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The equations of the dissipative dynamics of charge-density waves (CDW) in the presence of a 
continuous distribution of dislocations or solitons are derived. The response functions of the 
fields and the related correlation function of the currents for the process of spontaneous 
conversion of electrons into solitons are found. The one-dimensional development of a current 
pulse from a narrow injecting contact in a thin sample is investigated in detail. The problem is 
solved in the purely dissipative regime of the CDW dynamics and in the diffusion approximation 
for the gas of solitons. It is found that, at first, over very short times, the nominal values of the 
CDW currentj, , CDW phase velocity p, = - nj, ,and electric field E, a j, are established 
over the whole sample. However, as the diffusion front of the gas of solitons passes through with 
constant velocity c and the soliton concentrationp, increases ( c = bE, , where b is the mobility of 
the solitons), the CDW velocity P(x,t)  and electric field E a P decrease. In a characteristic 
regime, j(x,t) ap; ' a r - ' I3.  Stationary distributions are also found for injectionless generation 
ofsolitons in the pinning layer upon passage of a CDW current. 

1. THE BASIC EQUATIONS v 
w ( w ) =  -1 d ' r o i o ,  

4ns (4)  
1. From the point of view of elasticity theory a charge- 

density wave (CDW) is a crystal possessing only uniaxial x2 
Ark= ( & ) t R  - ;i- ntn,, A. = diag(1, a,, a,), A=VZ.  ( 5 )  

strains (see the literature in Refs. 1 and 2): 

o= Vcp, ( 1 ) Here, n = ( 1,0,0) is the unit vector in the direction of the 
axis x of the chain; a, and a, are the anisotropies of the 

where o is the locally defined continuous gradient of the elastic moduli. It follows from ( 2 )  and ( 5 )  that 
CDW phase p, which can be restored from ( 1 ) as a many- - .. 
valued continuous function. The vector w is conjugate to the a=lio=A0o+2ncD. ( 6 )  
stress vector a: 

The quantity 

h 

where A is the elasticity tensor, and Wand Uare the thermo- 
dynamic potentials as functions of w and cr, respectively. 

The equilibrium state of the system is determined by 
minimization of the potential U, which ensures the correct 
sign (repulsion) of the interaction of the dislocations. Mini- 
mization of W would lead, in analogy with the case for the 
currents in magnetostatics, to attraction of dislocations of 
the same sign. This fact somehow escapes attention in the 
literature, and the sign is corrected at the level of the calcula- 
tion of the forces. 

In the harmonic approximation, which is adequate to 
our problem, the functional W has the form 

where @ is the potential of the electric field, s is the cross- 
sectional area of one chain, 

e is the electron charge, and v and r ,  are the Fermi velocity 
and Debye radius of the initial metal. Henceforth, f i  = 1. 

If we are not interested in the boundary conditions re- 
lated directly to the electric field, we can eliminate @ from 
(3)  and obtain 

determines the force acting on an element of length dl of the 
d i s l~ca t ion .~ ,~  The component 

plays the role of the potential energy for 2~-solitons, while 
V/2 plays this role for above-gap electrons and for amplitude 
T-solitons. Finally, static equilibrium is determined by the 
condition 

where E is the electric-field intensity and 

A h 

where V and A are the anisotropic gradient and anisotropic 
Laplacian. (Here and below, all notation corresponds to 
that in Refs. 1 and 2).  

There is a fundamental difference between the dynam- 
ics of CDW and the dynamics of normal crystals. Owing to 
friction against the underlying lattice, dissipation appears 
that is directly proportional to the velocity 4, = dg, /at and 
not to its gradients. The complete system of equations of the 
dynamics of the medium for a given instantaneous distribu- 
tion of defects is formed in terms of the density p and flux I of 
the d i~ loca t ions :~~~ 
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[Vo] =-p, (11) 

where f ~ d f  /dr and y is the damping coefficient. Thus, for a 
dislocation line element dl = ~dlbeing displaced with veloc- 
ity V, we have 

p=-2nz6 (X) , I= [V,p] , g=r- (zr) z. (15) 

Henceforth, for brevity, we shall omit the inertial term P / u 2  
in ( 14), where u is the phase velocity of the CDW, bearing in 
mind that, where necessary, it can be restored by means of 
the replacement 

The kinematic equations are simplified if the con- 
straints ( 13) are solved in terms of the dislocation moment P 
(Refs. 3, 4),  so that 

Equations ( 11 )-( 13) reduce to the single equation 

which relates the elastic, plastic, and total deformations. We 
recall that only the quantity o is a state variable, in view of 
its relation to u. The functions P and Ve, have jumps on 
discontinuities along certain surfaces that abut on disloca- 
tion lines. These surfaces can be defined arbitrarily at a cer- 
tain initial moment, and only their evolution by virtue of 
( 13) is determined uniquely over the surface of the cylinders 
that are formed by the moving dislocation lines. 

