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We investigate the anisotropy and temperature dependence of electric-dipole spin resonance 
(EDSR) in plastically deformedp-type silicon, and determine the parameters of theg-tensor for 
the four ground-state lines. We show that EDSR can be interpreted in terms of the resonance of 
holes in quasi-one-dimensional bands corresponding to the regular rectilinear portions of screw 
and 60" dislocations. 

INTRODUCTION 

Under ideal conditions, dislocations in Si (and in other 
semiconductors) are one-dimensional systems with very in- 
teresting electronic properties, among them the presence of 
associated one-dimensional energy bands. However, the 
cores of real dislocations usually contain a large number of 
specific defects, which give rise to associated localized elec- 
tronic states whose electrical activity strongly masks the 
properties of regular dislocation segments. 

To separate the effects due to regular dislocation seg- 
ments from effects due to dislocation defects, it is first neces- 
sary to decrease the number of these defects, and secondly to 
use methods that are sensitive to the localization length of 
the electronic wave functions in the direction of the disloca- 
tion. The first goal can be achieved by using a special two- 
stage plastic deformation1 which makes it possible to obtain 
long rectilinear dislocations. In Refs. 2 and 3 we showed that 
one promising method for investigating quasi-one-dimen- 
sional bands associated with regular segments of dislocation 
cores is electric-dipole spin resonance (EDSR) . 

The idea of EDSR is based on the following observa- 
tion: when a system possesses sufficiently low symmetry, 
specifically it has no center of inversion, the spin-orbit inter- 
action leads to the appearance of a term of the form V (pS) in 
the electron Hamil t~nian,~ where p is the electron momen- 
tum, S is its spin, and V is a constant having the dimensions 
of velocity. If the sample is placed in a high-frequency elec- 
tric field E, with frequency w, a component of momentum 
p, appears at this frequency such that p, = p,, E,, where p 
is a complex tensor. When the electronic states are localized, 
p is a measure of the polarization of the electronic system 
due to mixing of excited electronic states stimulated by the 
field E,, while for band states p,/m corresponds to the drift 
velocity and p has the sense of a high-frequency electron 
mobility in the band. The presence of the term V(pS) im- 
plies that the following effective magnetic field acts on the 
electron spin: 

We will refer to this resonance as EDSR. 
From the simple discussion presented here, it is clear 

that the EDSR intensity, which is proportional to h i ,  can be 
quite large if (Vp, ) 2  is large. If the ground state is localized 
and the frequency w is sufficiently low, the field E, will mix 
the former with excited states, leading to a nonzero value of 
p,. This mixing will be large when the wave function in the 
direction of the field E, has large (ideally, infinite) radius. 
Therefore, the electronic states that will be most visible in 
EDSR are those that are strongly localized in the direction 
perpendicular to the dislocations but delocalized along the 
dislocations. These requirements are best satisfied by elec- 
trons or holes in deep one-dimensional bands associated 
with regular segments of the dislocation cores (if such bands 
exist). 

The authors of Ref. 5 reported that they had observed a 
previously unknown EDSR spectrum in p-Si crystals con- 
taining rectilinear dislocations. Low-temperature annealing 
of their samples, which resulted in warping of the disloca- 
tions without changing their density, led to disappearance of 
the EDSR signal. This fact argues strongly in favor of the 
idea that the observed EDSR spectrum could be associated 
with regular dislocation segments. The goal of this paper is 
to investigate the anisotropy of the temperature dependence 
of this EDSR. 

SAMPLES ANDTHEIR METHOD OF PREPARATION 

We used single-crystal silicon doped with donors at a 
concentration of 4. 1015 at. cm3. Rectangular samples with 
dimensions 10X 4X 3.5 mm3 were plastically deformed by 
compressing them along the long axis of the sample, which 
corresponded to a crystallographic direction that is rotated 
around [I ,  - 1,0] until it deviates by 10" from [110]. This 
geometry ensured that the plastic deformation due to the 
motion of dislocations occurred primarily in one plane 

hcOzV ( p c d S ) / g ~ B ?  
( 1 1 1 ) . In order to generate rectilinear dislocations with a 
small number of kinks, we used a two-stage plastic deforma- 

where g and p, are the g-factor and Bohr magneton respec- tion (see Ref. 1 ) : 
tively. When an external magnetic field H, = */gp, is ap- ( 1 ) A deformation of 1.5 to 2% at 700 "C under a load 
plied, the field h, will excite resonant transitions between of 100 MPa (which corresponds to dislocation densities of 
the Zeeman levels, which should lead to the appearance of a 3-10' to lo9 cm - ). 
strong resonance in the permittivity of the sample: (2) A 90-minute anneal at 900 "C to decrease the con- 
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centration of broken bonds and point defects. 
(3) A second deformation at 410 "C under a load of 330 

