-' cm, 

and r, = 4.7.10W7 cm. Figure 3 shows that the calculated 
mobility values are in good agreement with the experimental 
values for all N,, . Comparison of the calculated curves rep- 
resenting~ ( T )  with the experimental curves from which the 
phononscattering contribution has not been subtracted can 
be done by analyzing Fig. 4 (N,, = 5.3. lOI9 cm- ). We see 

FIG. 2. The temperature dependence of the functions S(q) (curve 1, 5 K, 
and curve 2, 50 K )  and F(y) = y'/(y2 + r ,  '1' (curve 31, with 
y = q/2k, 

FIG. 3. The temperature curves representing the theoretical results (solid 
lines) and experimental data'' for the electron mobility in HgSe:Fe sam- 
ples with the following values of iron content N ,  (cm - ): (1) 8.8. lo1', 
(2) 1.8.1019, (3)  8.8.101', (4) 1.8.102", and (5) 5.3.102'. Inaccordance 
with Ref. 11, the phonon-scattering contribution has been subtracted 
from the experimental values of p .  

that for T >  40 K the calculated values of p exceed the mea- 
sured. This discrepancy suggests that phonon scattering 
contributes an ever growing amount as the temperature 
rises, a factor ignored in calculations. 

The fact that the experimental data on p ( T) for sam- 
ples with N,,  > 1.8. lOI9 cm - practically coincide with the 
results of calculations that used no fitting parameters 
seemed incredible. But, faith in the results was strengthened 
by the discrepancy between experimental and calculated 
curves for N,, $. 1.8. 1019 cm - 3 .  Matching calculation with 
the experimental data for N,, = 1.8.1019 cmp3  and 
8.8. 10" cm-3 proved possible only by introducing the pre- 
exponential factors of 1.7 and 1.2, respectively, into the dis- 
tribution function (3  ) . The need for such "correction" of the 
Mayer function is due, apparently, to the fact that at rela- 
tively low iron content N F ,  when N,,, + is only a fraction 

I,,,, 
' 5  15 45 6.5 ctl 

FIG. 4. The temperature curves representing the theoretical results (solid 
line) and experimental data1' for the electron mobility in HgSe:Fe sam- 
ples with N,, = 5.3. lOI9 c m 3 .  The experimental values o fp  are depict- 
ed without the phonon contribution (0) and with the phonon contribu- 
tion (0 ) .  
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smaller than N F , ,  the correlation in the spatial distribution 
of charged donors is worse than for N F ,  > N,,, + : the system 
of Fe3 + ions is more random. The difference in the fitting 
parameters for samples with N F ,  = 8.8.10" cm-' and 
NFe  = 1 . 8  10'" cm - is most likely caused by the spread in 
the mobility values in the samples, which in view of the man- 
ufacturing technology should have had the same iron con- 
tent. This is true not only of the region of low iron content 
but also of samples with N,,  > 5.3.10" c m '  , for which a 
large spread in values ofp (for samples that according to the 
manufacturing technology have the same value of NFe  ) is 
observed owing to the fact that a fraction of the iron atoms 
enters into the HgSe lattice as interstitial atoms rather than 
substitution atoms. To match the theoretical and measured 
values ofp  in such samples a fitting parameter differing sub- 
stantially from unity must be introduced in the pre-exponen- 
tial factor in ( 3 ) .  

The obtained agreement between the calculated and ex- 
perimental temperature curves for electron mobility for a 
broad range of concentrations of the iron impurity in HgSe 
may indicate that the model of short-range correlations that 
uses the modified Thomas-Fermi interionic interaction po- 
tential ( l l ) and the correlation Mayer function (3)  serves 
as an adequate approximation. 

