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Muonium spin-phonon interaction is studied in semiconductors and dielectrics under conditions 
of muon acoustic spin resonance ( p  ASR) . General expressions are derived for the muon spin 
behavior under periodic perturbation near the resonance. It is shown that under these conditions 
the periodic perturbation manifests itself in the form of characteristic oscillations of the 
longitudinal polarization or of minima of the average polarization. The oscillation frequency or 
minimum depth is given by the interaction magnitude. The formulas obtained are applied to 
pASR-experiments with isotropic Mu in diamond-structure crystals. It is shown thatpASR- 
experiments yield all the constants of muonium spin-phonon interaction. 

The acoustic magnetic resonance is used extensively in 
solid state studies. However in the acoustic nuclear magnetic 
resonance (ANMR) and acoustic electron spin resonance 
(AESR) methods the independent constants of spin- 
phonon interaction of a paramagnetic center are obtained, as 
a rule, indirectly by analysis of the acoustic wave absorption 
coefficient or of the ESR or NMR signal saturation (see, 
e.g., Refs. 1 and 2).  The pSR method in its traditional ver- 
sion, implying the acoustic wave excitation, yields directly 
the spin-phonon interaction constants in crystals where a 
muonic atom is formed. The possibilities for the investiga- 
tion of ferromagnets by the muon acoustic resonance 
(pASR) are analyzed in Refs. 3 and 4. 

First, consider the muon spin polarization under peri- 
odic perturbation of frequency o. The Hamiltonian of the 

has the following form in the basis of eigenfunctions of the 
Hamiltonian Ho : 

Here &on, = E, - E,; In), I k ) and E,, E, are the eigenfunc- 
tions and eigenvalues of Ho respectively. In what follows we 
assume that E, > E, . 

As is well known,5 if for some levels the resonance con- 
dition holds, on, -a( lw,, - wl/04 1 ), the problem re- 
duces to the two-level one. A two-level system is convenient- 
ly described by an effective spin T = +. The effective spin 
operator .ii is introduced as follows: 

system has the form 

H(t)=H,+V(t), 

where Ho is the Hamiltonian of an unperturbed system (a  
Naturally, the operators .ii satisfy the well-known commuta- muon in the lattice, muonium, etc.), and V(t) is a periodic 

perturbation of frequency w. tion relations: 

It is convenient to write the polarization in the interac- [fZ, ?*]=-&tf, [?+, t ]=2?z .  
tion representation: 

(9)  

In the space of two states, In) and I k ), the operator (7)  has 
P,(t)=Sp o , ( t ) p~ ( t ) .  ( 2 ) the form 

Here V, ( t )= ;+~ exp(i6t) +;-A' exp(-St), (10) 

oi(t)=exp (ih-'Hot) oi exp (-iA-'Hot) (3)  whe reA=(n lV lk )andS=w, , -o . In the spaceo f the  

is the muon spin operator in the interaction representation. remaining states the perturbation operator is assumed to be 

The density matrix satisfies the well-known equation zero ( (m I V I I ) = 0), since we study the system under condi- 
tions close to resonance. Accordingly, the density matrix 

bl(t)=-ih-'[ vl(t), pI(t)], (4)  elements in the interaction representation p,,, pkk and 
pnk =p;Fn are changed by the perturbation ( l o ) ,  while the 

where 
others remain constant. 

V,(t) =exp (ih-'Hot) V(t)exp (-iA-'Hot) (5)  The density matrix at the initial time can be written as 

is the perturbation operator in the interaction representa- P(O)=PW(O)PS(O), (11) 
tion. 

where 
The problem of quantum-system behavior under the ac- 

tion of periodic perturbations is well-known (see, e.g., Ref. PM (0) ='I, (l+aPo) (12) 
5). We, however, have to find the spin polarization in such a 
system. Consider the case when Ho has a discrete nondegen- is the muon density matrix with the initial polarization Po 

crate spectrum. Then, in the interaction representation, the andps ('1 is the density matrix of the remaining Part of the 

arbitrary periodic perturbation operator system. Let the z axis be parallel to Po. Then the "reso- 
nance" part of the density matrix, pI (n,k;t), can be repre- 

