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The effect of frozen-in random fields of various types on the translational and orientational order 
in a two-dimensional ( 2 0 )  classical Wigner crystal and on the dislocation melting of the crystal is 
analyzed. Random fields corresponding to isotropic impurities interact with only the hard 
longitudinal plasma mode of the 2 0  Wigner crystal. In the harmonic approximation they do not 
disrupt the quasi-long-range 2 0  translation order. When dislocations are taken into account, 
randomly distributed Coulomb impurities lead to a reentrant low-temperature melting in 
addition to the shift in the temperature of the ordinary Kosterlitz-Thouless dislocation melting, 
provided that the concentration of these Coulomb impurities does not exceed a certain critical 
level. In the case of an anisotropic random field corresponding to irregularities of the substrate, 
the system has only a short-range crystalline order, and a true critical behavior is not possible. If 
the disorder in the system is only slight, however, one can observe smeared dislocation 
transitions, both the ordinary transition and a reentrant low-temperature transition. 

1. INTRODUCTION 

The Wigner crystallization of charged particles in two- 
dimensional ( 20 )  systems is presently attracting a great 
deal of research interest (see, for example some conference 
proceedings'.2 ). In the case of electrons or helium ions at the 
surface of liquid helium, where the typical surface concen- 
trations are n < 10')cm-2 a 2 0  Wigner crystal of electrons' 
or helium ions4 is realized under classical conditions. In the 
case of 2 0  semiconductor systems, in which the typical elec- 
tron concentrations are rz - 10" cm -*, the possibility of us- 
ing a high magnetic field to induce crystallization under ul- 
traquantum conditions has probably been realized for 
high-mobility electrons in GaAs/GaAlAs heterostructures. 
This possibility had been discussed theoretically many years 
ago.5 Evidence that this possibility has been realized has 
come from experiments by rf spectroscopy, a magnetooptic 
method, and a magnetotransport method6 (see also Refs. 1 
and 2). In these systems, under quantum conditions, with a 
partial filling of the lower Landau level ( Y  = nhc/e V <  1 ) by 
electrons, a competition occurs between the state with a 
crystalline order and the state of an incompressible quantum 
fluid of the Laughlin type7 near the fractional values 
Y = 1/5, 1/7, and 1/9. As the magnetic field B is raised 
further, quantum fluctuations are suppressed, and (at fixed 
values of the electron concentration n and the temperature 
T) a Wigner crystal should be realized under classical condi- 
tions. At sufficiently small values of v, a classical regime 
prevails near the melting line. This regime may have been 
realized in the experiments of Ref. 8 (with v < 0.1 ). 

The actual experiments of Ref. 9 and the numerical sim- 
ulation of Ref. 10 indicate that the melting of a classical 2 0  
Wigner crystal occurs by a Kosterlitz-Thouless dislocation 

and that it is a continuous phase transition, 
not accompanied by abrupt changes in thermodynamic 
properties. In the present paper we examine the effect of a 
frozen-in disorder on the translation order, on the orienta- 
tional order, and on the dislocation melting of a 2 0  Wigner 

crystal. Some of the results below were reported in Ref. 15. 
The dislocation-melting model has been used previous- 

ly to study certain problems concerning 2 0  crystals with a 
short-range interaction between particles. Specifically, these 
problems were the effect of frozen short-range impurities 
introduced in the crystal,16 the effect of a random substrate 
relief," and the effect of a random pinning force stemming 
from irregularities of the substrate." 20 The case of a 2 0  
Wigner crystal requires consideration of two physically re- 
lated circumstances. First, the long-range Coulomb force 
makes a 2 0  Wigner crystal incompressible in the long-wave 
limit. Standard elastic theory, ordinarily employed in study- 
ing problems of this type, is thus not directly applicable in 
this case. Second, for a 2 0  Wigner crystal it is physically 
justified and indeed important to examine random fields 
with long-range correlations, e.g., a field of ionized donors. 

Here is an outline of the paper. The model is introduced 
in Sec. 2. In Sec. 3 we determine whether the power-law 
ordering typical 2 0  systems is preserved in the presence of 
random fields in the harmonic approximation (in which dis- 
locations are ignored). In other words, we determine 
whether the crystal converts into a glass. The answer to this 
question depends strongly on the nature of the interaction of 
the random field with the lattice. In a 2 0  Wigner crystal 
there is no interaction of the random field of isotropic impur- 
ities with a Goldstone mode, i.e., with transverse phonons. 
In contrast, the interaction with the longitudinal plasma 
mode, which is harder (and which has a dispersion w ,  a q''2 
in the absence of a magnetic field), does not disrupt the exist- 
ing power-law (quasi-long-range) order. The implication is 
that a topological phase transition-dislocation melting- 
may occur even in the presence of impurities. The analysis in 
Secs. 4 and 5 shows that randomly distributed Coulomb im- 
purities play the role of short-range impurities for an ordi- 
nary crystal.16 In particular, they change the low-tempera- 
ture behavior substantially, leading to a reentrant melting. 
Impurities with a shorter-range potential do not alter the 
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critical state of a 2 0  Wigner crystal. 
A random field corresponding to substrate irregulari- 

