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A complete solution is derived for the problem of the appearance of superconductivity in 2 0  and 
3 0  low-density two-band models with a repulsive interaction. The analysis is carried out in the 
limit of a slight one-particle hybridization. The case of two electron bands and the case of one 
electron band and one hole band are examined. The tendency towards pairing which arises in the 
two-band model with greatly different masses is discussed. The role played by off-diagonal matrix 
elements of the Coulomb interaction is also analyzed. 

1. INTRODUCTION 

Research on superconductivity in highly correlated 
electron systems, such as the high T, superconductors, 
heavy-fermion systems, and C,,, has recently diverted the 
interest of many researchers from the one-band model to the 
two-band model. In the case of 3 0  heavy-fermion systems, 
this shift of interest was spurred by experimental data and 
band-theory calculations which showed that two bands are 
present at the Fermi level: an s-p band of light electrons with 
masses of ( 1-10) me and an f-d band of heavy electrons with 
(50-200) m e .  In the case of the quasi-2D high T, supercon- 
ductors, the interest in the two-band model stems from 
Emery's idea' that a superconducting pairing is implemen- 
ted by holes of an oxygen band through the exchange of spin 
excitations of a localized copper band. 

The switch to a multiband analysis of superconductivi- 
ty in quasi-2D systems of the C,, type was recently made in 
Ref. 2. In the case of strongly correlated systems, one of the 
bands (the "heavier" one) usually has a larger electron den- 
sity and is analyzed in the limit of a strong Hubbard repul- 
sion at a site, U, > t .  The superconductivity problem can be 
solved in this limit only by the mean-field approach (as in 
the technique of slave bosons, for example). It was asserted 
in Refs. 3 and 4 that if the number density of particles in the 
heavy band is small (n, < 1 ) then even in the case of a strong 
Hubbard repulsion there exists a small perturbation-theory 
parameter, U2 r ~ ; ' ' ~ / 8 t  < 1 in the 3 0  case and +ln(n2 a2)  g 1 in 
the 2 0  case, and the one-band superconductivity problem 
can be solved exactly (in the sense that the diagrams can be 
controlled). This circumstance, combined with the possible 
increase in T, in the 2 0  two-band model (pointed out in Ref. 
5),  convinced us of the need to derive an exact solution in the 
two-band, low-density problem (with a one-particle hybri- 
dization and with all the matrix elements of the Coulomb 
interaction). The idea is to work from this solution to at- 
tempt to move on to the more pertinent situation in which 
the particle density in the heavy band is on the order of unity. 
We derive this comprehensive solution in the present paper. 
We show that in the 3 0  two-band model with greatly differ- 
ent masses and with a slight one-particle hybridization, 
f < w, < w, (w is the energy "filling" of the band), a pairing 
of heavy-band electrons through polarization of the same 
(heavy) band is the most effective pairing. In other words, 
the one-band model is sufficient for the heavy mass in this 
case. In the limit of a low-density heavy band, the pairing 

corresponds top symmetry,3 and the transition temperature 
T, -&,exp{ - 1/U :) is determined by second-order per- 
turbation - theory for the effective interaction 
I? = U2 + U: lI ( i j )  . As the heavy band becomes nearly 
half-filled, a d-pairing becomes preferred.' An s pairing in a 
nonphonon model is of course impossible, because of the 
direct Coulomb repulsion (hard-core repulsion) at a site. 
The light band in this model and the increase in T, due to the 
two-band nature of the model can be important only in the 
limit of a strong hybridization, f > w, . 

In the 2 0  case the situation is totally different. As was 
shown in Ref. 7, the 2 0  polarization operator calculated for 
a quadratic electron spectrum is of such a nature that no 
superconducting pairing arises in the one-band model. It 
was shown in Ref. 5 that a pairing is possible only if a second 
band is taken into account through an interband Coulomb 
interaction U, A ,  Fi,  = U,at a ,  b 2 b,, (a  and b are the spe- 
cies of particles). The pairing may be sharply intensified 
when the densities of the two bands form the optimum ratio. 