Our formulas ( 1 1 )-( 14) describe both the dynamics of 
individual dislocation lines [with the functions p, I, and P 
determined by Eqs. ( 15) and ( 17) ] and the dynamics of the 
continuous distribution of dislocation loops. The function P 
in the latter case is an average over a macroscopic volume 
containing a large number of closed dislocation lines. As is 
well known,' the averaged quantity P nolonger has nonphy- 
sical discontinuities, and becomes a state variable. For a sys- 
tem of closed dislocation loops with total area S in volume 
d Y ,  it is determined from the condition 

For a system of f 2~-solitons with linear densities p . , 
We shall now introduce closed equations for the quanti- 

ties S and V. Eliminating f l  from Eqs. ( 12) and ( 14), we 
obtain 

V (Vo) =y (6-1). (21) 

We multiply (21) by A and make use of (6):  

By multiplying (22) by V, taking (5) ,  (6),  and (10) into 
account we find a closed equation for S: 

K6 = yx2 (11'7) (nl)  - yA ($11, (23) 

where 

Although the second term in the right-hand side of (23) is 
small in the parameter A/7t2 in comparison with the first, it 
can become important, since the first term vanishes for mo- 
tion of the dislocation along n, when n.1 = 0. 

Multiplying (22) by n, we obtain an equation relating V 
to S: 

In the right-hand side of Eq. (25), for small gradients, we 
can always neglect A in comparison with x2. An independent 
equation for V can be obtained by acting on (25) with the 
operator K and making use of (24). After transformations 
we obtain an equation that admits lowering of the order, as a 
result of which we obtain 

The first term in the right-hand side corresponds to the static 
problem, and the second is realized in the case of transverse 
motion of the dislocation or when solitons are created, i.e., in 
cases of increase of the charge. 

In terms of P, Eqs. (23) and (25) acquire the form 

h 

For P = Pn, the last two terms in (28) have the form A,P, 
where 

in accordance with the static problem. 
Besides Eqs. (27) and (28), we can consider the equa- 

tions for the phase p, which are easily obtained from (2  l ) by 
means of ( 18) and (6)  : 

We note that the time-dependent equations fore, and Q, 

and Eq. (29) are easily obtained by generalizing the static 
equations found in Refs. 1 and 2 for the case of one disloca- 
tion. Introducing the dislocation moment P in accordance 
with ( 17) and ( 18) and varying not the effective Hamilto- 
nian of the CDW but the Lagrangian, we obtain, with 
allowance for damping, the following equations: 

Eliminating the potential Q, in (30) by means of (31), we 
arrive at Eq. (29). 

2. SOLITON SOLUTIONS 

As an application of the theory we shall consider partic- 
ular solutions of the equations with a point source. We shall 
find the fundamental solution $ of the operator K: 

K a=s (r) 6 (t) . (32) 
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Fourier-tranforming with respect to the spatial variables, we 
obtain, obviously, 

where K ( k )  = k + x2k is the Fourier transform of the 
operator K. Here and below, we consider the case 
a, = a, = 1. The results for a,, = a, = a( 1 are obtained 
by making the replacements 

t+at, x+ab.r. y-+y, z- fz ,  @+cs"a, cp-tlp. 

From (18) and (40) it follows that 

Henceforth, if this is not specially stipulated, by the CDW 
current we shall mean the quantity j (a  characteristic of the 
CDW velocity). From (39) and (40) we obtain 

Going over in (33) to the coordinate representation, we ob- 
tain 

1 d 
j = -(%"A)-B*P(r, t). 

n ax 
0 (t) (rm) ' 

= - ( $ ) ' h  ( 2 ~ ) ~  dmerp{-- -7 (nm)' - 
Iml=l 4t 

A typical process is the rapid transformation of elec- 
trons into r-solitons (see the literature in Refs. 5 and 6) .  The 
characteristic time w ~ '  of the process (w,, is the phonon 
frequency) can be assumed to be such that the process is 
instantaneous, i.e., occurs in times shorter than the diffusion 
times: 

P=-n 6 (r-r,)0 (t-ti), (43) 

In the region 

the expression (34) can be integrated by the method of 
steepest descent: 

e (t) a 8  e(t)yax 
8 = - c -  

8nab (yt) "xrl ' dx 27n'/sts/, ' 

(35 1 where ri and ti are the coordinate and time of the creation of 
the ith soliton. For the current we obtain 

We note that in the zeroth approximation in (xr, ) - ' the 
function does not depend on x.  

