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The Kondo-resonance parameters (self-energy and occupation) in crystals with spin-density 
waves (SDW) and charge-density waves (CDW) arecalculated by Anderson's 1/N-expansion 
method for an isolated impurity. The energies of the impurity states localized inside a dielectric 
gap in such systems are also obtained. It is shown that dielectrization of the spectrum in a phase 
with an SDW or a CDW does not cause rapid suppression owing to the influence of the square- 
root singularity in the state density near the edges of the gap. The Kondo-resonance parameters 
depend on the type of sublattice (with higher or lower charge density) into which the impurity 
lands in the case of CDW, and do not depend on the type of the magnetic sublattice (with higher 
or lower spin density) in the case of SDW. 

1. INTRODUCTION 

The behavior of impurities in materials with charge- 
and spin-density waves (CDW and SDW) exhibits a number 
of interesting features due to the restructuring of the elec- 
tronic and magnetic structures in vicinities on the order of 
the CDW and SDW correlation lengths. This structure can 
be self-consistently described only near the phase-transition 
point, by using the Ginzburg-Landau expansion for the 
thermodynamic potential fl(A) and taking into account the 
smallness and the slow variation of the order parameter 
A(r) (a  discussion of the corresponding applicability crite- 
ria can be found, for example in Ref. 1) .  Extensive use is 
made also of non-self-consistent approaches, in which the 
magnitude and form of A ( r ) ,  as well as the form of the defect 
potential U(r) are regarded as given. The validity criteria of 
the assumptions in question are in general not obvious, but it 
is obviously necessary to satisfy the requirement that the 
defect potential be small, I U / < ]A I, and that it be located far 
from the transition point, i.e., deep in the interior of the or- 
dered phase (see, in particular, one of the first papers2). 

The restructuring of the electron density near a non- 
magnetic point defect was considered in Ref. 3 for a Peierls 
system with CDS in an approximation with a rigid form of 
A(r),  and in Ref. 4 for a magnetic defect with a frozen-in 
moment. An analysis similar to that in Ref. 3 was reported in 
Ref. 5 for a system with CDW. A detailed analysis of the 
electron spectrum of impurity states, and also of the singu- 
larities of the states of systems with SDW in the presence of 
nonmagnetic defects was carried out in Ref. 6. A similar 
problem was solved in Ref. 7 for magnetic defects with clas- 
sical spins. 

A common feature of the electronic spectra of defect- 
containing crystals with SDW and CDW is known to be the 
onset of localized states inside the energy gap in the ordered 
phase. The locations, the spin polarizations, and the radii of 
these states depend on the specific type and value of the po- 
tential of the defect in the matrix of the host material, and on 
the amplitude of the CDW or SDW, but the very presence of 
localized states in all the discussed structure types can be 
regarded as established. In fact, the calculations of these 
states are similar to those in Ref. 8 for the impurity levels in 
narrow-band A 4B semiconductors. In the latter, the gap in 
the electron spectrum is determined by a rigorously pre- 

scribed "chemical" ionicity parameter, which can be inter- 
preted (naturally, with some relaxed rigor), as the ampli- 
tude of a "frozen" CDW. 

We intend to describe in this paper the energy spectrum 
of a single pointlike magnetic defect in a matrix of a com- 
mensurable CDW or SDW in the region of the ordered 
phase, with account taken of the quantum spin fluctuations 
(Kondo fluctuations). It is assumed that the above criteria 
of approach to a rigid form of the order parameter A(r) are 
met. It is assumed in addition that a Kondo state had been 
formed on the magnetic impurity, and the analysis is carried 
out for temperatures T( ( Tk , T, ), where T, is the transition 
temperature and Tk is the Kondo temperature. In all the 
cited discussions of the behavior of magnetic impurities in 
systems with CDW or SDW, the role of the Kondo scatter- 
ing was ignored and it was assumed in fact that the singlet 
state is perturbed (or, equivalently, the temperature range 
considered was T )  Tk , but generally speaking T <  T, ) . We 
have recently discussed the role of the lower ("parquet") 
diagrams in electron-impurity scattering for systems with 
SDW, under the conditions T )  Tk and T, < T,. We shall 
therefore analyze here the case with the temperature rela- 
tions reversed. We were unable, unfortunately, to consider 
with any degree of consistency the case T Z  ( Tk , T, ) . 
2. THE MODEL HAMlLTONlAN 