In this paper we compare the effectiveness of supercon- 
ducting pairing by this mechanism with that by other mech- 
anisms involving off-diagonal matrix elements, such as 
Ka a + bb. The role of the element K was first discussed in 
Refs. 8. In those papers and also in a more recent paper,9 it 
was shown that K leads to the appearance of superconduc- 
tivity in the two bands simultaneously (at the same value of 
T, ), although the value of T, itself is determined primarily 
by the heavy band. The superconducting gaps in the two 
bands, A, ( T) and A, ( T) , behave differently. 

It was demonstrated by Yamaji" that an s-pairing is 
possible even in a purely Coulomb, nonphonon situation if 
the diagonal elements of the Coulomb interaction ( U, and 
U2 ) are small ( U, U, < K '). It was stated in the same paper 
that even in the case K < U1 U2 a superconductivity could 
appear and could even be strengthened in the s-channel, by 
virtue of an interaction of the superconducting and insulat- 
ing channels," if one of the bands is an electron band, while 
the other is a hole band, and the particle densities in the two 
bands are approximately the same (ideal nesting). 

We show below that the assertion in Ref. 10 regarding 
the possibility of s-pairing is erroneous in the case of small K. 
An s-pairing due to an interaction between superconducting 
and insulating channels (the parquet situation) does not 
arise, and the dominant mechanism for superconductivity is 
the interband Coulomb interaction U,, even near nesting. 
A p-pairing arises below the temperature 
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T, -~,exp{ - 1/U:). In the case of exact nesting 
(pFI =pF2 ), an insulating pairing comes into play first (at 
T, -cFexp{ - 1/U: )), and there is no superconductivity. 
If both bands are electron bands or both hole bands, there is 
no intensification of the off-diagonal elements of the Cou- 
lomb interaction by nesting, so the element U3 is even more 
dominant in the appearance of superconductivity. As in the 
3 0  case, a one-particle hybridization f can be ignored if it is 
smaller than the energy "filling" of the heavy band, lu,: 

f<w,. 
Finally, as discussed above, it is a fairly simple matter to 

achieve ap-type superconductivity in 2 0  and 3 0  two-band 
models with a low density; it is fairly simple even to sharply 
strengthen the superconductivity in the 2 0  case. As the den- 
sity increases, d-pairing may result. In these models, it is 
extremely difficult to find the s pairing which probably oper- 
ates in the high T, systems because of the role played by the 
contact Coulomb repulsion U in first-order perturbation 
theory for the effective interaction F. Furthermore, in the 
2 0  and 3 0  one-band models, the second-order corrections to 
F(q) ,  i.e., U ,II(q) (Refs. 5 and 12), are repulsive for s pair- 
ing. In the two-band model, with a pronounced difference 
between the light and heavy masses, the second-order cor- 
rection for the effective interaction of two light particles, 

changes sign (we are assuming m, ) m, and U3 - U, ). The 
appearance of an attractive correction in second-order per- 
turbation theory for the s-channel raises the hope that it may 
be possible to find an s-pairing in a two-band model as we go 
to high densities. However, this hope could not be realized 
fully, because the change in the sign of T, would correspond 
to a negative static screening c(q,O), which would in turn 
lead to an instability. Nevertheless, a significant weakening 
of the direct Coulomb interaction might smooth the way for 
an s pairing when other degrees of freedom (an electron- 
phonon or electron-magnon interaction) are brought into 
the discussion. 

2.30 TWO-BAND MODEL 

When the off-diagonal Coulomb matrix elements and 
one-particle hybridization are ignored, the 3 0  two-band 
model takes the form 

where E, = (p2 - p:, )/2rn, and E~ = (pZ - p i 2  )/2m2 are 
the electron spectra in the first and second bands, m, and m2 
are the electron masses,p,, andp,, are the Fermi momenta, 
U, and U, are the matrix elements of the intraband Cou- 
lomb interaction, and U3 is that of the interband Coulomb 
interaction. The effective irreducible vertices T, and T, of 
the two bands are written as follows in the Cooper channel 
for Hamiltonian ( 1 ) in first- and second-order perturbation 
theory: 

incoming and outgoing momenta in the Cooper channel for 
the first and second bands, and 

are the Lindhard functions. The Cooper loops for the two 
bands are 

The superconducting transition temperatures are found 
from the equations T:"c, = 1 and T:')C2 = 1, where 1 is the 
orbital angular momentum of the Cooper pair. If the inter- 
band Coulomb b interaction U3 is ignored, the bands become 
independent, and the corresponding transition temperatures 
become, according to Refs. 3 and 11, 