MPa for 90 minutes with cooling under load. 
This last procedure transforms the dislocations intro- 

duced previously into rectilinear segments of screw and 60" 
dislocations directed along [ - 1,0,1], [O, - 1,l 1, and 
[ l ,  - 1,0]. In this case, each dislocation has either 
[ - 1,0,1] or [O, - 1,1] as its Burgers vector. We then cut 
out layers with dimensions 3 x 3 X0.3 mmvrom the central 
portion of the sample, and made our measurements on these 
layers. The thickness of the layers was chosen to be smaller 
than a skin depth. 

To record the EDSR, the samples were placed in the 
rectangular (H 102) cavity of a superheterodyne X-band 
EPR spectrometer and subjected to a cavity electric field Em. 
The samples were positioned such that E, lay in the plane of 
the sample. The static magnetic field H, was modulated at a 
frequency of 80 Hz and an amplitude of 8 Oe, which allowed 
us to reccrd the spectrum of a&" (Ho)/dHo, where E" is the 
imaginary part of the permittivity of the sample, which cor- 
responds to absorption of microwave power. Because the 
sample had to be screened from nonuniform IR illumina- 
tion, we monitored the illumination of the sample in the res- 
onator by placing a miniature incandescent lamp in the lat- 
ter. 

At a point in the cavity where H, was a maximum we 
glued on standard paramagnetic sample (CuSO,.5H,O), 
and divided the EDSR spectrum by the amplitude of the 
signal from the EPR standard. This was necessary in order 
to take into account the change in the Q-factor of the cavity 
as the sample was rotated and as the temperature varied (the 
samples we used possessed large anisotropy in their micro- 
wave conductivity due to the dislocations). 

ANISOTROPY OF THE ELECTRIC-DIPOLE SPIN RESONANCE 

To study the anisotropy of the EDSR spectra, we rotat- 
ed the samples around three axes R = [ I l l ] ,  [1,1, - 21, 
and [ 1, - 1,0] and measured the dependence of the spectra 
on the rotation angles. In this case, the vectors H, and Em 
were perpendicular to fl and each series was plotted in two 
geometries: (a )  E, IIH,, and (b)  - E,lH,. All measure- 
ments were made at T = 1.4 K, and at microwave powers on 
the order of 10- W. 

Illumination of the sample by white light led to some 
increase in the resolution of the spectrum due to the in- 
creased amplitudes of the individual spectral lines and a de- 
crease in their widths. For this reason, the anisotropy was 
measured with a small bias illumination. 

In Fig. 1, we show as an example EDSR spectra ob- 
tained for the same sample orientation with respect to H,. 
The lower spectrum corresponds to geometry "a" (i.e., 
HoIIE, ), while the upper is in the "b " geometry (HOLEm ). 
Under each spectrum we show its resolution into individual 
lines). Although the spectrometer was adjusted to record 
the absorption spectrum, and the EPR signal from the para- 
magnetic etalon is a pure absorption line, the EDSR line 
shape did not correspond to the absorption curve, but rather 
was a mixture of the absorption and dispersion curves. An 
analogous absorption line shape was observed in Ref. 2 for 
EDSR of electrons in a deep one-dimensional band (the Ch 
line) and was attributed to polarization effects due to finite- 

FIG. 1. EDSR spectrum obtained at 1.4 K as the sample was rotated 
around the axis 62 = [ 11 11 (here the axis R is perpendicular to H,, and 
E,, ); H,, makes an angle of 140" with the [ 1 - 1,0] axis. The lower spec- 
trum corresponds to the geometry H, (IE,,, the upper to H,lE,,,. 

length conducting dislocation segments (i.e., to finite local- 
ization length of the electrons in the one-dimensional band). 
We will return to the question "what is the line shape?" in 
the discussion of results. 