V(t)=Vexp(-iot) + H.c. (6)  sented as 
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Here a,, , akk , unk = a:,, are the matrix elements of the op- 
erator a, in the space of the states In)  and ( k  ), and rz ( t )  and 
r + ( t )  are the effective spin operators in the interaction rep- 
resentation. As is well-known (see, e.g., Ref. 5) ,  these opera- 
tors obey the equation 

The formal solution of Eq. ( 14) can be written in the form of 
the iteration series 

t 

zi ( t ) & ~ ~ +  ( - i / a )  J a t , [ ~ ~ ( t ~ ) , ; ~ ~  
0 

1, 

+ ( - i / h ) ' I  dt, 1 d t 2 [ ~ , ( t 1 ) .  [ v 1 ( t z ) , % i ~  I+ . .  . (15) 
0 0 

For the spin 3 the series can be summed. 
The properties of two-level systems have been analyzed 

3t length in quantum radiophysics (see, e.g., Ref. 6 ) .  There- 
fore, omitting the intermediate calculations, we give the final 
result: 

z, ( t )  =f ( t ) ? , + i ~ f + ( t f ~ + - i ~ ' f - ( t ) z - .  (16) 

Here 

For the two other operators we have 

where 

F ( t )  = (2A'lQ) [ i  (8152) (I-cos Qt)  -sin Qt ] ,  
t 

0 

and, respectively, 

T - ( t )  =[~SA*F+'(~)]~---AF-'(~)<+~F(~)~,. (18) 

Using the formulas ( 13), (16)-( IS), one can write 
down the muon spin polarization for arbitrary periodic per- 
turbation under resonance conditions. The effect is most 
clearly observed in the form of longitudinal polarization os- 
cillations of characteristic frequency R. 

The transverse muon polarization in the Mu atom, pre- 
cessing as a rule with many frequencies, becomes even more 
complicated, when a periodic perturbation is switched on. 
However, if the transverse polarization contains a conserved 
component, as for example in the anisotropic Mu* atom 
(Ref. 7) ,  the oscillations of frequency R will also appear at 
resonance. Therefore, we will consider in what follows only 
the longitudinal polarization PI, ( t ) .  It can be written as 

where P r' (t)  is the polarization in the absence of perturba- 

tion, and SPl, ( t )  is the resonant correction determined by a 
part of the density matrix ( 13): 

Introducing the notations 

and performing long but simple calculations, we find the 
correction to the polarization, which has a rather cumber- 
some form 

1-41 
+cos (cp-a) I - -(onn2-oh:) 

Q 1 

6 
+ - I o n k I ~ s i n  a t ) .  

Q 
(22) 

The formula (22) is substantially simplified if the frequency 
w - 109-10'0 s - ' is too high to be resolved in the experiment: 
- 
6Pll ( t )  =- ( ~ - C O S  Qt)  ( IA 11Q) (onn-o=) ( \A l l& )  ('~mn-okk) 

- (6 l(J,kl/Q) cos (cp-a) I 
-sin Q t ( l A I / Q )  (on,-om) (onklsin(cp-a). (23) 

The resonance is observed most effectively when the 
external field dependence of the average longitudinal polar- 
ization is studied. If the depolarization occurs at a low rate 
A g u n k ,  the average polarization is 

ea 

where r,, = 2 . 2 ~ 1 0 - ~  s is the muon lifetime and 
A = A + r; '. Since w,, >A,  only the conserved compo- 
nents of P ;10' and slowly oscillating terms of the correction 
SPli ( t )  will contribute to (PII ). Thus, we have 

As is seen, at exact resonance a characteristic minimum of 
(Pll (B)) appears, whose depth is 

The characteristic behavior of (PI[ (B) ) under periodic per- 
turbation is shown in Fig. 1. The interaction value is deter- 
mined by the oscillation frequency in (23) or by the depth of 
the minimum. 

