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The surface resistance of a superconductor due to oscillations of Abrikosov vortices is analyzed. 
The resistance is derived as a function of the amplitude of the alternating field for various values of 
the pinning parameters, the constant magnetic flux, and the frequency. This function may be 
either increasing or nonmonotonic. 

1. There is much research interest in the surface resis- 
tance of both high-T, superconductors'-6 and conventional 
s~~e rconduc to r s .~ -~  One particular reason for this interest is 
the problem of developing superconducting cavities for ac- 
celerators. The resistance R, is usually quite sensitive to the 
presence in the sample of a constant magnetic flux compris- 
ing a set of Abrikosov vortices which are confined in the 
sample by pinning or by a static external field. At sufficiently 
low temperatures, the vortex motion driven by an alternat- 
ing field dominates the energy loss. This loss should there- 
fore depend on the constant flux, the pinning force, and the 
nature of the pinning. 

Although the surface impedance of a vortex structure 
has been calculated in several the effect of pin- 
ning has either been ignored or treated in a phenomenologi- 
cal way. Specifically, the pinning force has been assumed to 
be a linear function of the displacement, or the vortices have 
been classified arbitrarily as free or bound. When this ap- 
proach is taken, it is difficult to determine the behavior of R, 
as a function of the amplitude (H ,  ) of the alternating field. 
In particular, it is difficult to explain magnetic breakdown: 
the sharp increase in R, when H, exceeds a certain H *. 

In this paper we examine the high-frequency dynamics 
of vortices. We calculate the surface resistance as a function 
of the amplitude of the alternating field, using various pin- 
ning  model^.'^,'^ Magnetic breakdown is interpreted in the 
following way: When the external agent reaches a sufficient 
strength, the pinning entities are no longer able to effectively 
confine the vortices. The behavior of the vortices becomes 
progressively more like that of free vortices, which are 
slowed only by the relatively weak viscous force and which 
cause an energy dissipation which is high in comparison with 
that caused by the pinned vortices. Breakdown has previous- 
ly been explained as resulting from a thermal instability.I5 
That explanation could be appropriate only in the case of 
poor heat transfer. 

2. We first consider the case in which the density of the 
constant magnetic flux, B, is small in comparison with the 
first critical field of the superconductor, H,, . In this case, 
each vortex can be regarded as isolated. We assume that the 
penetration depth of the alternating magnetic field is much 
greater than the London depth A. The equation ofmotion for 
a vortex in the interior of the superconductor can then be 
written 

@OHc, a2u --- qzi +Fp ( u )  =O. 
4n 8z2 

Here u is the vortex displacement along the z axis from its 
equilibrium position by the external field (the superconduc- 
tor fills the half-space z > 0)  , 17 --do H,, /c2 is the vortex 

viscosity (a  is the normal conductivity), and Fp (u) is the 
pinning force per unit length of the vortex. The alternating 
magnetic field H,,sinwt, directed along the surface, imposes 
a boundary condition on Eq. ( 1 ) : 

du 
=-Ho sin at, 

This condition corresponds to continuity of the tangential 
component of the magnetic field.12 The electric field in- 
duced by the moving vortex is 

and the surface resistance is given by 
8n E (O)H(O) 8nB 

R .= -  --- - li (0) sin ot, 
c Hoz c2H, 

(4) 

where the superior bar means a time average. 
For an isolated vortex, two models of the pinning force 

warrant consideration." The first corresponds to a collec- 
tive pinning by point defects of density n, each of which can 
exert a maximum force f on a vortex. The pinning force 
summed over the randomly arranged defects and the corre- 
sponding critical current density jp is found by introducing a 
correlation length LC, over which the mean square displace- 
ment of a vortex reaches the value of the coherence length 6: 

LC= [ @ o V n f  I." l". j P = c H , , ~ / L c Z .  ( 5 )  

If the displacement (u )  of the pinned vortex from its equilib- 
rium position is small, the restoring force is evidently linear 
in this displacement: IF, 1 a u. If the displacement is instead 
the size of the vortex core, -6, the force Fp should be on the 
order of the maximum force @,Jp/c. The same estimate of Fp 
is valid for larger displacements (since the pinning centers 
are distributed uniformly and act on a vortex for any value of 
u ) .  We thus adopt the following model for the pinning force: 