A system that is unstable to a transition into a CDW or 
SDW state is described by the standard model of a metal 
with congruent Fermi-surface segments separated by a dis- 
tance equal to half the reciprocal lattice vector Q = G/2 
(Ref. 9). The magnetic impurity is described in the context 
of a two-configuration model, in which the ion fluctuates 
between the states f O =  (0) and f l =  ( m ) ,  where 
m  = (J ,  ..., - J ) ,  N = W + 1 ,  and Nis the degeneracy multi- 
plicity of the state f' (the Anderson model of an impurity 
with N-fold degeneracy in one-center repulsion limit). l o  The 
interaction of band electrons with localized states of the 
magnetic ion is specified in the form of single-particle hy- 
bridization. The Hamiltonian of the investigated system 
takes thus the form 

where the Hamiltonian H, describes the band electrons in 
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the mean-field approximation 

Here ABa = (Atu)pa in the SDW case and 
A,, = A,6,, for CDW, while A, and A, are the correspond- 
ing spin and charge order parameters. The band-electron 
dispersion law satisfies the "nesting" condition 
~ ( k )  = ~ ( k  + Q) ,  p is the chemical potential measured 
from the center of the band, n is the total-fermion-number 
operator, a and Bare the spin indices, and CT is a vector made 
up of Pauli matrices. For convenience, we shall henceforth 
reckon the fermion energies directly from the Fermi level of 
the system, assumingp to be known (e.g., fixed in the case of 
a reservoir of infinite size or, in the absence of a reservoir, 
self-consistently calculated from the condition that the total 
number of particles in the system is conserved). In the latter 
case the dependence of p on A, (A, ) is known: 

To be specific, we assume throughout that p > 0 (elec- 
tron doping) and consider the situation at zero temperature 
(T= 0).  

The Hamiltonian H, of a magnetic point defect can be 
expressed with the aid of the Hubbard operators 
Xoo = (0) (01, Xmm = Im) (m 1 in the form 

where E, and E, are the energies off' and f configurations, 
respectively. 

Single-particle transitions between localized f-orbitals 
of the impurity and the states of the band electrons (hybridi- 
zation) are described in terms of the transition operators 
X,, = 10) (m j and X,,, = Im) (01 by the Harniltonian 

& = r/ [ Vma (k) XDOaa (k) + C.C. I 
k m , a  

V , , ( k ) = V , ( k ) ( k , J , m J k . a ) .  ( 5 )  

The operators X,,, and X,,, do not satisfy the standard 
commutation relations, so that it is difficult to analyze the 
Hamiltonian H, by traditional diagram-technique methods. 
One of the most brilliant methods of solving this problem is 
to change from Hubbard operators to auxiliary boson (b) 
and fermion Cf) operators" in accordance with the scheme 

The operatorsf, and b satisfy the standard commuta- 
tion rules. Expressing H, and H, in terms of the operators f, 
and b we can write 

H, = i V.. (k)!,+baa (k) + cc.  I 

The operator H commutes with the operator of the totbi 
number of fermions and bosons on the impurity 

In our problem, the requirement Q = 1 must be rigor- 
ously satisfied. Nonphysical states can be formally excluded 
by adding to the Hamiltonian H the term A (Q - 1) and go- 
ing to the limit A - co in the expressions for the physical 
mean values. ' ' 
3. DERIVATION OF BASIC RELATIONS IN THE MEAN-BOSON- 
FIELD APPROXIMATION ATNp 1 

We use in the Hamiltonian ( 1 ) the mean-field approxi- 
mation with respect to the Boson variable, i.e., we replace b 
and b ' by their mean valueI2 

Equation ( 1 ) is then transformed into the single-parti- 
cle Hamiltonian 

where Zf = El + A .  The parameters Z of the theory of the 
mean field Zf are determined from the condition that the free 
energy of the system with the Hamiltonian ( 1 ) be a mini- 
mum. Carrying out in ( 1 1 ) a thermodynamic averaging and 
using the theorem a (H( y))/dy = dH(y)/dy), where y is a 
parameter of the Hamiltonian H, we get 