ties is examined in Subsec. 3.5. This field interacts with a 
transverse phonon mode. As a result, the 2 0  Wigner crystal, 
like an ordinary 2 0  ~ r y s t a l , ' ~ - ~ ~  is in a disordered state. 
Strictly speaking, a topological phase transition is impossi- 
ble. However, if the order is disrupted by the random field 
over a distance of macroscopic size, then the behavior of the 
system may exhibit some rounded features associated with a 
dissociation of dislocation pairs.20 

2. MODEL 

In the continuum approximation the energy of a static, 
inhomogeneous deformation of a 2 0  Wigner crystal with a 
triangular lattice is described by the HamiltonianZL 

(1) 
where u,, =+(&,/ark + du,/dr,) is the strain tensor; A 
and p are elastic constants (Lam6 coefficients), which we 
treat as phenomenological constants and which may, in par- 
ticular, embody a dependence on the magnetic field B 
A =  A (B, T), p = p (B, T )  ; n is the surface concentration of 
electrons; and x is the dielectric constant. The Hamiltonian 
H, in ( 1 ) differs from the standard Hamiltonian of elastic 
theory in the presence of the last term, which corresponds to 
an energy component due to long-range Coulomb interac- 
tions of the charge density, Sp(r) = neu,,. These interac- 
tions arise because of the nonuniform strain. It is thus possi- 
ble to deal correctly with the incompressibility of the 2 0  
Wigner crystal in the long-wave limit [see, for example 
expression ( 15) below for the Fourier transform of the dy- 
namic matrix D,, (q)  1. 

The presence of a frozen disorder is described by the 
part of the Hamiltonian 

where f is the local density of the random force. We intro- 
duce various types of disorder in a phenomenological way, as 
described below (cf. Refs. 16-20). 

In the first case, the force f is related to the potential 
field @( r )  created by the randomly distributed impurities, 
with a concentration c ( r l ) :  

11, = 1 #ru (r) V @ (r), @ (r) = 1 drf V (r-r') c (r') . 

This representation may be thought of switching to a 
continuum description from a discrete Hamiltonian of the 
electron-impurity interactions with an effective potential 
~ ( r )  (e.g., a potential modified by image forces): 

Only those terms which are linear in the displacements u are 
retained. Here R, give the positions of the sites of the ideal 
2 0  lattice, and c(r l )  = Zj8(r1 - rj ) is the impurity concen- 
tration. The impurities may be in the crystal itself or in 3 0  
space. 

Since we are interested in the long-range asymptotic 

behavior, we assume, regarding the impurities, that c(r)  is a 
Gaussian random function. We wish to stress that by writing 
the force f as the gradient of a potential field, f = - V@ (or 
as the divergence of the stress field a,, due to the impurities, 
f; = a, a,, ), by integrating by parts in (2), and by ignoring 
the boundary contribution, we can write Hamiltonian (2)  as 

In other words, the Hamiltonians which we have found for 
the interaction with a disorder are translationally invariant: 
They are unchanged by a shift of the lattice as a whole, 
u ( r )  -u(r)  + u, (see also the discussion in Refs. 16 and 
19). 

We will discuss two cases below. 
1) The first is that of randomly distributed, frozen-in 

impurities which have been introduced in the 2 0  Wigner 
crystal. These impurities may participate in long-wave 
phonon displacements, but (as in Ref. 16) they cannot trade 
places with neighboring lattice sites over the duration of the 
experimental observation. For the case of a 2 0  Wigner crys- 
tal we assume that there may be a variety of electron-impuri- 
ty interaction potentials V(r). In particular, there may be 
long-range potentials, which would distinguish this case 
from that of ordinary crystals, in which the interaction 
forces are of short range in the continuum approximation. 

We consider the influence of effective potentials from 
fairly wide classes: (a)  integrable potentials, i.e., 

T -  1 d2rV(r )<a .  
I>.?" 

(a, is the lattice constant); and (b)  long-range potentials, 
for which we have the Fourier transform V(q) =: Y/qZ - 
the limit q-0. This case corresponds to the behavior 
V ( r ) ~ r - ~ ,  wi thO<y<2,as r -W.  

For the Fourier transforms of the random force f; (q) 
we have a Gaussian correlation function Y-,!;': 

where n,,, is the impurity concentration (in particles per 
square centimeter), V(q) is the Fourier transform of the 
potential V(r), and the brackets [...I mean an average over 
the disorder. 