5nZ 
T,~-EFZ exp ( - 4 ( 2  1n 2-1) (m2pFz~ziln)z I 

The superconductivity in each band is of ap-pairing type. An 
s pairing is of course impossible because of the Coulomb 
repulsion U ,  and U2 in first-order perturbation theory. In 
most cases, U, will be of the same order of magnitude as the 
intraband Coulomb matrix elements U, and U2, so it gener- 
ally cannot be ignored. In the "Hund case," i.e., when the 
two bands are formed by electrons of the same atom, U3 may 
be greater than (possibly much greater than) U, and U, . 

When U, is taken into account, the equations for the 
transition temperatures of the two bands in thep channel are 

where 

It can be seen from the results of Ref. 7 that the function 
f, (pF1 /pF2 ) goes through a maximum atp,, /pF2 = 1.4. Its 
value at the maximum is approximately 1.8 times the quanti- 
ty 

where q, =pi  -p;, ij, =p i  +pl  (i = 1,2), p, andp,! are the f1(1)=4(21n 2-1)/5n2. 
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Note that f, ( co ) = 0. The function f2 (p,, /pF2 ) falls off 
monotonically from the value 

to zero. 
Analyzing Eqs. (4) ,  we easily see that the transition 

temperatures T,, and T,, depend strongly on not only the 
relative filling of the bands, p,, /pF2 = (n ,  /n, ) I", but also 
the mass ratio of the bands. If m, ) m, , and if p,, and pF2 
are comparable in magnitude (this situation is typical of 
heavy-fermion systems), then we have T,, ) Tc, , and Tc2 
differs only slightly from U,.  In other words, a pairing of 
heavy particles through the polarization of (again) heavy 
particles occurs. The effect of the light band in the heavy- 
fermion situation can be seen indirectly only in the case of a 
strong interband interaction U 3 .  In this case, as was shown 
in Ref. 13, a pronounced additional shrinkage of the narrow 
band occurs. In other words, there is a pronounced increase 
in the heavy mass. As a result, there is a pronounced increase 
in T, [see ( 3 ) ] .  

If the masses and Fermi momenta of the bands are in- 
stead comparable in magnitude, the quantity U, is impor- 
tant, and the larger of the Tc's may rise significantly. For 
example, in the case with m , = m 2 = m ,  
U, = U, = U3 = U, andp,, /pF2 = 1.4 (the optimum situ- 
ation), we have T,, > T,,, and T,, is given by 

The argument of the exponential function for T,, thus turns 
out to be smaller than that in the one-band case by a factor of 
3.6 [see ( 3 ) ] .  

All the results of this section of the paper were derived 
by ignoring the one-particle hybridization f [in Hamiltonian 
( I ) ,  hybridization leads to the appearance of a term 

f(a + b + H.a.) 1, which is small in comparison with the en- 
ergy separation of the level of the chemical potential and the 
bottom of the heavy band. In heavy-fermion systems, this 
condition generally may not hold; i.e., hybridization may be 
important. 

3.2DTWO-BAND MODEL 

It was shown in Ref. 7 that there is no superconductivi- 
ty in the one-band Coulomb problem because of the particu- 
lar nature of the 2 0  polarization operator II ( q )  calculated 
for a quadratic spectrum. On the other hand, it follows from 
Ref. 5 that in the two-band problem a superconductivity not 
only occurs in the 2 0  case with a repulsive interaction but 
may in fact be substantially strengthened. The onset of a 
superconductivity is related in a decisive way to the presence 
of an interband Coulomb interaction U, . Another scenario 
for the appearance and strengthening of a superconductivity 
in a 2 0  two-band model was studied in Ref. 10. That scenar- 
io involves the presence of an off-diagonal Coulomb matrix 
element K (the corresponding term in the Hamiltonian is 
Ka + a  + bb ). The matrix element U3 plays only a auxiliary 
role. It is therefore necessary to carry out a comprehensive 
analysis of the 2 0 ,  two-band Coulomb problem and to com- 
pare the various superconductivity mechanisms in terms of 
effectiveness. 