We solve the system ( 12) and ( 13) by the Green's func- 
tion method. The form of this function for fermions local- 
ized on site R, is 

where the self-energy part 2,,, (E,R,) can be written in the 
form 

Y,a,.a, 

n (k, E, R,)=Ga0,a,(k, k, ~)+~a:a , (k ,  k+Q, ~)expiVH,,  (16) 

for SDW and CDW, respectively. The factor expiQR, 
= + 1 is determined by the position R, of the impurity in 

the lattice relative to nonequivalent sites with maximum or 
minimum SDW (CDW). The filling of thef-level is deter- 
mined by the known relation 

where f ( ~ )  is the Fermi distribution function. A detailed 
expression for G,, (E,R,) and nf is given in the Appendix. 
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In the absence of SDW (CDW) it is easy to obtain from 
(20) the known result1* 

where N(0)  is the density of the states of the band electrons 
and V,, = VN -- Since Ff/O - N, we have for N> 1 

The energy of the resonant level is calculated from relation 
( 13), which can be rewritten in the form 

An expression for @(a,Ff,RO) is given in the Appendix. 

4. ENERGY OF RESONANT LEVEL AND ITS OCCUPATION IN 
SYSTEMS WITH SDW AND CDW 

A.Systems with SDW 

It follows from the computation given in the Appendix 
that, in the lowest (zeroth) order in ( N -  ' ), the right-hand 
sides of Eqs. (20) and (23) for systems with SDW contain 
no dependences on the position R, of the magnetic impurity 
in the lattice (such a dependence appears only at term values - ( N -  ' )2. We shall consider below two regimes, dielectric 
( p  < A, and metallic (p  > A, 1, and to be specific we shall 
bear in mind the case of electron alloying ( p  > 0) .  Note that 
the metallic regime always obtains in a model with a fixed 
number of particles, where p = (pi + A:) and p, is the 
deviation from half-occupation in the paramagnetic phase. 
The dielectric regime p < A, is realized in a model with a 
"reservoir," the role of which can be assumed, for example, 
by noncongruent sections of the Fermi surface, which do not 
participate in the formation of SDW (or CDW). 

It follows thus from Eqs. (A6), (A7), and (A9), 
(A10) that the resonance-level parameters .cf and nf, where 
af = Ff + p is the energy measured from the half-filled level 
of the band, does not depend explicitly on p if p < A,. The 
asymptotic behavior of the quantities af and nf can in some 
limiting cases be determined relatively simply. Thus, for 
/afJ2>Af we have 

it being assumed that E, = - / a , / ,  I & , /  >af,A,, p ,  i.e., the 
single-particle excitation level E ,  is deeply lower than the 
Fermi level. 

For \&,.I2 < A: we have 

Thus, in the region of low values A, <a,, the level E,. 

decreases in proportion to ln (2a,/A, ), passes next 
through the middle of the gap at 
*A, = 2ao exp[n,/(l - n,) 1, and with further increase of 
A, its absolute value increases but stays negative and re- 
mains all the time inside the gap. The occupation nf de- 
creases everywhere with increase of A,, tending to zero at 

A,  BE^, i.e., its Kondo state is disturbed. 
The analysis of the behavior of af and nf in the metallic 

state (p  > A, ) is somewhat more complicated. At a,,p % A, 
(small gap) : 

It can be seen that if a,>p the qualitative behavior of .cf 
and nf is similar to the one considered above: as A, increases 
the energy af of the level and its population nf decrease. If 
ao<p, however, as follows from (29) and (30), the picture 
becomes qualitatively different: Af begins to increase as A, 
increases, whereas n,. decreases as before. As A, rises (large 
gap) we obtain in the /af / <p ,  A,, regime 

i.e., a behavior similar to (27) and (28): af increases logar- 
ithmically in absolute value, dropping below the middle of 
the gap but remaining in the gap, while nf decreases and 
tends to zero with increase of A, Thus, in the metallic phase 
the Kondo-resonance energy can vary nonmonotonically at 
a o < p  and have a maximum at A, -ao This effect is due to a 
competition between two factors-partial dielectrization of 
the spectrum, which by itself keeps some of the band states 
the inside the gap from producing Kondo-resonances, and 
enhancement of the Kondo scattering by the increase of the 
allowed-states density near the edge of the gap. 

