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A mechanism is discussed for the instability produced in an oscillator moving in a conductive 
medium by the reaction of the oscillator's proper (nonwave) field, and manifesting itself at 
essentially nonrelativistic velocities. The possibility of collective instability in the particle flow, 
due to this mechanism, is considered. Estimates show that such an instability could exist in media 
with semiconductor conductivities. 

Particle uniform-motion instability connected with 
wave emission by the particles has been actively discussed in 
the literature. As is known, for the instability to arise it is 
necessary that the "anomalous" part of emission localized in 
the Cherenkov cone predominate (in the sense of action on 
the particle) over the "normal" part propagating outside 
this cone. Thus, self-oscillations can be produced spontan- 
eously in a magnetoactive plasma by to electromagnetic- 
wave emission,' and in an isotropic plasma by emission of 
longitudinal waves.2 Similar effects are observed in hydro- 
d y n a m i c ~ , ~ , ~  where the instability of motion can be associat- 
ed with surface and internal wave emission. Such processes 
are of interest both in their own right and as "elementary 
acts" for stream-type instabilities, which, of course, arise 
under different conditions (since they are determined by the 
phasing of particle radiation), but, in principle, have the 
same "Cherenkov" character. 

In the present paper we discuss a somewhat different 
type of "field" particle-motion instability caused by losses.'' 
This instability is due to the near field generated in a medium 
by induced charges. The conditions under which it arises do 
not depend (for a given conductivity) on the parameter 
U/C, where U is the particle velocity and C is the wave 
phase velocity, and often turn out to be much less stringent 
than for a transparent medium. For example, such instabil- 
ity is possible in an isotropic nonideal dielectric for nonrela- - - 
tivistic charge motion. It leads either to aperiodic particle 
acceleration or (in the case of average motion stabilization) 
to the buildup of oscillators. We discuss first, a simple model 
of individual instability related to the motion of a charged 
particle near an interface. In principle, we should solve the 
self-consistent problem of the particle motion in its proper 
field (cf. Ref. 6) .  However, we will not go beyond the given 
motion approximation, finding the force of near-field reac- 
tion on the particle. Its phase with respect to the oscillation 
velocity determines the possibility of buildup or suppression 
of oscillations. In the second part of the paper we consider 
the instability of flow of oscillators in a macroscopic (mean) 
field, caused by the "individual" buildup of oscillators in the 
near field. 

relativistic, we will start from the Poisson equation for the 
electric-field potential 

EAT=-4np(x. y, I, t ) ,  (1) 

wherep = eS(z - Ut - a sin flt)S(x - d)S(y) andc is  the 
complex dielectric constant of the medium (different for 
x > 0 and x < 0).  Using, as usual, the Fourier-representation 
of the source and satisfying the boundary conditions, we can 
find the charge field and, as a result (similar to Ref. 7 ) ,  the 
drag force due to the Joule losses in the conductive medium: 

Here J, and KO are the Bessel function of the first kind and a 
modified Bessel function of the second kind respectively. 
For a uniformly moving charge and real E, Eq. (2)  yields a 
well known expression for the reactive force of radiation.' 
We, however, will assume that the medium is characterized 
by a constant conductivity IJ,~' e.g. ~ ( w )  = 1 + ia/w. Then 
for I = I, = 0 Eq. (2)  yields an expression for the dc compo- 
nent of the force 

and for I = I, + 1 the expression for its alternating compo- 
nent:3' 

We assume in what follows that kag 1 (in the opposite 
case the value of F, is considerably affected also by the oscil- 
lating component of the motion). Then, after simple trans- 
formations, the expression for Fo is reduced to the form 

1. CHARGE MOTION NEAR A CONDUCTIVE MEDIUM 
A 

J T ( F X ~ )  ( - ZT) dT 
Let a point charge be moving in vacuum parallel to a F,=--- 

4dU0 
plane interface of conductive half-space at a distanced from 
the latter, with velocity U+ U- cosflt, so that the oscilla- 
tion amplitude is a = U- /fl. Considering the motion non- 
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where ii = a d  /U, and Ho and No are the zeroth order Struve 
and Neumann functions respectively. 

The result of numerical calculation of Eq. (5)  is shown 
in Fig. 1. In the limiting cases of small and large speeds Eq. 
(5 )  yields 

ezU e'o 
F,(aBl)= -- F, (ij&l)= - - 

4d30 ' 4dU ' (6) 

Thus, for a( 1 the drag force decreases with increase of ve- 
locity, which may give rise to various instabilities. If the 
charge in a conductive medium is accelerated by external 
field acting with a force Fa < Fma, (see Fig. 1 ), the drag force 
causes a uniform motion with velocity U,. If, however, 
Fa > Fmax then, in the framework of this model, the charge is 
accelerated without b ~ u n d . ~ '  

Note that the "critical" velocity U,, associated with 
F= Fmax is found from the condition az 1, i.e. U,, -ad. 
This velocity is usually in the essentially nonrelativistic re- 
gion (see below). 