The Hamiltonian of the spin-phonon interaction of the 
Mu atom in a crystal does not differ from the corresponding 
Hamiltonian of a paramagnetic impurity of spin S = 3. The 
spin-phonon interaction of the Mu atom with the lattice is 
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FIG. 1. Characteristic dependence of (PI ) vs the magnetic field. 

determined by the crystal field modulation in the interstice 
where the muonium is situated. The crystal field modula- 
tion, which decreases the local symmetry, leads to anisotrop- 
ic corrections to the hyperfine-interaction constant and the 
g-factor of the Mu atom: 

The phenomenological second-rank tensors Sfl, and Sg, 
are given by the crystal field gradients and are proportional 
to the lattice deformations:' 

Here Z,,,, and Fi,,, are the coupling tensors and u,, is the 
lattice deformation tensor. In the field of a standing acoustic 
wave the displacement vector has the form 

u=euo sin (kr-ot )  , (29) 

where u, , e and k are the acoustic wave amplitude, polariza- 
tion, and wave vector respectively. The deformation tensor 

ulm= ('14 ( ~ U , I ~ X ~ + ~ U , I ~ X , )  

for the wave (29) is 

u!,= (uo/2)  (erkm+emkr)cos (kr -o t )  . (30) 

Thus, the muon spin polarization in the presence of the per- 
turbation (27) is determined by the formulas (22), (23 ), 
(25 ), and (26). Note that, as follows from (29), the pertur- 
bation phase depends on r: 

a=ao+kr, 

therefore the muon ensemble polarization is determined by 
averaging Eqs. (22) and (25) over the sample volume. How- 
ever, as seen from Eqs. (23 ) and (261, at exact resonance the 
polarization, as well as the minimum depth, are independent 
of a. 

Let us analyze the possibilities of thep ASR-method for 
the simplest case of isotropic muonium. 

The coupling tensors Z and Fare  symmetric with re- 
spect to the index permutation in the first and second pairs, 
i.e., 

In the physical acoustics one uses the Voigt notation 

In this notation the fourth-rank tensors can be represented 

in the form of 6 X 6 matrices. Thus, in the most general case 
only 36 independent components can exist. Actually, the 
number of independent components is much smaller, since 
the coupling tensors can be invariant with respect to symme- 
try-group transformations of the muonium surrounding. 
The independent components for various symmetry groups 
are listed in many books (see, e.g., Refs. 1 and 2).  

In diamond-structure crystals the Mu-surrounding 
symmetry in a tetrahedral void is given by the point group 
T,. The coupling tensors are given by three constants only, 
for example: 

z, ,=z, ,=z, ,=z, ,  Z, ,=z, ,=z, ,=z, ,  

The rest are equal to zero. 
Evidently, the specific form of the Hamiltonian (27) 

for Mu will depend on the acoustic-wave propagation direc- 
tion and polarization. For isotropic Mu in diamond-struc- 
ture crystals four independent experiments can be suggest- 
ed. 

1. A longitudinal wave, k ( ( z  (zl(B). In this case the 
Hamiltonian (27) has the form 

2. A longitudinal wave, k l z .  Let kllx, then 

V=-tr6Q,a'd+fl (6QI1-68,) o,"oZu+poB6g,a,". (33) 

3. A transverse wave, kllz, the polarization elly. In this 
case 

V=B6SZs (ozeau~+aU"a,~ +~J3Gg,ave. (34) 

4. A transverse wave, k l z ,  elz. Let kllx, elly, then 

We show now how the interaction constants are found. 
As is well-known, the energy levels of isotropic muonium are 
(Fig. 2) 

e1.S=floo/4*fioB(1-b), ez , ,=-(noo/4)  { 1 ~ 2 ( 1 + ~ ~ ) ~ ) ,  

(36) 

where wo is the hyperfine splitting frequency, = p, /po , 
and x = 2p0B( 1 + g) / fbo .  The state vectors, respectively, 
have the following form 

Il>=I+>I+>. 12>=2-"(a+\+>l->+a-I->I+>), 
(37) 