B. Systems with CDW 

In contrast to systems with SDW, the energy and occu- 
pation of a Kondo resonance depend strongly on the location 
R, of the impurity in the lattice relative to the maximum or 
minimum of the charge-density wave [see Eqs. ( A l l ) -  
(A14) ] .  This is due to the singlet structure of the Kondo 
state formed in an effective potential that is different in sub- 
lattices with higher or lower electron density 
(exp iQR, = 1). By analogy with Sec. A, we present for 
the dielectric regime ( p < A, ), in zeroth order in ( N  ' ) , 
the asymptotic expression 

for la,+ 1 > Af. Evidently, with the increase of A,, depending 
on the type of sublattice (maximum or minimum of the 
CDW), the values of a? decrease (upper sign) or increase 
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(lower sign) with increase of E? , i.e., the Kondo resonance 
is weakened in the former case and strengthened in the latter. 
With further increase of A, the values of E? pass through 
zero at 

(here EF has a maximum but ~ f +  does not), after which their 
moduli increase logarithmically, they become negative, and 
are always located inside the gap. If A, % 1 ~ ~ 1 ,  we get 

In the metallic regime (p > A,) we obtain, just as in Sec. 
A, if E; $ A% and p2 $ A; 

and if $ 4  A:,p2: 

Analysis shows that if E, > p  the qualitative behavior of 
the &f+ (A, ) and n? (A, ) dependences in the metallic phase 
differs little from the "dielectric" case (p < A, ). If E, <p ,  
however, this behavior is strongly altered: sublattices with 
maxima (upper signs in all the equations) and with minima 
(lower signs) of the CDW so to speak exchange places, i.e., 
the value of ~ f t  increases with increase of A,, passes through 
a maximum at E"- A,s, and then decreases logarithmically, 
whereas EY decreases monotonically. Recall that if E, > p  
the value of ~ f +  decreases monotonically, while ET has a 
maximum at E, - A,. 

A complete analysis of the behavior of the Kondo-reso- 
nance parameters E~ and nf at arbitrary relations between 
the values of eo, p ,  and A, ,  can be carried out only numeri- 
cally and is not our purpose here. At the same time, many 
qualitative features (e.g., the dependence of E~ on the size of 
the gap) can be already qualitatively understood from the 
simple estimates above. We shall consider this question in 
Sec. 6 below. 

5. LOCALIZEDSTATES INSIDE A DIELECTRIC GAP IN A 
CRYSTAL WITH SDW AND CDW 

Beside the Kondo resonances, which exist in principle 
in the absence of SDW or CDW, the presence of such order- 
ing can give rise to localized single-electron states of special 
type, due to singularities of the band spectra of crystals with 
SDW or CDW. These states separate from the (upper or 

lower) edge of the dielectric gap even in the case of ordinary 
potential electron-impurity scattering, and lead to a strong 
spatial (charge and spin) redistribution of the band elec- 
trons in a region of the order of the correlation length around 
the defect. To calculate the energy of such a state it suffices 
to have an expression for the pole of the matrix of the scatter- 
ing of band electrons by the defect. Leaving out the simple 
intermediate calculations, we write the sought relation in the 
form 

Equation (41) is similar to the analogous expression 
given - in Refs. 6-8, but the effective scattering potential 
U(w) depends now on the frequency w, making the analysis 
of the solution (41 ) more complicated. Solutions (41 ) can in 
principle be written in the form of roots of a cubic equation. 
For a qualitative assessment of the feasibility of a localized 
state and for asymptotic estimates it is more convenient to 
use a graphic method. 

A. Systems with SDW 

It is easy to verify that the equation 

always has a unique solution o = o, in the interval (wl <A,. 
For E ~ $  A,, neglecting terms proportional to we get 

If 1 ~ ~ 1  4 A, we have for both positive and negative E~ 

6. Systems with CDW 

The equation 

does not always have a real solution in the region (w ( 4 A,. It 
is easily shown that for a site with a maximum CDW [upper 
sign in Eq. (48) ] no such solution exists at ~ f t  > A,, appears 
jumpwise at = A, (w0- A, for ~ f +  = A,, - E ,  where E is 
an infinitesimal positive quantity), and exists in the entire 
~ f t  <A, region regardless of the sign of ~ f i .  For a site with 
minimum CDW [lower sign in (48) 1 the situation is differ- 
ent, i.e., a real solution is absent at EY < - A,, appears 
jumpwise at ET = - A,, and exists next for all EF > - A,. 
We have not considered the case of hole doping, when a 
situation ~ f i  < - A, can arise, so that formally a localized 
state always exists for electron doping in sites with minimum 
CDW, while in sites with maximum CDW it exists only in a 
bounded region of the model parameters. 