The complete Hamiltonian of the 2 0  two-band model is 

(here and below, we omit the momentum variables where we 
can do so without causing any confusion) 

The quantities E ,  and E, in (5) are the spectra of the parti- 
cles of species a and b, U ,  and U, are the matrix elements of 
the intraband Coulomb interaction, U3 is the interband Cou- 
lomb interaction of the density-density type, u3 is the ex- 
change part of this interaction, and K, U,, and U, are off- 
diagonal (in terms of the conservation of the particles of 
each species) elements of the Coulomb interaction. The lat- 
ter elements are generally also of an exchange nature. 

As in the 3 0  case, we ignore one-particle hybridization 
below, assuming that it is either completely absent or weak 
in comparison with the energy width of the filled states in 
each band (in comparison with the distance from the bottom 
of the band to the level of the chemical potential). Generally 
speaking, the matrix elements U, and U, give rise to a one- 
particle hybridization in second-order perturbation theory 
and correspondingly lead to corrections to the particle spec- 
trum in the bands, rendering the band index a somewhat 
indefinite quantum number. Estimates show, however, that 
in the effects of interest here, within the framework of the 
weak-coupling approximation, those corrections can be ig- 
nored. 

We also note that an analysis of the multiband problem 
is possible only in the clean limit, since in the opposite limit 
the only parameter characterizing the state ofa particle is its 
energy. In other words, the problem effectively becomes a 
one-band problem.I4 

We thus have the following expression for the particle 
spectrum in (5)  : 

in the case of two electron bands or 

in the case of one electron band and one hole band. 
The standard expression for the second-quantization 

interaction Hamiltonian is 

In order to derive (5),  we need to write the operator \V in this 
expression in the form of a linear combination of the opera- 
tors a and b: 

where p, ( r )  and p, ( r )  are Bloch functions which diagona- 
lize the one-particle Hamiltonian 
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and u,  ( r )  is the crystal field. For the Coulomb constants in 
(5) we find expressions of the type 

where i, j, k, m take on the values 1 ,2  (the band index). We 
can work from this expression to estimate the relative order 
of magnitude of the Coulomb constants in (5).  For example, 
if 

then 

UL=U~~,,,-U,=IJ ,,,,, - tU,  

and 

K = U ~ ~ , ~ z ~ ~ ~ = U ~ z , i o ~ t ~ u ~  

where t is an overlap integral. 
In the typical case t 1 ,  the Hamiltonian (5) becomes 

the standard two-band Hamiltonian, ( 1 ) . One can of course 
imagine a situation in which we have t 5 1 (if, for example, 
the distance between sites is small), and all terms in (5)  are 
important. Nevertheless, even in the case t& 1 there are sev- 
eral effects which cannot be understood unless we retain the 
exchange terms in (5).  For example, it was shown in Ref. 8 
that incorporating the term Ka +a+  bb in the two-band 
Hamiltonian with an attraction between particles leads to 
the simultaneous opening of superconducting gaps in each of 
the bands, even in the case of small K. This is true even 
though the value of the transition temperature, which is the 
same for the two bands, is determined primarily by the diag- 
onal interaction elements in this case. In light of all these 
ideas, we see that we must completely solve the problem of 
superconductivity in a two-band model with repulsion as 
described by Hamiltonian (5) .  The Bethe-Salpeter equa- 
tions for the complete vertices in the Cooper channel are 

~1 i=~11-r i1~ l r i i -~ ,2c2r2 i ,  

Here C,, ,  are the Cooper loops for the particles of species 1 
and 2; I'u is the complete vertex in the Cooper channel with 
two incoming particles of species i with a resultant momen- 
tum of zero, and with two outgoing particles of species j; and 
T u  are the corresponding irreducible vertices, which contain 
a set of diagrams which are indistinguishable on the basis of 
the two lines representing particles of one species, which run 
in the same direction. 

Equations (6)  must of course be understood as a sym- 
bolic form of the corresponding Bethe-Salpeter integral 
equations. The order of the integrations over the intermedi- 
ate momenta in (6) is obvious. If the particle spectrum is 
isotropic, these integral equations reduce to algebraic equa- 
tions for the corresponding partial harmonics l?'"', where m 
is the magnetic quantum number. We recall that in D = 2 
the role of the Legendre polynomials P, (case), which fac- 
torize the Bethe-Salpeter equation in the 3 0  case, is played 
by the functions cosmq. The system of equations found after 
the factorization is of the form of (6),  with 

and r and ?' are the corresponding partial vertices T'"' and 
T ( m ) .  