In the opposite limiting case (IZy/4t( 1 ), we obtain for 
tx2/y> 1 

For a random process of creation of solitons the correlator of 
P has a &function form: 

< [P (r, t )  -<$>I [P  (r', t') -<P>] >=us (r-r') 6 (t-t') f (r), 

(45) while for tx2/y( 1 we obtain 

where 

u=< (P-<P>)'>, 

For r, = 0 the integral (34) can be calculated exactly: and f ( r )  = 1 for r e Y  and f ( r )  = 0 for r e 7  (Y is the vol- 
ume in which the solitons are created). The average value of 
the current is related to the quantity (P)  by 
0') = - (P ) Y / r .  

For the correlator of the currents we obtain from (43)- 
(45) 

9 ) ( g ,  5')-<[j(r, t)-<j>] [j(rP,t ')-<j>]> 

ux4 
= - dsy dd ( r -y ,  t-r)8(rt-y, it-r)/(y), (46) 
d 

The general solution of Eq. (29) is equal to the convolu- 
tion of the right-hand side of the equation with the funda- 
mental solution $. If the dipole moment is oriented along 
thex axis, i.e., P = (P,O,O), then 

where 
- 

f = (r, t ) ,  8--d8Idx, r= (x, y? z ) .  where 

We shall consider two limiting cases. 
1. Solitons are created over all space, i.e., 7- C.O and 

f = 1. In the momentum representation, for the correlator 
(46) we obtain We shall define the coherent CDW currentj in terms of 

its phase velocity +, as in the absence of defects. The total 
CDW current J and soliton current j, are determined by the 
conservation laws in terms of the charge density p and the 
defect density p, (determined from the effective soliton den- 
sity), respectively. We have 

ux4 
9) (k, a ) =  7 8 (k, a ) g  (-k, - a )  
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2. Solitons are created in a finite volume V. If we are 
interested in the correlations of currents at spatial points far 
from the volume in which injection of charge occurs with 
subsequent transformation into solitons, then in Eq. (46) we 
can set f (y)  = YS(y) .  Substituting this into (46), in the 
momentum representation we obtain 

vux4 
a ( k ,  o; k'. -a) = - 

n-2 @(k,u)@(kt ,  - 0,) 

Going over to the coordinate representation and inte- 
grating over the transverse coordinates r, and r:, we obtain 
for the correlator ofj, (x)  = .fd 'rJ(x,r, ) (the current inte- 
grated over the cross section) the following expression, valid 
in the region x, x'% l/x: 

In the dissipative approximation under consideration 
(u - cc ) the correlator obtained does not depend on x or x', 
indicating the strong correlation of the currents at t = t '. 

3. ONE-DIMENSIONAL DIFFUSION OF SOLITONS 

We shall investigate the one-dimensional CDW-cur- 
rent propagation induced in a crystal by creation of solitons 
that is uniform over the cross section, e.g., as a result of 
injection of electrons by a narrow contact in a thin sample. 
Averaging Eqs. (20), (30), and (31) over the transverse 
coordinates, we obtain the following system of equations: 

L 
-- ml+q=u. 
x2v 

where 

F = J P d:c, P= (P. 0, O),  
- m 

q, = j ax, a= (u, O, o ) ,  y-at/ax. 
- - 

The functions F and @ have the meanings of the plastic and 
elastic components of the deformation of the phase. 

The CDW current, according to (40) and (41), is equal 
to 

The electric field is determined using (48): 

In the dissipative regime (u - cc ) Eq. (47) can also be 
written as the definition of the CDW current in terms of the 
elastic deformations: 

In the general case, Eqs. (47) and (48) describe the excita- 
tion of CDW plasma oscillations under the action of injec- 
tion and the displacement of the topological defects that are 
characterized by the difference Sj, = - F / ~ T  of the corre- 
sponding currents [see Eq. (53 ) below]. The oscillations are 
characterized by the following parameters: the frequency 
R = ux, the relaxation time r0 = y/x2 = 4ru, where  is the 
CDW conductivity (see below), and the time r, of transi- 
tion from the dissipative to the inertial regime: 
T, = l/yu2 = l /rOR2. Of these quantities, only one ( R )  de- 
pends weakly on the temperature. For typical CDW the fol- 
lowing values are characteristic (see the reviews in Refs. 7 
and 8):  

x-lo7 cm- ', u-106 cm/sec, Q-.iO-'o,h-~O'3 sec-', 52-10~0~. 