In the case of hole doping, the sublattices with mini- 
mum and maximum CDW change places from the stand- 
point of formation of localized states, and all the arguments 
above remain valid apart from interchange of the terms 
"maximum CDW" and "minimum CDW." We present a 
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few asymptotic estimates. 
For E,. As we have 

and there is no w,+ . For E,. 4 As 

For E,. + A, but E,-< A, we have 

ma+-- A, ,  U K A , ,  

A -  ( 2 A ) ' U '  UKA,, 

A localized state in a system with SDW is always locat- 
ed above the middle of the electric gap, and its energy does 
not depend explicitly on the character of the doping and on 
the type of the sublattice containing the defect. In systems 
with CDW, depending on the defect parameters, a localized 
state can lie either above or below the middle of the gap, and 
its energy is determined essentially by the sublattice type and 
by the character of the doping (electron or hole). In particu- 
lar, in the case of a strong Kondo resonance, when > A, 
no bound state is produced at all for one of the sublattices. 

6. DISCUSSION OF RESULTS 

The analysis above permits three important qualitative 
statements to be made. 

1. Dielectrization of the spectrum in systems with 
CDW and SDW influences the suppression of the Kondo 
resonance quite weakly (logarithmically weakly even at 
large values of the parameter A/&,% 1 ). The reason is the 
partially compensating influence of the singularities in the 
density of the band states near the gap edge. As a result, the 
Kondo resonance is preserved even deeply in the dielectric 
phase and lies inside the gap in the electron spectrum. 

2. The location of the Kondo resonance in a normal 
metallic phase is known to be determined by the location of 
the Fermi level. In the dielectric phase this resonance is ri- 
gidly connected to the position of the gap edges 2A. In sys- 
tems with SDW, the Kondo-level energy and density are 
equal for both sublattices (with spin density "up" or 
"down"), while in systems with CDW they are unequal, de- 

FIG. 1.  Qualitative dependences of impurity-state energy levels on SDP 
amplitude: I-&,(A, ), 2-w,( A, ). 

FIG. 2. Qualitative dependences of impurity-state energy levels on CDP 
amplitude: I-E/+(A,),Z--~,+(A,),~-E~(A,),~--~O (A,) .  

pending on the type of sublattice (with excess or shortage of 
charge density). 

3. Single-particle localized states of band electrons are 
produced inside the dielectric gap in systems with Kondo 
impurities alongside with Kondo resonances. In systems 
with SDW this takes place independently of the position of 
the impurity in any of the sublattices, whereas in systems 
with CDW the localized states have different energies for 
different sublattices, and may even be absent from one of 
them under certain conditions. 

By way of illustration, Figs. 1 and 2 show approximate 
dependences of ef and w, on A , ,  for crystals with SDW and 
CDW in the dielectric phase ( p  = 0, half-filled bands). The 
dependences of E/ and wo on the doping level can also be 
plotted, but account must then be taken of the dependence of 
A , ,  onp.  The main qualitative feature of doped systems with 
CDW and SDW, which follows from the equations of Sec. 4, 
is that a t p  > E~ the value of E~ can exceed the corresponding 
value in the normal phase (i.e., metallic without SDW or 
CDW). The functions E~ ( p )  and wo(p) themselves are non- 
monotonic and have characteristic maxima at certain values 
ofp. Figures 3 and 4 show as examples approximate plots of 
~ ~ ( p ~ )  for systems with fixed numbers of particles (the 
SDW and CDW cases, respectively), when 

and A, is the amplitude of the SDW (or CDW) in the ab- 
sence of doping. 

We consider in conclusion the possibility of applying 
our results to some actual objects. The SDW model is 
known13 to describe fairly well antiferrornagnetism in a 

FIG. 3. Qualitative dependence of reduced Kondo-resonance energy F, 
on the band occupation: I-in a phase with SDP; 2-in a normal phase. 
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FIG. 4. Qualitative dependence of reduced Kondo-resonance energy 2, on 
the band occupation: 1,2-in phase with CDW for different sublattices, 
3-in normal phase. 