The expressions for the seed vertices in the first two 
perturbation-theory orders are 

and expressions for T,, and T,, are found from (7)  by mak- 
ing the interchanges 1-2, U,c*U,. In (7)  (in the equations 
given below, the values, p,, p i ,  p,, pi are the vector values) 
we have 

qi12=2pPlz(1-~o~ (~)=(pl-pt ')~, 

q"t,2=2p~,~(1+cos 9) = (p,+pt')=, 

and 

n ( ~ i ( p + q ) ) - n ( & i ( ~ ) )  
ni~(q)  = - $I. &, (p+q)-s5 (p) 

are the static polarization operators, and 

is the Cooper loop formed by particles of different species. 
[It does not contain a logarithmic singularity In( 1 / T ) ,  so it 
should be incorporated in the seed vertex.] 

Analysis of Eqs. (6)  reveals that for nonzero T I ,  (and 
thus T,, ) a pole appears in all the total vertices T,, at the 
same transition temperature, which is found from the equa- 
tion 

We thus find that the transition temperature 

where the coupling constants A are 

g, = m i / 2 n  is the density of states; and I is a rather complex 
function of E ~ ,  , E F Z r  m, , and m,. Under the conditions A,, , 
A,, <A, ,  A,, the energy Z. is close to that Fermi energy which 
corresponds to the larger of A , ,  A,, and T, itself is close to 
the larger of the two temperatures T,, W E , ,  exp{ - ] / A , )  
and T,,  ex^{ - 1 /A2) .  A superconductivity is possi- 
ble, of course, only if A is positive. 

Let us examine the possibility ofs-pairing in the system 
described by Hamiltonian (5)  in the weak-coupling approx- 
imation. In first-order perturbation theory for the vertices 
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Tij we have A ,  = U, g, > 0, and A, = U,g2 > 0. A supercon- 
ducting pairing is thus possible only under the condition 
(U, U2 - K2)glg2  <O, i.e., Ul U2 > K2. In this case, a pair- 
ing with an s symmetry arises. We might note that in most 
cases the opposite inequality ( U, U, < K 2, holds, since 
there is an additional small factor in K because of the overlap 
integral. We thus reach the conclusion that, for the typical 
two-band Coulomb problem, s-pairing in weak coupling is 
suppressed by direct Coulomb repulsion in each of the 
bands. The only hope for achieving an s-pairing is to go be- 
yond the weak-coupling approximation in evaluating the 
vertices Tij and the effective "redecoration" of the repulsive 
first-order perturbation theory by the following orders. 

For pairing of other types (with m > O), however, the 
direct Coulomb repulsion does not contribute to the partial 
seed vertices f'm', since it vanishes in the course of the inte- 
gration with the functions cosmq, (m f 0).  The expansion of 
TCm' in this case thus begins with the terms of second-order 
perturbation theory [see (7) 1. 

From this point on, the analysis depends strongly on 
whether we are considering two electron bands 

= (P2 -P;,,~ ) /2m, ,  ] or one electron band and one 
hole band [ E ,  = (p2 - p i ,  )/2m, ,E, = (p;, -p2)/2m, 1. 
In the case of two electron bands (the simpler to analyze), 
all the polarization operators, normalized to the correspond- 
ing densities of states, are slowly varying functions on the 
order of unity in the region pertinent to the superconductivi- 
ty, q<2p,, as was shown in Refs. 5 and 10. When the small 
value of the overlap integral t is taken into account,expres- 
sions (7) for the corresponding vertices Ti:' and Ti:' can 
thus be simplified dramatically: 