It is clear from Fig. 1 that the resolution of the spectrum 
is not very good; therefore, in order to analyze the anisotro- 
py of the g-factors and amplitudes of the lines, we used a 
computer to resolve the spectrum into individual lines by the 
method of least squares. The authors of Ref. 5 used their 
observations of the two-photon EDSR spectrum to show 
that the resonance magnetic field is proportional to frequen- 
cy, indicating that a simple spin Hamiltonian can be used: 
H=  P B ~ Q S ~ H O ~ .  

In Fig. 2 we show data on the angular dependence of the 
g-factors of the lines as the sample was rotated around the 
three different axes. In the samples we investigated, six lines 
were observed at certain orientations; however, only analy- 
sis of the four most intense lines of the spectrum was possi- 
ble. The lines for which the parameters of the g-factor were 
determined are labeled I, 2, 4, and 5 in Fig. 1. They can be 
grouped into two pairs: lines 4 and 5 have half-widths of 400 
to 1 I00 Oe, and are well-described by a g-tensor with the 
principal values 

and principal axes 

X= [1,0, -11 and Y= [010] - for line 4 
X= [O, -1,1] andET= [100] - for line 5. 

For definiteness we will refer to the centers correspond- 
ing to these lines as Si-KC 1. 

Lines I and 2 have half-widths of order 90-160 Oe and 
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FIG. 2. Dependences of the line g-factors on the angle t9 between H, and 
the axis [I ,  - 1,0] (for Figs. 2b and 2c) or the axis [1,1, - 21 (for Fig. 
2a).TheaxesofrotationareCl= [ I , -  1,0], [1,1,-21 and [ I l l ]  fora, 
b, and c, respectively. 

can be described by theg-tensor with principal values 

and principal axes 

X=[O.-1,1], Y=[l00] forline 1, 
X= [ 1.0. -.I] , Y= [OIO] for line 2. 

We will call the centers corresponding to these lines Si- 
KC 2. 

The amplitudes of the lines depend strongly on the ori- 
entation of the sample and the angle between H, and E, . In 
Fig. 3, we show as an example the anisotropy of the ampli- 
tude of line 4 as the sample was rotated around the axes 
R = [ I l l ]  and R = [1,1, - 21. We attempted to describe 
the anisotropy of the line amplitudes using the assumption 
that the hole wave functions were quasi-one-dimensional, 
i.e., assuming that the spin transitions are caused only by the 
component of E, along the vector L corresponding to the 
long axis of the wave function. In this case, the orientation of 
the effective magnetic field h,, which perturbs the spin 
through the spin-orbit interaction, does not depend on the 
direction of the field E,, and the amplitude of the line is 
given by the simple expression 

FIG. 3. Dependence of the amplitude of line 4 on the angle between H, 
and the axis [ l ,  - 1,0]. The lower figure is for a rotation around 
a= [ I l l ] ,  the upper is for a rotation around C l =  [1,1, - 21; 0 is for 
geometry "a" (H, IIE,) and is for geometry "b" ( H , l E , ) .  

Despite the rather low accuracy of our measurements of 
the line amplitudes, owing to their strong overlap, as well as 
the fact that the spin states of the hole are not pure S = 1/2 
states, we obtained rather good agreement with experiment 
by using Eq. ( 1 ) . From a comparison of the experimental 
functions with Eq. ( 1 ), we obtain the following parameters: 

- 

Line 1: A0=2,8; L=[l,  -1,0] 77'; h,= [lO1]rlOO, 
Line 2: Ao=4,2; L=[1, -1,0] ~ 7 ' ;  ha= [O1l]rlOO. 

Line 4: A,--3,2, L=[1,0, -i]$5"; h a =  1210, -1Ir7" 
Line 5: A0=2,7; L= [0, -1,1]~5"; h,= [O, -l,2]r7°. 

TEMPERATUREDEPENDENCES 

To measure the temperature dependences we chose an 
orientation of the sample for which lines 2 and 4 dominated 
in the spectrum and were rather well resolved, and used the 
geometry E,lH,. As we mentioned above, the EDSR spec- 
trum was normalized by the EPR signal from the paramag- 
netic standard. 