As a second model we consider a pinning by extended 
defects (grain boundaries, twin boundaries, etc.) which are 
parallel to thez axis. The equilibrium positions are the points 
at which these defects intersect. If the pinning is determined 
by a deviation of the electron-phonon coupling constant 
from its average value by an amount g, in a region of thick- 
ness d 5 (, the pinning force is proportional to the square of 
the absolute value of the order parameter A. We can thus use 
the approximation 

107 Sov. Phys. JETP 75 (I) ,  July 1992 0038-5646/92/070107-05$05.00 @ 1992 American Institute of Physics 107 



If the displacements are small, expressions (6)  and (7)  are 
formally the same. They have been used in previous studies 
in the form F, = - pu. 

We rewrite ( 1 ) and (2)  in dimensionless units: 

,=. =-7 sin o t ,  
az 

In weak alternating fields, the equation of motion for a vor- 
tex is always linear, and its solution is 

We find the following expression for the complex impedance 
Z [determined from the ratio of the complex amplitudes 
E(0)  and H(0)  with the help of expressions (3),  (9) ,  and 
(1011: 

4nB -io z=- (11) 
c2HoI (fi'-i~o)'~ ' 

It can be seen from expressions ( 11 ) and ( 12) that in 
the absence of pinning (P = 0)  the alternating field pene- 
trates a depth 

and the surface resistance is 
B 2nQoH.1o '" B R8=Ro = -- (--) W R .  --- 

(HctHs~) 'I' ' 
(14) 

Hct qc' 
where S, and R, are the corresponding values for the skin 
effect in a normal metal. If the pinning is strong, and the 
fields weak, the penetration depth is S = 0 - I ,  and we find 
R, (R, [Eq. ( 12b) 1. In the following section of this paper, 
we examine the latter limiting case in fields of substantial 
strength. 

3. As the amplitude of the external field H, [or the 
parameter y in condition (9)  ] increases, Eqs. ( 1 ) and ( 8 ) 
become nonlinear. At v- 1 ( u - l ) ,  the pinning force stops 
increasing linearly with the displacement and becomes less 
influential. The result is an increase in the dissipation (R, ). 
From (10) we find v- 1 at y-0; i.e., the field at which 
magnetic breakdown occurs is given in order of magnitude 
by 

f l ~  (4nj,H,,g/c)'". (15) 

The behavior of R, as a function of the field amplitude H, is 
determined by the nature of the pinning. 

In the first of the models introduced above, the increase 
in R, occurs over a broad range of y values. At y>P, the 
condition v)  1 holds over most of the oscillation period, and 
Eq. (8)  becomes 

a2v -- ad-pz sgn v=0 
azZ 

with the boundary conditions v' = 0 at v = 0 [at some point 
z, in the interior of the superconductor at which we have 
v- 1 <v(O), the derivative v' must also be small for a rapid 
vanishing of v] and also under condition (9).  Solving Eq. 
(16) by perturbation theory, we find, in zeroth order in 
am/P 2,  

( 0 )  pzzz v(O)=v0 -7 sin otz  + - sgn sin o t  
2 (17) 

y2 fizzZ =- 
2PZ 

sin2 wt sgn sin o t -  y sin o t z  + - sgn sin a t  
2 

(The distance z, = y(sinmt(/P over which u and v' both 
vanish is large in comparison with the penetration depth of a 
weak alternating field, P - I . )  Calculating R, from (4)  and 
( 17), we find R, = 0: If the vortex viscosity is ignored, the 
coupling of the alternating electric and magnetic fields is 
purely inductive. It is thus necessary to solve Eq. ( 16) in the 
next order in a: 

As a result, we find an increment in the displacement at the 
surface: 

ay' d vdi)= - -- 
12p0 at 

sin4 o t  sgn sin o t .  

Our final expression for the surface resistance is 

Expression (19) is valid under the conditions 
P< y< 0 2 ( a ~ )  - At the lower boundary, R, joins with 
expression ( 12b), while at the upper boundary it joins with 
(12a). It can be seen from (16)-(18) that for 
y-P (am) - the second term in ( 16) ceases to be a small 
perturbation, and the penetration depth becomes compara- 
ble in magnitude to that in ( 13 ) . 