number of band magnets. Suitable candidates for our prob- 
lem may be dilute Cr-Fe(Co)-V alloys with low Ntel tem- 
perature, T, < T, (it is known that weak V doping sup- 
presses strongly the TN of pure chromium, and according to 
certain data14 T, for Fe in Cr is < 50 K, so that at V densities 
close to 3 4 %  one can hope to satisfy the criteria called for 
by our theory). One can furthermore hope that addition of 
Fe to the band ferromagnet NiMn is a Kondo impurity in a 
system with SDW (Ref. 15). It can be assumed that other 
transition-metal and rare-earth-metal impurities, or non- 
stoichiometry defects in ordered alloys such as Pt,Fe, FeRh, 
and the already mentioned NiMn can be qualitatively de- 
scribed in the framework of the proposed model. Possible 
examples of systems with CDW and Kondo impurities are 
apparently A 4B semiconductors with rare earths (such as 
Gd) and transition metals (such as Mn). It would be of 
interest to track the behavior of the Kondo resonance &,-and 
of the local levels a,+, for example of optical measurements, 
when the ionicity parameter A (Ref. 8) (an "analog" of A, ) 
in ternary systems with substitution of a nonmagnetic metal 
(for example, Pb, , Sn, Te:Gd). It would be of interest to 
investigate from this viewpoint of Kondo anomalies also tra- 
ditional Peierls quasi-one-dimensional and layered systems 
with transition or rare-earth magnetic metals as impurities. 

In closing, one more important class of objects to which 
the proposed model may be applicable comprises magnetic 
impurities (or magnetic-metal films) on reconstructed sur- 
faces. For example, a magnetic impurity on a W(001) or 
Mo(001) surface can apparently be an example of a situa- 
tion with CDW (Ref. 16), while a magnetic impurity on an 
Si(II1) surface can be an example ofa situation with SDW, if 
one accepts a statement made by a number of workers" that 
the reconstruction mechanism in this system is of "antiferro- 
magnetic" origin. 

APPENDIX 

The function G,, (E,R,) is given by 

The energy E is measured from the middle of the band. 
The integration in the expression for n, is in the intervals 

{-D,-A,(A,))  and {A,(A,),p), i f p>A, (A , ) ,  and in 
the interval { - D, - A, (A, 1) if 0 < p  < A, (A, ). The func- 
tion @(E,E~,R,) is obtained from the relation 

Z 'Q ( P ,  el, R.)= G,,(F. R.) (-ao sign ED,(&) 1. (A41 

The intergration over c in (23) is as in (20) for nf. 
In the lowest order of the expansion in 1/N, calculation 

of the integral over the energy in (20) yields for SDW 

For E; > A: we have 

E:+(E? - A:) ' I 2  
x lnl 

A t 

For E: < A: we have 

A similar calculation of the integral over the energy in 
(23) yields for SDW (6, = El - E, + p ) :  

For E; > A: we have 

X 
(A~' -~~ ,+(&,~-A:) '~(P' -A:)"  B(p-AI).  (AP) 

p-Et I I 
For E; < A: we have 

2 0  - Ef [ 
arctg +[ln7 (I*~-A,L)% (A:-&;) " 

(A;_&,Z)"(~~-A;)'~ + arctg. 
I AtL-p&f 1 

JJ A .  (A101 
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The relations for I;; and G, for systems with CDW are 

for E; > A:, 

A.'--etl x arctgl -I1'*] ~ ( A . - P )  - e; 

+ [ " " - [ I -  
&;-A12 p-Et 

+ A" ( A ~ * E ~ )  [arctg[ 91''' 
( A . ~ - E ? ) ' ~  

(As2-~fZ) 'b  (pZ-A,z)'h + arctg ] ] e ( p - ~ . ) .  ( A 1 2 1  
I A a 2 - e t ~ I  

for cf < Af , 

20 ef*As 
G.*(A.. p. El)= [1nd.- (em 

E ~ +  ( E ~ ' - A . ~ ) %  
x ln 

A, d ] e ( ~ . - F )  

+ [ln 20 - [ E ~ +  (etr-A,2)'"1 
Ef*Aa In 1 

p+ ($--A,2)q3 (ef2-A,')" 

[ b s L - p e t +  ( E ~ ~ - A " ' ) %  (p2-A*')" J x- - 1 - A  ( A 1 3 1  
P-Ef 

for E; > A:, and 

2 0  (&,*A,) 
G8*(A8, P, & t ) =  [lllx - (A2-E;)l,2 

A s 2 - ~ , '  
x arctg[--;--]'b] @(A.-P)  

E f 

2 0  + [In + p 2 - 2 1 a  - ( A ~ ~ - E ; ) ' ~  

(Aal-Ef2) %(pZ-A,2)% + arctg ---- 
1 ASLpef Ef! ( A 1 4 1  

for E; < A:. 
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