13>=1->I->. 14>=2-qa(a+I->(+>-a-l+>)->), 

where a, = [ 1 + x/ ( 1 + x2) '"1 and the state vectors 
are expressed through the products 1 4 )  1 4 ) .  In what fol- 
lows we need the expressions for the matrix elements of the 
operator @ in the basis (37), therefore we write the matrix 
in full: 

As a rule, for isotropic Mu the frequency w, - 109-10'0 s - ' 
(see, e.g., Ref. 8). The Larmor frequency of the electron 
precession in the field B- 100 G is of order a- lo9 s-I. 
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In this case o,, = - a,, = 1 and o13 = 0. 
3. The "richest" experiment. Four matrix elements of 

the Hamiltonian (34) are nonzero: 

FIG. 2. Muonium hyperfine structure. Arrows indicate possible transi- 
tions for w > w, . 

Thus, the pASR-experiments should be carried out in the 
fields of order B- 100 G. 

The longitudinal polarization in isotropic muonium is 

If the frequency w,, is not resolved in the experiment, the 
observed polarization is 

Consider now the four experiments suggested above. 
1. For the Hamiltonian ( 32) only one nondiagonal ma- 

trix element, (2 1 V (4),  is nonzero; therefore 

Since the audio-signal-generator frequency w is usually 
given, the resonance is achieved in a field 

where B, is the hyperfine field at the muon. We disregard 
hereafter the small quantity 6 in comparison with unity. 

2 1/2 From Eq. (38) we have a, = - oZ2 =x / ( l  + x ) 
and u2, = 1/( 1 + x2) I". Thus the resonance correction 6Pll 
and the minimum depth in (PI, ) are fully determined. 

2. In this case the Hamiltonian (33) has two nonzero 
nondiagonal elements 

It is the transition 2-4 that is at resonance with the acoustic 
wave in the field (42) is 2-4 so that the matrix element (44) 
is determined. The transition 1-3 is at resonance in the field 

Correspondingly, for the transition 1-2 Eq. (38) yields 
a,, = 0, and the resonance is achieved in the field 

For the transition 2-3 we also have u2, = 0 and the reso- 
nance in the field 

The transitions 1-2 and 2-3 are inside the triplet. For the 
triplet-singlet transitions we find that the transition 1-4 is 
at resonance in the field 

and the transition 3 4  in the field 

The singularities in Eqs. (50), (52) and (53) at w = w0/2 
are due to neglect of c. As will be shown below, this does not 
lead to any misunderstandings. 

4. In this experiment the Hamiltonian (35) has one off- 
diagonal matrix element 

Thus, in the field B, given by Eq. (45) the constant SO, is 
found in a straightforward manner. 

Evidently, at a given frequency w of the audio-signal 
generator we cannot excite all transitions. Consequently, the 
information obtained in experiment will not be excessive. 

First of all, note that if w < a, the acoustic resonance 
can be observed only for intratriplet transitions. There are 
three of them: 1-2,2-3, and 1-3. As is seen, four experi- 
ments are possible: the experiment 4 [the transition 1-3, 
Eq. (54) ] allows us to find the constant 60 , .  It is usually 
assumed that the material-tensor traces over the first two 
indices equal zero,' i.e. z,,, = 0 and F,,,, = 0. Then, know- 
ing SR, , we find SR,, = - SR, . 

In the experiment 3, by exciting the transition 1-2 or 
2-3, we find Sg, and, correspondingly, Sgil = - Sg,. In 
the remaining experiment 2 [the transition 1-3, Eq. (43) ] 
the constant 60 ,  is determined. Thus, by exciting the transi- 
tions inside the triplet wecannot find the constant Sg, . How- 
ever, these experiments are convenient in that they allow to 
use low-frequency audio-signal generators. Note that at a 
generator frequency 0 4 w 0  we get in the experiment 3, as 
seen from Eqs. (50) and (5 1 ) , B, B, -- 2B2, i.e. two transi- 
tions are at resonance simultaneously, therefore the ob- 
served picture is more complicated than that given by Eqs. 
(22) and (25). This is to be born in mind in setting the 
experiment: the ratio w/w, should not be smaller than the 
minimum width given by Eq. (25). 