2) The second case is that of ionized donors which are 
distributed in a layer of thickness t at a minimal distance a 
from the plane of the 2 0  Wigner crystal. Assuming t, a, <a, 
we have a Gaussian correlation function similar to ( 3 )  in 
this case (see also Ref. 22) : 

9:' (q) =n,,npq,qk (2nne2 /~q )Ze -2aq .  (4)  

A disorder of another type is the random force f ( r )  
associated with irregularities of the substrate. For this force 
we assume, as in Refs. 18-20, a Gaussian distribution corre- 
sponding to a white noise: 

We wish to stress that the correlation functions in (3), 
(41, and (6) have different tensor structures (in addition to 
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the different dependences on the wave vector q )  : For fields 
corresponding to isotropic impurities, correlation functions 
(3)  and (4)  are purely longitudinal. As a result, random 
fields of this type interact exclusively with the longitudinal 
mode of the crystal, which for a 2 0  Wigner crystal is a plas- 
ma mode. This plasma mode is harder than the transverse 
phonon mode and thus has no effect at all on the orienta- 
tional order in the harmonic approximation. 

3. LONG-RANGE TRANSLATIONAL AND ORIENTATIONAL 
ORDERS 

3.1. Correlation functions 

The presence of a long-range translational order and of 
an orientational order can be established by analyzing the 
behavior of the following correlation functions, respective- 
iy:14 

Here G is an arbitrary wave vector; 8 = +.cik ai u,  ; and E ,  is 
the 2 0  antisymmetric tensor. Two averages are taken in 
succession in (7)  and (8): one over the thermodynamic en- 
semble at the temperature T (we are assuming k, = 1) with 
the Hamiltonian H = Ho + HI (this average is denoted by 
the angle brackets) and then one over the random field (this 
average is denoted by the square brackets). 

The calculation in (7)  and (8)  is conveniently carried 
out in the Fourier representation, through the use of the 
relation 

to make the transition to a calculation of thermodynamic 
averages (...) over the ensemble with the quadratic Hamilto- 
nian H, from ( 1 ) . Since (a )  Hamiltonian H, in (2)  is linear 
in the displacements u [as are the arguments of the exponen- 
tial functions of correlation functions (7)  and (8) ]  and in 
the random variables f, and since (b)  the terms quadratic in f 
in the numerator and denominator in (9) cancel out, all 
these averages reduce to Gaussian averages of the linear 
forms in the arguments of the exponential functions. For the 
correlation functions we easily find 

where C 1°' is the correlation function for the pure system, 
and C I" is a multiplicative increment which stems from the 
disorder. For a pure 2 0  Wigner crystal we find the known 
asymptotic behaviork4 at r$ a, : 

This behavior corresponds to a quasi-long-range power-law 
translational order and to a genuinely long-range orienta- 
tional order. A distinctive feature of (10) is that the only 
dependence is on the absolute value of the shear modulus ,U 

of the crystal. In a 2 0  Wigner crystal, thermal fluctuations 
of only the transverse phonon mode participate in the dis- 
ruption of the translation order. This situation is closely re- 

lated to the incompressibility as 9-0 (the hardness of the 
longitudinal plasma mode). 

In a pure 2 0  system, a change in the asymptotic behav- 
ior of the correlation functions occurs (in the absence of an 
anharmonicity ) only if topological defects-dislocations 
and disclinations-are taken into account. With 
T = T,,, zCLa;/4r, for example, the 2 0  Wigner crystal un- 
dergoes a topological phase transition involving a dissocia- 
tion of dislocation pairs. In the process it loses its static shear 
hardness: It melts into a hexatic liquid-crystal phase,I4 in 
which a quasi-long-range orientation order prevails: 

Here {( T) is a finite correlation length, which diverges in a 
power-law fashion as T-, T 2 .  

If, when there is a disorder, the calculation (with phon- 
ons alone taken into account) leads to a power-law decay of 
C, ( r ) ,  then a topological phase transition is still possible, as 
in the pure system. The effect of a disorder on the latter 
transition in the case of a 2 0  Wigner crystal is analyzed 
below in Secs. 4 and 5. 

If the disorder leads instead to an exponential decay of 
the correlation functions (with a length scale 1, which defini- 
tely places a limit on the correlation length {), the meaning 
is that fluctuations of the random field disrupt the crystal- 
line translational order. At low temperatures the 2 0  Wigner 
crystal is in a disordered "glasslike" state, and a topological 
phase transition cannot occur in it, strictly speaking (but see 
Subsec. 3.5 below and also Ref. 20). 