3. THE APPROXIMATION OF LONG-WAVE FLUCTUATIONS 
OF THE CHARGED-DONOR CONCENTRATION 

The anomalous behavior of the temperature depend- 
ence of electron mobility was analyzed above in the short- 
range correlation approximation. The model of a Wigner 
crystal, which presupposes the existence of long-range or- 
der, was discarded on the grounds discussed in Sec. 1. Yet is 
clear that the model provides a qualitative explanation of the 
anomalous increase in ,u as the temperature decreases: the 
lower the temperature, the rarer the hopping of electrons 
between the Fe3 + and Fez + ions, the system of ions Fe3 + 

becomes more and more ordered, and the scattering on this 
system weakens. Below we attempt to give a meaningful 
quantitative interpretation of the anomalies in thep(T)  de- 
pendence by assuming that at fairly low temperatures a tran- 
sition of the "highly-correlated-liquid-Wigner-crystal" 
type in the system of ions Fe3 + becomes possible. 

The theory of phase transitions states that long-wave 
fluctuations in the density of the medium increase near a 
transitions point. In our case these are fluctuations of the 
concentration of charged donors ~e~ + serving as scattering 
centers for electrons. The degree of ordering of a system of 
particles can be defined by a correlation function of the type 

where r,,, is the correlation length, specifying the size of the 
ordering region. The temperature dependence of r,,, de- 
scribes the variation in the degree of randomness of the sys- 
tem. At very high temperatures r,,, -0, and the system is 
completely disordered. As the system is cooled, there first 
emerges short-range order (within one to two interatomic 
distances), and then r,,, becomes very large and character- 
izes critical fluctuations of concentration. When r,,, - CO, 
long-range order sets in. The temperature at which this oc- 
curs is the order-disorder transition temperature. 

In the vicinity of a phase transition point, where the 
scale of ordering in the system becomes large, long-wave 
fluctuations of the concentration of scattering centers must 
play the main role in the scattering of electrons. Information 
about variations in the number density of the system of parti- 
cles can be obtained by studying the structure factor S(q)  . In 
our situation the behavior of S(q)  for small values of the 
momentum transfer, q = Ik - k'l, is essential (small-angle 
scattering). This distinguishes the scattering of electrons on 
long-wave fluctuations of concentration from scattering in 
the model of short-range fluctuations, according to which 
the fairly large values of momentum transfer, q - k,, pro- 
vide the main contribution to scattering [this follows direct- 
ly from formula (5)  for the relaxation time]. 

The limiting value S(q)  1 ,  = , = S(0)  describes macro- 
scopic variations in the density of the medium. In Eq. (4) the 
integral of the binary distribution functiong(r) can be inter- 
preted as the ensemble average of the square of the number 
-4'" of atoms in a given volume 0 :  

where N = JY/R. 
Since the amplitude of the macroscopic-density fluctu- 

ations is proportional to the isothermal compressibility X ,  
for a thermodynamic system of the liquid or crystal type we 
have 

According to Landau's theory of phase transitions, in 
the vicinity of T, compressibility grows sharply, 
x a ( T - Tc ) - ' (see Ref. 12), and S(0)  becomes very 
large. The Fourier transform of the direct correlation func- 
tion, c(q),  is related to the structure factor by the simple 
formula7 

and c(0) - 1. Expanding c(q) in the neighborhood of q = 0 
in a power series in q2, we get 

where the factor r, must be found. Substituting (17) into 
( 16) and employing condition ( IS), we find that 

where t = T/Tc , and rf,, = Ar; It - 1 )  - ', with A the fitting 
parameter in the theory. The main physical assumption 
made in deriving formula ( 18) is that r, is the parameter of 
local order in the medium and changes insignificantly even 
in the vicinity of the transition point. 

The formula for the relaxation time r in the case of elec- 
tron scattering on long-wave fluctuations of density can be 
obtained by substituting the expression (18) for the struc- 
ture factor into ( 5 ) : 
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.cB is the Bohr energy, 

Since we are considering scattering on long-wave fluc- 
tuations, that is, q42k,, the temperature interval within 
which Eq. ( 19) is valid has an upper bound, 

while from below the validity of ( 19) is limited by the inap- 
plicability of Landau's theory in the neighborhood of Tc . 