If the pinning is by an extended defect which is extended 
along the z axis, there is a sharp increase in the resistance 
near y = f i  because of the strong p, ( u )  dependence at v 2 1 
[in a sense, Eq. ( 15 ) is an exact equality 1 .  At y - 6 2 0 ,  R, 
approaches the value in ( 14). It follows from the analysis in 
the Appendix that the resistance is dominated at y--,P by 
those time intervals in which a vortex near the surface makes 
a large excursion from its equilibrium position: 
1 < u < y(am ) - [the upper boundary here corresponds to 
the displacement in the absence of pinning; see ( 10) 1. The 
types of limiting behavior for which analytic calculations 
were carried out are 

Figure 1 shows R, as a function of the amplitude of the alter- 
nating field for various mechanisms for the pinning of a sin- 
gle vortex. 
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FIG. 1. Surface resistance as a function of the normalized amplitude of the 
alternatingfield for the case of strong pinning ( a w < f l 2 )  at low flux densi- 
ties ( B < H , ,  ). a-Pinning by uniformly distributed centers; &pinning 
of a vortex by an extended defect. 

4. We now consider the case of comparatively strong 
constant fields: B% H,, . The corresponding equation of mo- 
tion for the Abrikosov vortices takes the following form after 
we average over distances large in comparison with the scale 
dimensions of the pinning entities but small in comparison 
with the penetration depth of the alternating field: 

The boundary condition on (21 ) is 
a u BHo 

-sin at. 
4n 

Since the torsional modulus is C4, = B '/47;1 these equations 
differ from ( 1 ) and (2)  only in that H,, is replaced by B, and 
the function Fp (u )  may be different. This function is the 
average force exerted on a unit length (along the field direc- 
tion) of the vortex lattice. In the case of pinning by small 
defects, for example, Fp is again given by an expression like 
(6),  with a suitably defined jp (Ref. 13; here we can speak in 
terms of high-frequency oscillations of entire correlated vol- 
umes). We can apply expressions (8)-( 19), replacing H,, 
by B. 

The situation is a bit more complicated if the pinning is 
by large defects. In this case the lattice is confined because 
vortex layers adhere to the surface of the defect, and the 
displacement far from the adhesion region may be much 
greater than the period of the Abrikosov lattice,14 
b = (2@0/3'/2B) If the dimensions of the defects along 
the field direction are large in comparison with the penetra- 
tion depth for the alternating field, we have a two-dimen- 
sional pinning. In this case the displacement u far from a 
defect is a linear function of the macroscopic current which 
is flowing up to a critical value -j,, which corresponds to a 
detachment of the layers from the positions in which they 
adhere to the defect. The pinning force can then be written as 

where u, ZP f R /C  i, (PC is the critical pressure for the 
defect boundary, R is the radius of curvature of the defect, 
and C,, is the shear modulus of the vortex lattice) and 
j, z c B  - ' P f / ~ c , , .  The corresponding results of Secs. 2 
and 3 hold for R, [Eqs. (8)-( 19), with H,, replaced by B, 
and f by urn] .  

In the three-dimensional case (with many pinning de- 
fects at the penetration depth), there is a nonlinear relation- 

ship between the displacement u of most of the lattice and 
the bulk pinning force FpB@; 'j, according to Ref. 14. This 
nonlinear relationship is 

where the maximum displacement is 

and the critical current density is jp z P ~ c / B R C ~ C ~ ~ ~ .  If 
the pinning is strong, and the second (viscous) term in (21 ) 
is small, this equation of motion can be solved by perturba- 
tion theory, as in Sec. 3. In the zeroth (steady-state) approx- 
imation, we find from dimensional estimates for Eqs. (21) 
and (22) that the displacement near the surface is 

and the field penetrates a depth 
zo - (Bu, c/jp ) "2(H */Ho ) We find the following 
expression for the increment due to the viscosity, which 
leads to a finite surface resistance R,: 