3.2. Disorder-induced multiplicative increments 

For the increments in the correlation functions we have 

(1) d2q 
CG (r)=exp{ -GiGk 5 -Dil-'Dki-'Tjt (P) (13) 

(an)' 

where the dynamic matrix of the 2 0  Wigner crystal is 
2nnzez 

o ik (q )  ( 2 , . t + ~ ) q ~ ~ , , ~ ,  a=a -t - , (15) 
x q 

and the transverse and longitudinal projection operators are 
given by the following expressions, respectively: 

We are interested in the long-range asymptotic behavior of 
correlation functions ( 13) and ( 14). We can thus replace 
the integrands in the arguments of the exponential functions 
in ( 13) and ( 14) by their long-wave limits [in particular, for 
the Fourier transforms of the interaction potential V(q) in- 
troduced above]. 

Below we report results on the long-range asymptotic 
behavior of correlation functions ( 13) and ( 14) found in the 
ordinary harmonic approximation (in which dislocations 
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are ignored). We repeat that the random fields correspond- 
ing to isotropic impurities do not affect the orientation order 
in this approximation, as follows from (14) (see also the 
discussion at the end of Sec. 2) .  

3.3. Frozen-in impurities in a 2 0  Wigner crystal 

3.3.1. For impurities with interaction potentials which 
fall off more rapidly than r I ,  we have Ckl '(r)  -+const < 1 
as r- CZ. As a result, such impurities cause no qualitative 
change in the quasi-long-range translational order of the 2 0  
Wigner crystal. Here we are of course tacitly assuming that 
the impurity concentration is low. In the opposite case, small 
values of the correlation functions, C $' < 1, would indicate 
a crystal-glass transition caused by short-range impurities. 

3.3.2. For frozen charged Coulomb centers with a po- 
tential V(r) = ne2/xr, we find a power-law decay of the cor- 
relation function: 

A weak angular dependence has been omitted from (17). 
The constant C< 1 incorporates correlations in the arrange- 
ment of impurities in a phenomenological way. 

Randomly distributed, frozen-in charged impurities in 
a 2 0  Wigner crystal thus play the role of short-range impuri- 
ties (dilatation centers; Ref. 23, for example) which are 
present in a 2 0  crystal with a short-range interaction be- 
tween This "freezing in" of the charged impuri- 
ties, to be understood here in the sense specified above (Sec. 
21, can probably be realized in a system of charged polysty- 
rene microspheres in a 2 0  geometryz4 and also for electrons 
and helium atoms at the surface of liquid helium. In these 
cases the correlations in the arrangement of impurities may 
be extremely important and may lead to small values C <  1. 

3.3.3. For long-range potentials V(r) a r - Y  
(V(q)  -- Y'/q2 " ) ,  0 < y < 1, we find 

where E-- 2( 1 - y) ,  and I- ( x )  is the gamma function. The 
exponential decay in (18) becomes the power-law decay in 
(17) as y- 1 -'. This analysis, however, is purely formal: 
The corresponding random fields are extremely singular and 
apparently could not be realized physically (cf. Subsec. 4.2). 

3.4. Ionized donors 

For the case of ionized donors in a layer of thickness t in  
GaAlAs at a minimal distance a from a 2 0  Wigner crystal 
(another physical realization would consist of charged ions 
in an insulating layer below the surface of liquid helium; see 
Ref. 25 and the papers cited there), we use expression (4)  for 
the correlation function Y,, (q). For r s r , ,  a,, t, where 
r, = x(/Z + 2,u)/2nnzez is the screening length of the 2 0  
Wigner crystal (Subsec. 4.2), we find 

As above, the constant CS 1 incorporates the correlations in 
the arrangement of impurities in a phenomenological way. 

For the correlation function in ( 19) there are two re- 
gions which differ in the behavior of the correlation func- 
tion. At r 5 2 a  the function C (r )  -- 1, so in this region we 
essentially have the translational order of the pure crystal. 
At r%2a ,  we have a power-law decay: 

C j;" ( r )  z (r/4a) - "'I. In the harmonic approximation, 
fluctuations of the random field of the charged donors thus 
do not alter the power-law translational order. Note, how- 
ever, that at n,,, Z n  the quantity T,I&') in ( 19) is by no means 
small (for the principal reciprocal-lattice vector, 
G i = 16n2/3ai, for example, we have 7:) z 3.6Cn,,, /n ), 
provided that the fluctuations of the donor charge are not 
suppressed in some special way (so that we have C& 1 ), and 
provided that the relation n $ n,,, is not realized in the sys- 
tem, for example by photoexcitation. 