In Fig. 4, we show the temperature dependences of the 
amplitudes of lines 2 and 4 obtained before and during illu- 
mination of the sample by light corresponding to black-body 
radiation with a maximum in the region 2pm. After switch- 
ing off the light, we observed a slow relaxation of the spec- 
trum to its dark value, with two strongly differing character- 
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FIG. 4. Temperature dependence of the EDSR amplitude normalized by 
the EPR of the paramagnetic standard: was measured before illumina- 
tion for the sample, 0 during illumination. 

istic times. In the temperature region 1.4 K to 20 K, these 
times are rather long (several minutes); therefore, the very 
low light intensity we used was "saturating," and the param- 
eters of the line changed very little even when the intensity of 
the light changed by factors of 2 to 3. 

As the field E, (i.e., the microwave power) increased, 
we observed saturation of the amplitude A of the d~"/dH, 
line. The dependence of A on E, is well-described by the 
expression 

A = A o / ( l + a E ~ ' ) " ,  (2)  

which is characteristic of inhomogeneously broadened lines. 
here a = 4 $ f K  2r,r2, where y is the gyromagnetic ratio, r ,  
and r2 are the spin-lattice and spin-spin relaxation times, 
and K = 1 h, I / [  L*E, ) I is a coefficient of proportionality be- 
tween the microwave field E, and the effective magnetic 
field h, . 

DISCUSSION OF RESULTS 

As we mentioned above, the EDSR line has an unusual 
shape corresponding to a mixture of dispersion and absorp- 
tion. Furthermore, the anisotropy of the amplitude of the 
line is described satisfactorily by a model which assumes that 
the wave functions are quasi-one-dimensional. These facts 
argue in favor of the idea that we should try to interpret at 
least a part of the observed line as EDSR of quasi-one-di- 
mensional holes in the dislocation potential. This problem 
was solved theoretically in Refs. 2 and 6. 

Let us assume that a hole trapped in a dislocation poten- 
tial is free to move along a finite rectilinear dislocation seg- 
ment of length L, and that its high-frequency mobility in this 
quasi-one-dimensional potential is p (0). Then the high-fre- 
quency conductivity of the sample 

due to these dislocation segments for E, IIL and h,M0 is 
given by the expression 

where 

S ( x )  =I-exp (inI4) t,g ( s  exp ( - i x / 4 ) ) / x  

is a structure factor, L, is the total length of the conducting 
dislocation segments in the volume of the sample, N is the 
density of holes per unit length of the dislocation segment, 
D = T T / ~  is the diffusion coefficient of holes along the seg- 
ment, L, = (D/o)"', is the spin resonance frequency, 
and 

LD= [ (D+ep ( o )  N In ( L 2 / b Z ) / & )  /o ] '~ ,  

where b is the localization length transverse to the disloca- 
tion. 

If we neglect the diffusion coefficient D in the expres- 
sion for L,, which should be small at low temperatures, Eq. 
(3)  simplifies, and the list of fitting parameters is reduced to 
the following: the linewidth AH, the resonance field H,, the 
"intensity" of the line I = NL, [p(w) V ] '  (normalized by 
the paramagnetic standard), and the ratio 

These four parameters are determined for each temperature 
by minimizing the mean-square difference between the ex- 
perimental and calculated spectra. 

In Fig. 5 we show the temperature dependences ob- 
tained in this way for the quantity I I" = p (w) V( NL, ) 
for lines 2 and 4. Here NL, has the sense of the total number 
of holes that contribute to this EDSR line. 

FIG. 5. Temperature dependence of the quantity 1 ' I2 = p ( o )  VN :" for 
lines 2 and 4: was measured before illumination of the sample, 0 during 
illumination. 
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FIG. 6. Temperature dependence of the quantity c p ( o ) N / L  for lines 2 
and 4: was measured before illumination of the sample, 0 during illumi- 
nation. 

The line shape (which reflects the degree to which the 
dispersive part is mixed in) is determined by the complex 
structure factor S(L /LD ). Therefore, by analyzing the line 
shape we can determine the quantity c,u(w)N/L2 
= (L /LD ) -' independently of the line amplitude, where 

c = e ln(L ' / b  ') is a slowly-varying quantity. The depend- 
ence of c,u ((w)N/L ' on temperature is shown in Fig. 6. 