Also using (4),  we see that the surface resistance should fall 
off with increasing amplitude of the alternating field 
(R, cc H; "") in a certain region. The reason is that a 
strengthening of the external agent causes an effective hard- 
ening of the vortex lattice, corresponding to a faster than 
linear increase in Fp (u) .  The region in which R, decreases is 
bounded from above by the magnetic breakdown field H * 
(at which we have u - u, ). It is also bounded from below, 
either by the condition that the viscous force is relatively 
weak, or by the condition u > b [at u <b, the Fp (u)  depend- 
ence is obviously linear, and R, is given by ( 12) after a renor- 
malization of the parameters a, p, and Ro-through the re- 
placement of H,, by B, of (by b, and ofj, by jp (b /urn ) 3/2]. 
We thus find the following estimate of the surface resistance 
as a function of the amplitude of the alternating field (Fig. 2) 
a tHo < H * :  

R,=R8 (O)min{ i ,  (H'/Ho)a's}, 
R. (0) =R, (~/H,,)"rnin {x"(b/u,)-'/., I ) ,  (25) 

H'=HW max { ( b l ~ , , , ) " ~ ,  xva) . 

At Ho >H*,  as in (19), R, increases in proportion to 
(Ho/H * ) until it reaches a value 

which corresponds to the behavior of a free vortex lattice at 
B%Hcl.  

5. If the pinning is very strong, or the frequency high, 
the alternating field may penetrate to a depth on the order of 
the London depth A. We would then need to incorporate the 
Meissner current 

j ~ =  (cH0/4nh) sin o t  exp ( - z h )  

on the right side of the equations of motions of the vortices, 
( 1 )  and (21). In thelimit 

max (H,,, B)/4nh2Kmax(qo, cDOjplcS), 

which is the opposite of that discussed in Secs. 2-4, we can 
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ignore the gradient terms in ( 1 ) and (2 1 ) . The equation of 
motion then becomes 

In weak fields (with u 4{), a calculation yields a surface 
resistance (see, for example, Refs. 1 and 10) 

[In the case in which the Abrikosov vortex is pinned by large 
defects, we must obviously replace 6 by u, in (27) and 
(28).] In the case of strong pinning, magnetic breakdown 
occurs when the external field Ho reaches a value at which 
Eq. (27) no longer has steady-state solutions: 

Ho=H'=jJ max cp (29) 

(The Meissner current density at the surface is comparable 
to the pinning critical current density.) At Ho > H *, the 
resistance R,  is given by (28) with j, = 0 if 

In the opposite case of low frequencies, it is given by an 
expression like ( 19). 

We should bear in mind that, if the pinning is strong 
enough that the oscillations of the vortices are substantially 
slowed, the surface resistance may have a large component 
from the motion of normal electrons (that problem requires 
further study). We should also bear in mind that we have 
ignored the effect of thermal fluctuations on R,; such fluctu- 
ations become important with increasing temperature.I6-l8 

In summary, we have calculated the surface resistance 
of superconductors which results from oscillations of vorti- 
ces driven by an alternating field, for various pinning mecha- 
nisms. The effect of pinning is seen clearly at low frequen- 
cies, specifically, at frequencies low in comparison with the 
so-called depinning frequency 

At such frequencies, the effective pinning of vortices sup- 
presses the surface resistance R,  in comparison with that of a 
system of free vortices. This is true as long as the amplitude 
of the external field is small in comparison with the magnetic 
breakdown field, which pulls vortices out of the potential 
wells created by inhomogeneities in the material. The shape 
of the R,  (Ho ) curves is determined by the particular pin- 
ning mechanisms and can indeed be exploited in order to 

FIG. 2. Surface resistance in the case of three-dimensional pin- 
ning by large-scale defects ( B ,  H,, ). a-x4 ( b  /urn ) 'I2; b- 
( b / ~ , , , ) " ~ < x < l .  

identify these mechanisms experimentally. 
I am deeply indebted to A. I. Larkin for a discussion of 

these results and to V. Palmieri (National Institute of Nu- 
clear Physics, Legnaro, Italy) for the successful collabora- 
tion which stimulated the present study. 