3.5. Random force exerted by the substrate 

Using (6), and cutting off (as in Refs. 19 and 20) the 
integral in the argument of the exponential function in ( 13), 
which diverges at its lower limit, at the value corresponding 
to the reciprocal of the size of the system, L - I, we find the 
following expressions for the correlation functions describ- 
ing the translational and orientational orders, respectively: 

~ ( 1 )  ,,(I) oG2 (r) cc r- G cxp - --- 1 32nlt2 

where r, (r,, ) is the component of r which is perpendicular 
(parallel) to the vector G.  The fluctuations caused in the 
longitudinal plasma mode by the random force thus lead to a 
correlation-function component which falls off by a power 
law, while the fluctuations of the transverse (softer) phonon 
mode introduce an exponential decay in the correlation 
function for the translation order, in (20), with a length 
scale 1 K a"', and they introduce a power-law decay in the 
correlation function for the orientational order, in (21 ) (cf. 
Refs. 18-20). The system therefore has only a short-range 
crystalline order; a true critical behavior is strictly speaking 
not possible. 

If the system has a moderate disorder, it may be thought 
of as a Wigner glass with a quasi-long-range orientational 
order. If the disorder is slight, and the relation I s a ,  holds, 
the system is physically a Wigner crystal with a finite corre- 
lation length. An analysis like that in Ref. 20 shows that 
rounded features corresponding to ordinary dislocation 
melting and also a low-temperature reentrant melting 
should be observed in the system. 

4. EFFECTIVE DISLOCATION HAMlLTONlAN 

4.1. Dislocation part of the displacement tensor of a 2 0  
Wigner crystal 

When there are randomly distributed impurities which 
do not disrupt the quasi-long-range translational order of 
the 2 0  Wigner crystal in the harmonic phonon approxima- 
tion, there is still the possibility of a true critical behavior: a 
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dislocation melting. In this case it is important to determine 
the effect of a disorder on this behavior, especially at low 
temperatures. 

For this purpose we bring dislocations into the discus- 
sion, writing the displacement u as the sum of a dislocation 
part u* and a phonon part $: 

where ba are the dimensionless Burgers vectors of the dislo- 
cations. As usual, we assume that the dislocations are at 
equilibrium: 

6H 
-= 
6u' (r) 07 

where the Hamiltonian is H = H, +HI .  The component 
H I ,  from (2),  corresponds to impurities which do not dis- 
rupt the power-law translational order in the harmonic ap- 
proximation. By virtue of (23) and the quadratic depend- 
ence of H on the displacements, we have H(u* + $) 
= H(u*) + H($). In other words, the phonon component 

and the dislocation component separate. 
In the Fourier representation, the dislocation part of 

the displacement tensor u t  is written2' 

where p(q),  V(q), and c(q)  are the Fourier transforms of 
respectively the dislocation density, the electron-impurity 
potential, and the impurity concentration. 

The last term in (24), Suz a V(q)c( - q),  describes 
the distortion of the electron lattice by the impurities which 
are introduced; the screening of the impurity fields is related 
to this distortion. Let us discuss this effect. 

4.2. Screening of charged impurities in a 2 0  Wigner crystal 

We first note that the random field corresponding to 
impurities with fairly long-range interactions are singular. 
For S-correlated Coulomb impurities, for example (this is 
the case which we will be discussing below), the correlation 
function of the random field, 

diverges logarithmically at large distances in the 2 0  system. 
The mean square fluctuations of the potential at a point are 
proportional to the logarithm of the area of the system. 
There is accordingly the question of whether fields of this 
type can actually be achieved in real systems.26 

We note in this connection that the total field (the field 
of the impurities plus the field of the deformed lattice), 

, ec (r') -ne6ukk-(r') 
9, (r) = d2r 

xlr-r'l 

which is the observable field, turns out to be regular, as can 
be seen from (27). 

From (27) we also find an expression for the screened 
potential of an individual impurity of charge e at point R: 

The screening of a Coulomb center by the electrons of a 2 0  
lattice thus occurs in qualitatively the same way (the poten- 
tial varies cc r - at r )  r, ) as the screening by free 2 0  elec- 
trons (Ref. 27, for example). 

4.3. Effective replica interaction of dislocations 

Using (24) and ( 2 5 ) ,  we find the following result for 
the dimensionless dislocation Hamiltonian H,  r H ( u * ) / T  
in the Fourier representation: 

The part of Hamiltonian H, in (28) which is quadratic in pi ,  
i.e., H: ,  can be put in the form of the potential energy of 
binary interactions and the sum of their "intrinsic" energies 
(we are thinking of configurations with B,ba = 0, which 
have finite energies in the thermodynamic limit) : 

where K is a coupling constant, E, is the energy of the dislo- 
cation core, and a-a, is the size of this core. 

The potential in (30) is broken up into the sum of (a)  
the usual binary-interaction potential for 2 0  dislocations, 

which corresponds to a 2 0  vector Coulomb and (b)  
an increment" SUv (r),  which falls off by a power law (as 
- 3/2 ). Physically, it is obvious that the increment SU, can 

be ignored in the phase-transition problem, in which the re- 
mote asymptotic behavior is important (indeed, this incre- 
ment always is ignored in this case). 