If we consider a moving oscillator, its motion on the 
"downward" section is accompanied, generally speaking, by 
buildup of oscillations. To describe this process it is neces- 
sary to find the oscillating part of the force. After simple 
transformations we find from (4)  that 

p = -  4eZo cos Qt 
n 

exp (-oz) cos QZ dz KO (2dk) k 
0 U 

XI, (2ka sin Qx) cos (2kUx)dk. (7)  

whence, if ka 4 1, 

(1-2z2)sin Qz F = -  e'uacOsQtJ (I+i)*, exp ( - - B T ) ~ T .  
8d2U 

(8) 

Here fi = 2dfl/U. If, besides, fi ( 1, then 

= - e2U-6 cos Qt { 
4d2U 

- l+n~[H ,  (a) - N o  (a)] 

-a2[+(H, (6) -~ , (a ) ) - I ] ) .  (9) 

FIG. 2. Dependence of thealternating component of the resistance force 
on the charge velocity at a =  0.01. 

Note that in the last case of low frequency oscillations the 
buildup of oscillations occurs quasistatically, namely, the 
oscillating part of the force is determined by the change in 
the - force (6)  acting on a uniformly moving charge: 
Fz - ( d ~ , / d ~ ) t ,  where [ is the oscillating part of the par- 
ticle displacement. Since on the decreasing section dFo/ 
dU<  0, the oscillating instability develops there. In particu- 
lar, it follows from (9)  that 

The oscillating part of the drag force versus the mean 
velocity in the low-frequency case is shown in Fig. 2. It is 
seen that the oscillations become unstable for i ig  1.3. 

For higher frequencies the integral in ( 8 ) has been cal- 
culated with the help of a computer. The instability-region 
boundary in the fi plane is shown in Fig. 3 (the instability 
region is shaded). 

We will list now, without detailed discussion, the corre- 
sponding formulas for the drag force acting on a moving 
charge in a round cylindric channel under the condition that 
the channel radius R is much smaller than the characteristic 
field scales (R ( U/a, U/rll). In this case the component of 
the force Fo differs from (5)  only by a constant factor: 

For the alternating component we have [cf. (8)  ] : 

FIG. 1.  Dependence of the dc component of the resistance force on the 
charge velocity. 

(1 la)  

FIG. 3. Region of charge-motion instability in the plane of the parameters 
ad /U and 2nd /U (hatched). 
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1-2t' p = -  
R2U 

sin(Qiz)exp (-8,z) dz. 

(lib) 

Herei?, = uR/U, 5, = flR/U. 
Note that in the problems considered above the motion 

is nonrelativistic, and in the region where the buildup of 
oscillations occurs we have u/w - ud /Ug 1. 

Let us briefly discuss the physical mechanism of the 
instability. The charge motion near the interface generates 
on the latter a "tail" of induced charges of opposite sign. 
This "tail" of length 1, 2: U/u is responsible for the drag 
force. If the particle velocity grows, the "tail" extends be- 
hind it, which may lead to the decrease in force and, as a 
result, to the instability. At distances much larger than I, 
the charge field in the quasistatic case has a dipole character. 
In fact, Eq. (1)  in a coordinate system moving with the 
charge velocity U, provided that the oscillation amplitude is 
small (ka  & 1 ), can be written in the form 

CAT= -4ne [6 (r) -2 ( t ) 6  (r,)6' ( 2 )  1, (12) 

where z( t )  is the oscillating part of the charge displacement, 
and b is the dielectric constant operator. Using the Fourier 
representation of the field and assuming that z = Zexp(-iot) 
and 2 = 1 + iu/(w + kU), it is easy to show that at the dis- 
tances r% 1, the solution of Eq. ( 12) under the condition 
that 

has the form 

Hence the dipole character of the charge field. 

2. SPONTANEOUS BUILDUP OF ELECTRON OSCILLATIONS 
IN ACONDUCTIVE MEDIUM 

It is interesting to discuss the instability considered 
above in the collective case, when there is a flow of free parti- 
cles (electrons) moving in parallel channels in a dissipative 
medium. For a hydrodynamic description of such a system 
to be valid, it is necessary that there be many particles over a 
distance equal to the macroscopic field wavelength. On the 
other hand, as shown above, the characteristic scale of the 
induced charge "tail" is of order U/o. Thus, under the con- 
dition 

where no is the density of the moving electrons, we can as- 
sume that the distance between the mentioned dipoles is 
large in comparison with their size. Then each particle sub- 
ject to the macroscopic field E' is also subject to the "individ- 
ual" drag force F found above. In other words, the particle 
equation of motion has the form 

To describe the dispersion properties of the system in 
the hydrodynamic approximation, we use, alongside with 
( 16), the usual equations 

d n 
- + div nV=O, 
at 

div &EU=4nen, (18) 

where n is the particle density, b = 1 + ia/o for a harmonic 
field, and E" is the mean field. In what follows we assume 
that E' = E".5' 

If a system is subject to a constant external field E,, in 
the stationary regime there is a flow of particles whose equi- 
librium velocity is found from the equation eE = - F(  U, 1. 
We assume that U, lies on the section where dF(U,)/ 
dU  < 0. Considering the small harmonic perturbations and 
linearizing Eqs. ( 16)-( 18) with respect to the unperturbed 
values no, U, and E,, we find in the one-dimensional case 
the following dispersion equation: 

where wi = 4rn0e2/m is the plasma frequency and y is the 
parameter of individual instability. 