Expressions ( 10) for Ti:' and T::' are the same as the cor- 
responding expressions in Ref. 5. In the case 
Ti?) = = 0, according to the results of that study, a 
superconductivity would arise in a band with a large number 
of particles (with larger p,) and would be of a p-pairing 
nature. The band with the fewer particles (with smaller p,) 
would remain normal down to T = 0. We recall that the 
quantity U, plays a key role in the occurrence of supercon- 
ductivity according to this scenario. In other words, there is 
a pairing of particles in one band (that with the larger p,) as 
a result of a polarization of particles in the other band (with 
the smallerp,). I~T;;" and Ti?' are small but nonzero, as in 
Ref. 5, both bands become superconducting, at the same 
temperature. We see from (9)  that this temperature is close 
to the superconductivity transition temperature in the first 
band, according to Ref. 5. In other words, it is close to 

and is determined by the polarization operator n:," = I '  (q,, ) 
ifp,, >p,, . Naturally, ap-pairing also occurs in this case. 

A more complex situation is that in which there are one 
electron band and one hole band. In this case, as was shown 
in Ref. 10, the interband polarization operator Ill, (q) has a 

clearly defined maximum 1 n ( k / p 2  p )  at 
q = lpFZ - pFI  1 .  The height of this maximum increases as 
the Fermi momenta of the bands move closer together. It is 
thus necessary to retain, in expression (7) for T, terms 
which contain the product of off-diagonal elements of the 
Coulomb interaction ( U,, U5 ,K) and the polarization oper- 
ator nI2 (the small values of the off-diagonal interaction 
elements are offset by the large value of II,, ) . Since TIl2 is a 
logarithmic function of q, however, the contribution of the 
corresponding terms to the partial vertices T'"' does not 
contain a large parameter. This contribution is thus com- 
petitive with the contribution from ni;"' (q,, ) in ( 10) only if 
the difference lp,, -p , ,  1 is small, and we have 
KI;:'(ql1 ) - IpF2 - pF1 I/pF2 (and this is a small quantity). 
We thus reach the conclusion that, again in the case of one 
electron band and one hole band, provided that the Fermi 
momenta are not too close together, the predominant super- 
conductivity mechanism is, as before, the mechanism of Ref. 
5, which involves an interband Coulomb interaction, U,. 
The terms associated with U,, U5 , and K could be important 
to the occurrence of superconductivity only if p,, and p,, 
were approximately equal. In this region, however, the very 
possibility of a superconductivity is problematic because a 
transition to an insulating phase by the Keldysh-Kopaev 
mechani~m", '~ would occur faster. The reason (as was 
shown in those Refs. 11 and 15) is that the transition to the 
insulating phase is of first order in the Coulomb constants, 
while the superconductivity mechanism which we are dis- 
cussing is of second order. If the Fermi momenta of the elec- 
tron band and the hole band are strictly identical, then the 
polarization operator n,, (q) has a logarithmic singular- 
ity'0.'1,15 -1nq as 9-0. One might thus beled to believe that 
the exact answer to the question of the relative effects of 
insulating and superconducting pairing would require going 
beyond the second of the ladder approximation, i.e., the so- 
lution of equations of the one-logarithm parquet type." It 
might be possible in principle to sharply increase the super- 
conducting transition temperature T,, in this manner-per- 
haps even to make it comparable to the insulating transition 
temperature TcD. 

However, that is not what happens in the problem at 
hand, since one of the channels (e.g., the Cooper channel) 
does not select "favorable" momenta for the appearance of a 
logarithmic singularity in the second (zero-sound) channel. 
The singularity of the zero-sound channel is thus integrated, 
and there is no mutual intensification of singularities: The 
parquet "crumbles." In other words, in the temperature 
technique we have C -  ln ( 1/T) and Ill, -In ( 1/T) , but 
the integral of the product of C and nI2 over the intermedi- 
ate momenta is not ln2( 1/T) but again only In( l /T) .  If we 
wish to prevent the parquet from crumbling, we need either 
(as in Refs. 1 1 ) a one-dimensional situation, in which there 
is no integration over angles, or a two-dimensional situation 
in which a discrete set of momenta are prominent near a half 
filling by Van Hove singularities in the density of states. 
Again in this second case, the integration over angles would 
effectively be eliminated. 

4. CASE OF TWO 2DBANDS WITH VERY DIFFERENT MASSES 

We now consider the case of two 2 0  bands with very 
different masses m2 $m,.  Again in this case, generally 
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speaking, it may be necessary to go beyond the weak-cou- 
pling approximation for the effective interaction T. We are 
interested in the a priori possibility of obtaining an s pairing 
in a repulsive 2 0  problem. 