The role played by various impurities can be analyzed 
qualitatively by a similar approach. For this purpose we 
switch to an effective Hamiltonian in which an additional 
interaction arises after an average is taken over the random 
field between dislocations. The nature of this interaction is 
important to the phase-transition problem. 

To average the logarithm of the partition function in the 
expression for the free energy over the frozen disorder, we 
use a replica method:2s 

153 Sov. Phys. JETP 75 (I), July 1992 A. B. Dzyubenko and Yu. E. Lozovik 153 



The quantity [Z " ] -Z, ,  has the form of the partition func- 
tion of an M-component system of interacting replicas: 

1 d'q VkQp 

H.w = -j --r. Rlne.Pe,Tp.n(q)pj' (-q), (34) 
2 (2n)' n, l  Q .  

The trace over the dislocation variables is to be understood 
as the continuum expression (Ref. 13, for example) 

The parameter y = exp( - E,/T) gives the probability for 
finding dislocations in the system, N = 8;, , n, is the total 
number of dislocations, and n, is the number of dislocations 
of unit length in configuration in,) with vector b directed 
along one of the six possible directions (for a triangular lat- 
tice with / b /  = 1).  In the pure system, dislocations with 
ibl > 1 are unimportant from the renormalization-group 
s t a n d p ~ i n t . ' ~ . ~ ~  The impurity case is discussed in Subsec. 
5.2. 

For all impurities which conserve the quasi-long-range 
translational order in the harmonic approximation, the cou- 
pling constant El, (q) remains finite as 9-0. In the case - 
Kl,  ( q )  oc @, 8 > 0 (I  + n ), the additional interaction falls off 
by a power law at large distances and can be ignored, as in a 
pure system (there is no reason to expect the appearance of 
singularities as M-0). The potential of the interaction of 
such impurities with the lattice falls off more rapidly than 
r - ' as r- m (Subsec. 3.3.1). 

For impurities with a Coulomb potential the coupling 
constant is 

and the additional interaction between dislocations (with a 
distinct temperature dependence a T - and the opposite 
sign!) has the same functional form [see (32) ] as that for the 
pure system. 

The corresponding critical behavior (as M-0) was 
studied in Ref. 16. Again in the phase-transition problem, 
Coulomb impurities in a 2 0  Wigner crystal thus play the 
role of short-range crystals for 2 0  crystals with a short- 
range impurities (see also Subsec. 3.3.2), and the results of 
Ref. 16 can be transferred to our case. The most important of 
those results will be summarized below in Sec. 5, where we 
also analyze the approximate Wilson renormalization-group 
equations corresponding to (37). 

5. SCALE DIMENSIONS OFTHE IMPURITY COUPLING 
CONSTANTS 

5.1. To determine the role played by various impurities 
from the renormalization-group standpoint, we make use of 
the well-known duality between the grand canonical sum of 
a 2 0  Coulomb gas (with a logarithmic interaction) and the 
sine-Gordon field model (Refs. 29-32, for example). To go 

over to the field model we write exp( - H,) as the ratio of 
two functional integrals in terms of auxiliary two-compo- 
nent fields Y 1 ,  I = 1, ..., M, where Iis the replica index. After 
the trace is taken over the dislocation variables (Ref. 30, for 
example), Z,, becomes 

There is an upper cutoff momentum A z a  ' in (38) and 
(39); we have omitted the purely Gaussian normalization 
denominator. We have ignored the angular dependence of 
the interaction potential in (32); formally, we did this by 
making the replacement E,E~,  -+6,jSkI in H, in (34). One 
can verify that, again in the case with impurities (which con- 
serve the quasi-long-range order), the angular terms are in- 
termediate in the renormalization-group sense, as in the 
pure system.'2,29 

For impurities with a Coulomb potential oc r ' we have 

in the limit 9-0. The increment 6 K ;  ' 
= ; '(4) - k ' (0)  can be ignored (more on this be- 

low). The approximate Wilson renormalization-group 
equations take the following form as M--0 (see the Appen- 
dix) : 

h 

where the coupling is K = K - CK 2. 