Note that this equation can be derived also on the basis 
of the "dipole" interpretation mentioned above: if kl, 4 1 
[this condition always holds if Eq. ( 15) is valid] Eq. ( 18) 
together with (14) is easily reduced to the form 
div(2E + 4rPd ) = 0, where Pd = en2 is the total dipole mo- 
ment associated with the particles. 

For the sake of simplicity we consider only the quasi- 
static case, when y = ( l/m) dF,/dU = (F/m) U- [see 
Eqs. (6) and ( l o ) ] .  

For y = 0 (or, more accurately, for y & w, & a )  the dis- 
persion equation ( 19) gives the beam instability in a conduc- 
tive medium (see, e.g., Ref. 12). If, however, y#O, the sys- 
tem behavior can change substantially. Thus, for spatially 
homogeneous perturbations ( k  = 0), whose beam instabil- 
ity increment equals zero,I2 we get from ( 19): 

i.e., for y > u aperiodic or oscillatory (depending on the val- 
ue of wi ) instability develops. If w, -0, it has "purely indi- 
vidual" character. 

Let now kU #O. In this case explicit analytic expres- 
sions for the growth rate 6 = Imw can be derived only in the 
limiting cases. Thus, for small y( y <a) we find from ( 19) 
the following expression: 

where 7 = y/2wp, and S = cr/kU. The dependences (2 1 ) are 
shown in Fig. 4 for various y. The curve for y = 0 corre- 
sponds to purely beam instability. It is seen from Fig. 4 that 
the individual growth rate y > 0 leads to one more instable 
mode, with the range of wave numbers corresponding to the 
instability region of this mode becoming wider with growing 
y. For a> y% 2wp Eq. (21 ) yields the asymptotes 6, -- y and 
6, ~ o i / y (  1 + S 2 ) .  Note that 6,  %S2, i.e., the individual in- 
stability (6, ) predominates over the beam instability (6, ). 
In the opposite limiting case, when y>u,  Eq. ( 19) also gives 
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FIG. 4. Instability growth-rate vs the wave number at US y for various 
values of the parameter y = y/2wp curve 1-7 = 0; 2-7 = 0.3; 3- 
p= 1. 

two modes, "individual" and beam, whose respective 
growth rates are 

It is seen that 6, )a2, i.e., under these conditions the individ- 
ual instability also prevails. Furthermore, beam instability 
exists only in a limited range of wave numbers 
(O< kU< (w;  - i.e. only if w, > y. The depen- 
dences (22) are shown in Fig. 5. 

For the realization of the instability described above the 
conductivity and the channel diameter should satisfy defi- 
nite conditions. These conditions hold, in particular, for 
semiconductors (a= 1012-10'4 s -  I ) ,  where it is possible to 

FIG. 5. Instability growth rate vs the wave number at a = 0.1 y, 
j? = 0.75wpZI 1-growth rate of individual instability, 2-growth rate of 
purely beam ~nstability. 

make sufficiently narrow (with a diameter of tens of ~ n ~ -  
striims) channels.13 Thus, for a = 1013 s - ', R = 40 A, 
U=2.107 cm/s we have y=e2a/mRU2= 1.5.1013 s - ' .  
Then, in the example considered, the growth rate 
S=0.25. 1013 s - ', and the characteristic spatial gain is 
L - U/S= 800 A, i.e., transit through a thin film is sufficient. 
For the dipole-independence condition ( 15 ) to be satisfied, 
the electron density no should be less than loi7 cm-' or 
w < ~ . ~ o ~ ~ s - ~ .  

We believe that the instabilities considered above are of 
general and, at the same time, practical interest, since their 
realization does not require relativistic motion of particles. 

I '  Oscillator motion in a medium with effective absorption associated with 
the scattering by inhomogeneities of the dielectric constant has been 
studied in Ref. 5. However, this dissipation mechanism does not lead to 
oscillator instability. 

'' This approximation is valid, in particular, for plasma-like media at fre- 
quencies o < v or d v / U ,  1, where v is the collision frequency. 

" It is clear that only these two components of the force perform work on 
the particle (see, e.g., Ref. 8). 

4' Essentially, the presence of runaway electrons in plasma with the Cou- 
lomb collisions is also associated with a similar mechani~m,~ since at 
nonrelativistic velocities the Coulomb-scattering cross section and the 
drag force fall with increase of velocity. Another example is the particle 
deceleration due to ionization losses: as is well-known, the drag force for 
nonrelativistic particles also falls as the velocity increases.'' 

5 '  Without going into the details of the usually complicated and confused 
question of the relation between the effective, E,,, and mean, E'  = E ", 
fields (see, e.g., Ref. 11 ), note that in our case these fields are not equal: 
according to (16), E,, = E' + F/e. This difference is due here to the 
induced polarization of the conductive medium. 
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