At high frequencies of the ultrasound generator two fre- 
quency ranges can be singled out when different transitions 
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are excited at a given frequency w. 
As seen from (49), resonance at the transition 3-4 is 

possible if + <w/wo < 1. In this case, alongside with the 
transition 3-4, it is possible to excite also the transitions 
1-3 and 2-3. Let, for example, w/w, = 0.6, then the tran- 
sition 3-4 is at resonance in the field B, = 2 h / p O  = 4B2, 
and the transition 2-3 in the field B, --, 1.45B2. For normal 
muonium (Mu) in silicon we have w, ~ 1 . 2 6 . 1 0 ' ~  s - '  
(v, = 2006 MHz),8 so that w = 0 . 6 ~ ~  = 7.56. lo9 s '  (or 
v = 1.2 GHz). The corresponding resonance field is 
B, -409 G.  As we see, both the audio-signal generator fre- 
quency and magnetic fields are quite achievable. Unfortu- 
nately, as in the case of low frequencies (intratriplet transi- 
tions), the parameter Sg, remains undetermined. 

Full information is obtained only in the case when 
w > w,. In fact, in the experiment 4 the transition 1-3 is 
excited in the field B, given by (45), and the constant Sfl, is 
found (SQ,, = - Sfl, ). Next, in the experiment 2, exciting 
again the transition 1-3, we find the constant Sfl, [see Eq. 
(43) 1. If, in the same experiment, we excite the transition 
2-4 in field B, < B, [see (42) 1, we find the parameter Sg, . 
In the experiment 1 the transition 2-4 is excited in the field 
B, and the constant Sgll is found (correspondingly, 
Sg, = - Sgl, ). Furthermore, extra checking measurements 
of the constants Sg, and Sfl, can be conducted in experi- 
ment 3. In fact, the transition 2-3 is excited in field B, > B, 
and the transition 1-4 in field B, < B, . These two measure- 
ments determine the constants Sfl, and Sg, [see Eqs. (47) 
and (48)l.  

The frequency and field values for the Mu atom in Si are 
roughly as follows. Let, for example, w be 1.5.101° s p  ' 
(v  = 2.4 GHz), then the resonant field values are B, ~ 4 3 0  
G (the transition 2++4), B, -811 G (the transition l t t 3 ) ,  
B, -- 1050 G (the transition 2-3), and B, -223 G (the 
transition 1 4 ) .  

Thus, pASR-experiments allow not only to find new 
constants of the spin-phonon interaction of the Mu atom in 
crystals for pSR-experiments, but also to conduct precision 

measurements of already known parameters of the Mu-atom 
hyperfine structure. In particular, by exciting the transition 
1-3, we find the muonium electron g-factor. The spin- 
phonon interaction constants are not only of purely aca- 
demic interest, they are important from the point of view of 
understanding the behavior of light impurities in semicon- 
ductors and dielectrics. In fact, the spin-phonon interaction 
constants depend both on the muon localization site and its 
state in the lattice. In particular, thepASR-experiments will 
probably clarify the nature of normal muonium (Mu) in 
diamond- and zinc-blende-type crystals. It is also evident 
that thepASR-experiments with anisotropic Mu* give more 
information. The general formulas (22) and (25) are valid, 
of course, but the specific formulas for the spin-phonon in- 
teraction Hamiltonian and its matrix elements are more 
complicated. Though it is not difficult to find them, we have 
omitted these calculations for the sake of simplicity and clar- 
ity. Note that the spin-phonon interaction constants of the 
Mu and Mu* atoms in Si, Ge, and diamond have been mea- 
sured indirectly using the temperature dependence of the 
hyperfine interaction constants (see, e.g., Ref. 8).  Attempts 
have been made to study the acoustic spin resonance in the 
hyperfine structure of the Mu atom in  quart^.^ 
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