From Eqs. (41 ) we draw the following conclusions, 
which agree with Ref. 16: 1 ) At C >  5, = ( 6 4 ~ )  - ' a crystal- 
line state is impossible. There are no fixed points if y = 0. 
The meaning is an instability with respect to the creation of 
dislocations. 2 )  At 5< 5, [Fig. 1 shows a schematic phase 
portrait of Eqs. (41 ); cf. Ref. 161, the impurities lead to not 
only changes in the critical exponents and the point of the 
ordinary dislocation melting but also a low-temperature 
reentrant dislocation melting. As a result, a crystal exists 
only in a bounded temperature interval. The position of the 
line of fixed points y = 0, K I ' < K < K ; I ,  does not de- 
pend on the constants c, and c,, which are not calculated in 
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FIG. 1. Schematic phase portrait of renormalization-group equations 
(41) for 5 < 5,. The hatched region, with y( l )  -0 as I -  m ,  corresponds to 
a crystalline phase. The phase-transition points are the points at which the 
initial-data line (the dashed line) y = exp( - E, /T ) ,  where E, = E, (K)  
[see ( 3  1 ) 1, intersects the separatrix K c  'AK ; I .  

our approach (see the Appendix). This position is the same 
as in Ref. 16. 

For all other impurities which conserve the quasi-long- 
range translational order (for which the potential fall off 
more rapidly than r -  I), the coupling constant at small val- 
uesofq [asatSK;'(q)] i s o f t h e f o r m ~ ; ' ( q ) z  w,,qD, 
where p > 0 (I  + n ) . It can be shown easily in the usual way 
that the scale dimensions corresponding to W,, are negative 
in this case and equal to - 8. The impurity coupling con- 
stants are inconsequential in the renormalization-group 
~ e n s e . ~ ~ , ~ ~  

5.2. When the system undergoes low-temperature reen- 
trant melting, the effective replica interaction of a disloca- 
tion pair with oppo2ite Burgers vectors becomes repulsive at 
low temperatures: K < 0 with K < LT. It may thus turn out 
that for pairs of coupled dislocations with I b I > 1 (which are 
unimportant in the absence of a disorderizxz9 ) the "instabil- 
ity" occurs earlier than for a pair of dislocations of unit 
length. Let us examine this possibility. Dislocations with all 
possible Burgers vectors b = ne, - me, (i#j,n>m>O) 
make contributions of the form 

to Hamiltonian (39). The scale dimensions of the coupling 
constants w,, (LU,, =w = 2y/a2) are equal to 
2 - (n2 + m2 + n m ) K / 8 ~ .  In the stability region, with 
dy/dl< 0, they turn out to be negative, and these charges are 
indeed inconsequential. For parameter values K - ' < 5, 
however, which correspond to low temperatures, all charges 
become important, and in principle all should be taken into 
consideration. 

6. CONCLUSION 

Taking account of the compressibility of a classical 2 0  
Wigner crystal in the long-wave limit, we have analyzed the 
effect of a frozen-in disorder of two types on the dislocation 
melting of such a crystal. The first type of disorder consisted 
of randomly distributed isotropic impurities with a variety 
of impurity-lattice interaction potentials, including long- 
range potentials. The second type of disorder was a random 
force with short-range correlations, stemming from irregu- 
larities of the substrate. Since the field of isotropic impurities 

interacts with only the hard longitudinal plasma mode of a 
2 0  Wigner crystal, impurities whose potentials fall off more 
rapidly than r ' do not affect the dislocation melting (they 
are inconsequential from the standpoint of the critical be- 
havior). Randomly distributed charged Coulomb impuri- 
ties act as short-range impurities in 2 0  crystals with a short- 
range interaction. '' If the concentration of these impurities 
does not exceed the critical value n::; = n/2~3"'C (n is the 
surface concentration of electrons; the constant C< 1 incor- 
porates correlations in the arrangement of impurities in a 
phenomenological way), the Coulomb impurities cause not 
only a temperature shift of ordinary dislocation melting but 
also a reentrant low-temperature melting. As a result, the 2 0  
Wigner crystal exists in only a bounded temperature inter- 
val. In the case n,,, > n!$, fluctuations of the random impu- 
rity field break up the dislocation pairs, and a crystalline 
state with a quasi-long-range order is impossible (the trans- 
lational order falls off exponentially). A situation of this sort 
can occur, for example, in the case of a 2 0  Wigner crystal in 
a heterostructure with a modulational doping, in which 
there is a high electron mobility (and there are also ionized 
donors of surface concentration n,,, z n  at a minimal dis- 
tance a > n  from the plan: of the 2 0  Wigner crystal, 
lying in a layer of finite thickness t g a ) .  At low tempera- 
tures, however, the regions of a short-range crystalline order 
may be large enough [at least no smaller than 2a; see ( 19) ] 
to be detected in magnetooptic experiments. 

Even when harmonic phonons alone are taken into ac- 
count, the random force associated with the substrate irre- 
gularities disrupts the translational 2 0  order of the 2 0  
Wigner crystal, converting this order into a short-range ex- 
ponential order. In this system, which may be thought of as a 
Wigner glass with a quasi-long-range orientation order, a 
dislocation melting is not possible as a true critical behavior. 
If there is a slight disorder, however, and the dimensions of 
the crystalline domains are large in comparison with the lat- 
tice constant, the system is physically a Wigner crystal with 
a finite correlation length, and it can undergo some diffuse 
transitions involving the dissociation of dislocation pairs- 
either the ordinary transition or a low-temperature reen- 
trant transition. 