As Eq. (19) shows, the theory contains three unknown 
parameters that must be found ro, Tc, and A. Varying the 
parameters Tc and A, we tried to describe the experimental 
p (T )  curves for different values of iron content in HgSe:Fe. 
Parameter ro can be excluded from ( 19) by taking the ratio 
p ( T)/p ( To), where To was chosen equal to 4.2 K. The val- 
ues of the main parameters such as m ( E ~  ) and NFea + were 
chosen the same as in the method based on the direct-corre- 
lations and quantum-screening approximations, studied ear- 
lier in this paper. 

It would seem that having two fitting parameters at our 
disposal offers great possibilities for matching the theoreti- 
cal and experimental p( T) curves. Analysis has shown, 
however, that for T, > 4 K no variation of parameters can 
make these theoretical and experimental curves match even 
qualitatively (curve 1 in Fig. 5). At T, = 1 K the calculated 
p ( T) curves for different iron content in HgSe:Fe are close 

FIG. 5. The temperature curves representing the theoretical results (solid 
lines: curve 1, T, = 5 K; curve 2, T, = 1 K )  and experimental data'' for 
the electron mobility in HgSe:Fe samples with N,, = 1.8.10'~ cm-3 
(Refs. 10 and 13). In accordance with Ref. 11, the phonon-scattering 
contribution has been subtracted from the experimental values of p. 

to the results of measurement in a fairly narrow temperature 
interval, 1.5-7 K. But, unfortunately, at temperatures below 
1 K mobility has been measured only at one point, T = 0.04 
K (Ref. 13), which does not permit comparative analysis of 
the results of calculations and measurements. 

Comparing Figs. 5 and 3, we see that thep(T) calculat- 
ed by the short-range correlation method without introduc- 
ing fitting parameters practically coincide with the mea- 
sured values in the entire 4.2-80 K range, while the method 
of long-wave fluctuations of concentration does not allow 
achieving satisfactory agreement above 7 K for a single value 
of the fitting parameters. This firmly suggests that the model 
based on the assumption of long-range order in a system of 
charged donors (i.e., Wigner ordering of such donors) does 
not reflect the real situation with HgSe:Fe crystals. If order- 
ing does emerge, it is only at temperatures below the transi- 
tion temperature T, - 1 K. 

4. CONCLUSION 

Summarizing, we must emphasize that the calculation 
method based on the model of short-range correlations be- 
tween charged donors Fe3 + allows for a satisfactory quanti- 
tative explanation of the anomalous temperature behavior of 
the electron mobility in HgSe crystals alloyed with iron 
whose atoms form resonance donor levels. Calculation of the 
temperature dependence of p by the method of long-wave 
fluctuations of the concentration of Fe3 + ions based on the 
assumption of long-range order in the system of these ions 
yields qualitative agreement with the experimental data only 
within a narrow temperature range of 1.5-7 K. It is safe to 
say that the assumption about the Wigner ordering in the 
system of Fe3 + ions does not agree with the experimental 
data on HgSe:Fe crystals. If ordering does appear, it is only 
for T <  T, - 1 K. Our attempts to calculatep ( T) at low tem- 
peratures by other means produced not only no quantitative 
but even no qualitative agreement. Thus, the model of short- 
range pair correlations, which made it possible to explain 
both the anomalous increase in electron mobility as the iron 
content in HgSe grows (see Refs. 2 and 4) and the anoma- 
lous temperature behavior of mobility, would seem to cor- 
rectly reflect the nature of the interaction between the 
charge donors Fe3 + in HgSe:Fe and their role in electron 
scattering at low temperatures. 

"Similar behavior of electron mobility has been discovered in HgSe:Cr 
 crystal^.^ 
The distribution function g ( r )  has peaks at distances equal to the radii 
of the lst, Znd, etc. coordination spheres. As r increases, the peaks 
broaden, and for large r spread out completely against the background 
of thecontinuum, whereg(r) -. 1. It is, therefore, often more convenient 
to reckon the distribution function from this background, that is, use the 
function h ( r )  . 
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