We can assume that the number of holes trapped in 
dislocation states corresponding to the Si-KC 1 and Si-KC2 
centers does not depend on temperature, at least for T <  20 
K. This implies that in the temperature interval under dis- 
cussion we have NL, = const. We can also assume that at 
low temperatures V does not depend on T. Then Fig. 5 corre- 
sponds to the temperature dependence of,u (a), while Fig. 6 
is the temperature dependence of the quantity ,u((w)/L '. 
Comparing Figs. 5 and 6, we see that the temperature depen- 
dences obtained for the quantities ,u ((w) are close to those of 
the quantities ,u((w)/L '. The small differences in the slopes 
can be attributed to an increase in the localization length L 
as the temperature increases. The satisfactory agreement be- 
tween the functions in Figs. 5 and 6 is an argument in favor of 
the validity of Eq. (3) in our case. 

Since the amplitude of line A multiplied by the square of 
its half-width AH is proportional to the constant K 2, where 
the "field enhancement" coefficient is 

division of the saturation factor a by A (AH)' should yield a 
quantity proportional to r , ~ , .  In Fig. 7 we show the tempera- 
ture dependences of r1r2 obtained in this way. Assuming 
that r2 = const for T <  8 K, we have 7, - T -  I ,  which is 
characteristic of the one-phonon relaxation processes that 
dominate at low temperatures. For T > 8  K we have 
TI - T-- 2 .3  , at which point the two-phonon processes appar- 
ently begin to dominate. It is well known that for two- 
phonon processes we should expect a stronger temperature 
dependence (proportional to T - ' up to T '). However, 
for dislocation centers one usually observes dependences 
with exponents between 2 and 3 for Ch-centers (Ref. 2 )  and 

FIG. 7. Temperature dependenceof the quantity a / A ,  a T,T, (in arbitrary 
units) for line 2 (a) and line 4 ( 0 )  during illumination. 

D-centers (Refs. 7, 8).  This can be explained by the domi- 
nant contribution of quasilocal vibrational modes of the dis- 
location to the spin-lattice relaxation (see Ref. 9 ) .  

Within the framework of one-dimensional band mod- 
els, we can analyze how the influence of weak IR illumina- 
tion on the sample should reveal itself. Let us see how the 
characteristic parameters of the Si-KC 1 centers change 
(line 4) when the light is turned on: at 4.5 K the line width 
AH decreases by a factor of 1.3, the quantity (L /LD ) in the 
square root of the line intensity (I) decreases by 1.4 times, 
and the saturation factor a increases by a factor of 3. This 
means that 

where the asterisks in the subscripts denote the presence of 
illumination, and n is the total number of holes in the states 
corresponding to Si-KC 1 centers. Usually the quantity 7, 

decreases when the sample is illuminated, owing to the ex- 
change interaction with the free carriers, i.e., r, > 7,. . Anal- 
ysis of the change in line width during saturation shows that 
before illumination the inhomogeneous part of the line 
broadening is AH, ~ 7 3 0  Oe and the homogeneous part is 
AH, = 1/r2z250 Oe. During illumination we have AH, 
z 300 Oe, AH, z 1/r2 ~ 4 0 0  Oe, i.e., T, decreases under illu- 
mination. Although the accuracy of these estimates is not 
very great, it is clear that (r1r2) > (rIr2) * . Even assuming 
that (r1r2) = ( r I r2)* ,  we have ,u/,u, <0.6, implying that 
L /L, < 0.7, n/n, > 4. 

This shows that under illumination there is a strong 
decrease in the number of holes trapped at Si-KC 1 centers, 
and that their mobilities and localization lengths increase. 
This can be explained by the fact that optical excitation 
causes not only a decrease in the number of holes trapped on 
the Si-KC 1 centers, but also a decrease in the number of 
holes held in more deeply localized states caused by the var- 
ious defects that are present in the dislocation cores, in par- 
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while for line 4 we have accordingly K > 5 .  lo5 and 

FIG. 8. Temperature dependence of the half-widths of lines 2 and 4: 0- 
before illumination, O d u r i n g  illumination. 

ticular, the rather small number of broken bonds that remain 
despite our annealing of the samples. The latter lead to a 
decrease in the random potential caused by localization of 
the quasi-one-dimensional holes, and hence to an increase in 
p and L. The holes that are activated by light are trapped at 
boron atoms. 