We wish to thank S. M. Apenko for many stimulating 
discussions. 

APPENDIX 

Here we derive renormalization-group equations (41 ) . 
We write the field T'as the sum of long-wave and short-wave 
parts: 

J "9 
T ' ( ~ ) =  9cA,s (2n12 

e'qryP' (q), 

Here s is related to an infinitesimal change of scale dl by the 
relation s = 1 + dl. We will integrate in Z,, in Eq. (38) at 
the short-wave fields 6'. Here we use a perturbation theory 
in the small parameter y < 1. Within terms on the order of y2 
inclusively, we find 
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where ( (  . . . ) ) ,  means an average with quadratic Hamilto- 
nian Ho (a'), and H i s  given by (cf. Ref. 32)  

I I - ~ S ~  d ' ~  x ~ o o s  (e,pi (R)) 

+ 4 w z s g  d z ~  .f I Z R . ~  {[exp (-e,e,Gln (R-R')  ) -1 ] 

x cos (e,cpl (R)+ejcpn (R ' )  ) 

+ [ exp (e,ejGl, (R-R') ) - I  lcos (eipl  ( R )  -ejqn (R')  I),  ( A 2 )  

Here the propagator is 

dZQ e i q R  K i n  

= K I .  - ( ) d  (A31 
Als<q<A 

(2n)' qZ 2n 

and Jo ( x )  is a Bessel function. To obtain the renormaliza- 
tion of the coupling constants, we would like to use a gradi- 
ent expansion to put the part in ( A 2 )  in the form of the 
original Hamiltonian. However, if we used expression ( A 3 )  
for the propagator G,, , the integrals which arise become infi- 
nite in R space. When the fields are cut off smoothly [in 
contrast with the sharp cutoff in ( A 1  ) ] we could e ~ p e c t ~ ~ . ' ~  
G,, ( R )  to fall off fairly rapidly at distances R - ( A / s )  - I .  

For a qualitative analysis of the critical behavior at low 
temperatures, we follow Ref. 35 (see also Ref. 36)  in assum- 
ing that a smooth-cutoff procedure2' can be carried out. We 
furthermore assume that this procedure leads to the result 

where the function jo ( x )  falls off rapidly at x )  1 .  
The renormalization of the coupling constants K,, is 

given by the terms in Hamiltonian which contain 
cos(eicpl(R) - e,cpn(R')) with i = j, 2 = n. Using a gradient 
expansion to write them in the form 
1 - f [ (rV, ) . ( e , c p 1 ( ~ ) )  12,  and integrating over 
r = R - R', we find 

M 

where c, = ~ d x x ~ j ,  ( x ) ,  and where we have used 

for a triangular lattice. 
The renormalization of y is given in first order in y by 

the first term in H. In second order-this is an effect which 

occurs for a triangular l a t t i ~ e ' ~ . ~ ~  and which formally results 
from Z;= ei = 0-this renormalization can again be found 
through a gradient expansion from terms containing 
c o s ( e i c p 1 ( ~ )  + e ,cpn(R') )  with i#j, 1 = n. 

To restore the original scale we transform to the new 
fields @': cpl(q) = &5'(q' ) ,  where q' = s q. We choose the pa- 

~ ~ 

rameter f = s2; this choice corresponds in the coordinate 
representation to c p ' ( ~ )  = G 1 ( R / s ) .  It is then a straightfor- 
ward matter to derive the r&~rmalizat ion-~rou~ equations, 
which are 

where c2 = -fdxxSo ( x ) .  In the limit M-0 we find (41 ), 
making use of the circumstance that ( A 6 )  is diagonal with 
respect to the replica indices. 

"It  corresponds to the incorporation in (28) of a dependence of the cou- 
pling constgnt on th_e wave vector q: GK(q) =K(q )  - K(O), where 
K(q) = K(R + p ) / ( R +  2p), and K=K(O). A corresponding incre- 
ment arises when the q dependence of the elastic constants R(q) and 
p (q )  is taken into account. 

2' A procedure used in Ref. 32 to regularize the propagator Gsimulates the 
effect of a smooth cutoff. This procedure consists of replacing 1/q2 by 
[qZ + ( A / s ) ~ ]  - in the propagator and switching to an integration 
over all momentum space. Some essential uu divergences arise in the 
process and render this model unrenormalizable at low temperatures, 
K ' < 1/16a (furthermore, the model itself can be defined only as a 
double expansion in the parameters y ( 1 and K /16a - 1 < 1; Ref. 29). 
For this reason, the approximate approach of Ref. 32 works only near 
K = 1 6 ~ .  
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