A situation of this sort is realized in the 2 0  case with 
m, > m, and f, = m,  U3/4a< 1 but f, = m, U3/4a5 1. If 
both f, and f2 are much smaller than one (but the condition 
m, $ m, still held), the expressions of the partial vertices 
T ( ~  = O )  corresponding to s pairing would be, according to 

the results of Ref. 5 and Eq. ( lo),  

(As was mentioned above, the diagonal elements of the Cou- 
lomb interaction-U, , U,, and U,-are of the same order of 
magnitude.) Iff, < 1 but f2 5 1, expression (12) should be 
modified. Specifically, in the customary approach for Cou- 
lomb systems, we should sum the RPA diagrams containing 
loops of particles of species 2. As a result we find 

nz,Ui'/n I-,  , = u, . - 
l+m,U,ln ' 

(13) 

We see from expression ( 13) that T,, is always positive, so it 
is of no interest from the standpoint of superconductivity. 
The vertex TI,  is 

In other words, under the condition U: > U, U2 the second 
term in the numerator is generally negative and may "rede- 
corate" the seed Coulomb repulsion U, (we recall that we 
are considering the case m, U- 1 ) . A superconductivity 
would result. A similar possibility in the 3 0  case was pointed 
out in Ref. 16. However, we find this superconductivity sce- 
nario dubious, since the entire expression for TI ,  can be re- 
duced to the form TI ,  = U, .. = U, /&(q,O), where the 
function 

is the same as the static dielectric constant if U, , U, , and U, 
are understood as representing the real Coulomb interaction 
2n-e2/q. A change in the sign of T,, is thus dubious, since for 
the real long-range Coulomb interaction it would corre- 
spond to a negative value of e at a zero frequency. This nega- 
tive value would imply an instability of the system-a nega- 
tive value of the square of phonon frequencies-according to 
the standard ideas (but see Ref. 17). The result found for 
TI ,  should thus probably be regarded as an indication that 
there may be a pronounced suppression of the seed intraband 
Coulomb repulsion U, . This effect might smooth the way for 
an s pairing when other degrees of freedom (e.g., phonon or 
magnon degrees of freedom) are taken into account. 

Refining expression ( 14) for T I ,  requires summing the 
corrections to the vertex functions and the polarization 

loops which arise when the ladders from the interactions U2 
are taken into account. Correspondingly, we find the follow- 
ing expressions for TI, and T,, : 

Comparison of ( 13 ) and ( 15 ) reveals that the occurrence of 
an s-pairing for particles of species 1 looks just a bit more 
plausible in the latter case, since it would require less strin- 
gent conditions on the values of the interaction constants U, . 
However, again in this case [as in ( 13) ] the quantity TI ,  can 
be written as U, /&(q,O), where &(q,O) incorporates correla- 
tion corrections. 

Let us summarize the results of this study. 
Analysis of the two-band model in the three-dimension- 

al case shows that only if the masses are approximately equal 
could the second band play an important role in strengthen- 
ing the superconductivity beyond that in the one-band case. 
If the masses are instead greatly different, the heavy band 
plays the dominant role; i.e., the problem becomes an essen- 
tially one-band problem. At any rate, if the density of parti- 
cles is small, and we can get by with a quadratic dispersion 
law, the superconductivity which arises is of the p-pairing 
type. 

In the two-dimensional case, for either two electron 
bands or one electron band and one hole band, the dominant 
superconductivity mechanism is the pairing of particles in 
the band with the larger p, through a polarization of parti- 
cles in the band with the smaller p,. The superconductivity 
which arises is of the p-pairing type, as in the three-dimen- 
sional case. In the 2 0  case, with greatly different masses, 
there is the possibility that the seed intraband Coulomb re- 
pulsion will be substantially suppressed. This effect might 
promote an s-pairing when other superconductivity mecha- 
nisms, e.g., a phonon or magnon mechanism, are brought 
into the picture. 

Incorporating the off-diagonal matrix elements of the 
Coulomb interaction leads to the simultaneous opening of 
superconductivity gaps in the two bands, in both the 3 0  and 
2 0  cases. 
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