APPENDIX 

To solve the equation of motion of a vortex near an 
extended defect which is extended in the direction parallel to 
the vortex, 

under boundary condition (91, we take the approach we 
took for Eq. ( 16), adopting the assumption ao 4fi 2. The 
first integral of the steady-state equation (with a = 0) is as 
follows, when we allow for the decrease in 1 vl in the interior 
of the superconductor: 

The solution is thus given implicitly by 

$" 
dv, (l-tv,Z)"' 

z=s-l J . 
7 

0 v1 

where 
7 sin ot ,.do)=. 

($Z-yz sin2 at) " 
is the displacement at the surface. As can be seen from (A4), 
the maximum absolute value of the derivative at the bound- 
ary for which steady-state solutions of Eq. ( A l )  exist is 0 .  
At 8 - y r  - Ay48, RR, is dominated by time intervals 
near wt = + r/2, in which the relation lv,'0)1> 1 holds [see 
(4) 1. For definiteness below, we consider the neighborhood 
of o t  = r/2, with v > 0 (the behavior of a vortex in the case 
sinat=: - 1 is absolutely symmetric and makes an identical 
contribution to R, 1. In this case the v(z) dependence is lin- 
earuptoz=zo~v, 'O 'y- I :  

[In the region lz - z, 1 -p - <z0, v rapidly vanishes ac- 
cording to (A3 ) .I The third term in Eq. (A1 ) is small at 
z <zo in this case. Working from the equation 
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with the boundary conditions u'" (z, ) = 0 and ~ " " ( 0 )  = 0, 
we then find the following expression for the increment u(", 
due to the finite viscosity: 

Calculating R,  from (4)  and (AS), we see that the electric 
field B{v,'O'/c does not contribute to the resistance (this is 
what we expected to find). The basic contribution from vil) 
is indeed made by the intervals 
o t - . r r / 2 = 8 - [ ( f l - y ) / f l ] 1 / 2 4 1 :  

d2 aur)3 
R,  = 2 " ~ ~  (?yo+ sin wt (-- dtz -) 6y2 

[see (20a) 1. The range of applicability of this expression is 
limited on the small ( A  y( side by the condition for the appli- 
cability of expression (AS), i.e., vA1) (vAO'. The maximum 
value of expression (A9), which corresponds to 
(Ay(/fl- (aw/fl 2,  2/3, determines R, in order of magnitude 
at the "critical" point y = fl: 

With a further increase in y, Eqs. (A4)-(AS) remain 
valid for values of the phase 8 greater than 8, = (2AyIfl) "' 
in absolute value. As 8 approaches 8,, the displacement 
v o ~ ( 8 2 - 8 ~ ) - 1 / 2 i ~ ~ ~ t ~ f f a t  

at which the condition for the applicability of (AS) is violat- 
ed. If Ay/P is not too large, the corresponding displacement 
at the surface, 

is the maximum order of magnitude of the displacement of a 
vortex over the oscillation period. Using the relation 

we find the estimate 

At Ay/fl- (aw/fl 2)2/3, this estimate joins (A9) and 
(A10). 

For sufficiently large Ay, the displacement of a vortex 
can reach values much larger than (A1 1 ) over the time re- 
quired for the phase to vary by an amount up to - 8,. Spe- 
cifically, these values uo,,, now determine the resistance R, 
[see (A12)-the first estimate]. On the other hand, as long 
as the condition Ay gfl holds, the second term in (A1 ) re- 
mains a small perturbation in the region v (z) & 1. A relation 
like (A5) holds for v(z), with u, determined from the fol- 
lowing condition: At z z  v,/y, the derivative 
v' = av,z - ysinot [found from Eq. (A l ) ,  with allowance 
for the circumstance that the dependence v, ( t )  is fast in 
comparison with the sinusoidal dependence v (z) =: v, $ wuo ] 
is equal to the limiting value v' = - b, which corresponds to 
the pinning of a vortex line by a pinning defect. For v, we 
then find the equation 

ao du,, 7 - uo - =y sin ot-P 9 -(e:-ez), go= ( 2 3 ) "  
1 d0 2 B 9 1  

with the initial condition v, ( - 8, ) = 0. Hence 

For the surface resistance 

we find expression (20b). The lower boundary of the range 
of applicability of that expression is found by comparing ex- 
pressions (A14) and (A1 1 ) 
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