Analogous estimates for Si-KC 2 centers (line 2),  al- 
though less accurate, show that illumination does not 
change the number of holes trapped at these centers very 
much, and that the strong growth in the amplitude of the 
lines under illumination is due to the linewidth decrease (by 
a factor of 1.3), by some increase in the mobility (by a factor 
of 1 to 1.2), and by a considerable increase in the localization 
length (by a factor of 1.5). 

The increase of L under illumination of the sample cor- 
relates with the observed decrease in the inhomogeneous line 
width (see Fig. 8). In fact, as L increases the nonuniform 
fields of the various defects acting on a hole should become 
more effectively averaged. 

Comparing the intensities of lines 2 and 4 with the EPR 
signal of the standard, we have for line 2 at T = 4.5 K 

For line 4 we have 

Since NL, cannot exceed the concentration of boron atoms, 
taking as a lower estimate of K the value NL, = 1015 cm - ' , 
for line 2 we have K >  lo5 and 

Such enormous values for K can be explained by the 
large value of the spin-orbit interaction for holes in silicon 
under the additional conditions of rather large localization 
lengths L for holes along the dislocation, i.e., the presence of 
quasi-one-dimensional bands. The fact that p decreases as 
the temperature increases agrees with this concept, and can 
be interpreted in terms of scattering of the one-dimensional 
holes by phonons. 

Thus, the results we have obtained for lines 4 and 5 
correlate well with a model of one-dimensional dislocation 
bands. As for the other lines, our data on them also do not 
contradict this model; however, for an unambiguous conclu- 
sion additional investigations would be desirable. 

Let us now discuss our anisotropy results. The funda- 
mental vectors that define a dislocation are the direction of 
the dislocation line L and its Burgers vector b. As we men- 
tioned above, in this sample there are dislocations with two 
Burgers vectors: [ - 1,0,1] and [O, - 1,1]. This implies 
that the dominant slip system contains six dislocation 
groups, namely: two screw dislocation groups, 
L =  [-1,0,1], b =  [-1,0,1] and L =  [O,-1,1], 
b = [0, - 1,1], and four 60" dislocation groups: 
L =  [ -  1,0,1], b =  [O,- 1,1]; L =  [0, - 1,1], 
b=[-1 ,0 ,1] ;  L = [ l , - 1 , 0 ] ,  b=[-1 ,0 ,1] ;  and 
L =  [ I , -  1 ,0] ,b= [O, - l,l].Furthermore, wemustalso 
take into account that the complete dislocations we men- 
tioned above can be resolved into partial ones (as is well 
known, a screw dislocation resolves into three 30" parts, 
while a full 60" dislocation resolves into a 30" and 90" part). 
Accordingly, if we associate the observed EDSR signal with 
the regular portions of dislocation cores, in general we 
should expect the presence of six lines. 

The main contribution to the integrated EDSR intensi- 
ty of the spectrum is made by the two broad lines 4 and 5. 
Starting from the data on the anisotropy of the amplitude of 
these lines, we can conclude that lines 4 and 5 correspond to 
dislocations with L = [ - 1,0,1] and L = [O, - 1,1]. In this 
case, the X-axes of their g-tensors coincide with L. It is very 
probable that lines 4 and 5 correspond to one-dimensional 
bands caused by screw dislocation segments. 

As for the less intense lines I and 2, the anisotropy of 
their amplitudes is well described by assuming that both cor- 
respond to L = [ 1, - 1,0], whereas the axes of the g-tensor 
lie in the directions X = [O, - 1,l ] and Y = [ 1001 for line I 
and X = [ 1,0, - 1] and Y = [OlO] for line 2. It is possible 
that these lines are due to 60" dislocations lying in the direc- 
tion [I ,  - 1,0], and that the anisotropy of the g-factor is 
controlled by their Burgers vectors. In this case, the follow- 
ing question remains: why were the EDSR amplitudes from 
the other two 60" dislocation groups so small that we were 
unable to detect them for any orientation? One possible an- 
swer is the following: these dislocations differ from 
[ 1, - 1,0] by the ordering of the components of their partial 
dislocations, which can affect the degree of their defective- 
ness and consequently the value of L on which the EDSR 
intensity depends strongly. Furthermore, they are parallel to 
the screw dislocations and possess high conductivity, lead- 
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ing to local distortion (shunting) of and the field E, and 
suppression of EDSR from dislocations lying near the 60" 
dislocations. However, no final conclusion can be drawn 
without additional experiments. 
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