The quantity 7,' obviously lies between the phonon fre- 
quencies - 1012 Hz, where the damping is small, and the 
experimental range 109-10'0 Hz. It may be postulated (see 
the discussion in Ref. 8) that T; ' - 1010-10" sec - I ;  conse- 
quently, 7;' = R2r, - 1015 set-I, i.e., is a few orders of 
magnitude greater than the highest achievable CDW fre- 
quencies A - loL3 Hz. The estimates given for r, correspond 
to a CDW conductivity 

o=2/ny~-lO'~ set-I -1O3/Q cm. 

For the parameter y we obtain the following estimates: 

Thus, we may assume that the scales 7, and x - '  are 
extremely small and neglect the changes of quantities over 
these intervals. Consequently, Eq. (47) reduces to a local 
equation: 

signifying that both the CDW current and its elastic polar- 
ization are proportional to the electric field. Thus, the re- 
sponse of a CDW to an electric field, from the point of view 
of its total polarization, is similar to that of a metal, while 
from the point of view of its elastic polarization it is similar 
to that of a dielectric (with permittivity - 1 ). By writing Eq. 
(47) for u- co in the form 

we note that the contribution of the elastic deformation 
( c 6) to the current can be neglected in comparison with 
the plastic current cc F. 

Finally, in the approximation under consideration we 
can assume that the potential energy V of the solitons is de- 
termined primarily by the Coulomb part: 

as in the case of static pr0b1ems.I.~ 
The dynamics of the function P involves the injection 

of matter (the transformation of electrons into solitons) and 
the redistribution of P (the aggregation of solitons into dislo- 
cations and diffusion of the dislocations). For definiteness, 
we shall consider the case when, in a certain cross section, 
continuous creation of 2~-solitons occurs, e.g., as a result of 
injection of electrons by a narrow contact in a thin sample. 
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Assuming that the entire electron current I ( t )  goes over h t o  
a soliton current over a sufficiently short distance, we obtain 

where it is assumed that the current is switched on at time 
t = 0. 

The redistribution of P is induced by the diffusion of 
the solitons, even if a considerable part of P is present in the 
form of dislocation loops. In fact, the change of P is due to a 
local change of the area of a dislocation loop, requiring the 
attachment of a f 2~-soliton in analogy with vacancies or 
adatoms in ordinary crystals. The mechanisms of the mobil- 
ity of solitons can be various, and are complicated by a two- 
stage conversion involving intermediate T-solitons (see the 
literature in Refs. 5 and 6).  It may be supposed that the 
longitudinal redistribution of interest to us is determined by 
the mobility of the solitons along the chain. An upper bound 
on the magnitude of the mobility b can be obtained by con- 
sidering the dissipation of energy as a consequence of the 
same mechanism as for the friction coefficient y. One can 
obtain for the soliton-diffusion coefficieht the estimate 

T D=bT= ( y ' ) .  ' 1: - y - ' ,  
T, y l>r ,  (52) 

where T, -Es is the temperature of the three-dimensional 
CDW transition and E, is the soliton-activation energy. 

We shall take the motion of the solitons into account in 
the diffusion approximation. The soliton density 
p, = - P / ~ T  satisfies the continuity equation: 

where 9 is the longitudinal force acting on the soliton: 

We confine ourselves here to the case of unipolar diffusion, 
when it is sufficient to take solitons of the same sign into 
account. This situation is realized at low temperatures, when 
the injection level exceeds the concentration Pm in the bulk 
or if, in the bulk, carriers of the same sign, coinciding with 
the sign of the injection, dominate." 

From Eqs. (53) and (49) we obtain 

ybv . . 
F-2nj,=F-bTFN - -(F+@)F'=-IoO(t) [ 0 (x ) - f  ( t )  1, 

2 

where the continuous function f ( t )  is the constant of inte- 
gration of Eq. (53) over x. Without any special conditions, 
we shall consider the case f( t )  = 0, when to the left of the 
contact, at x-. - W ,  there is no electric field or current: 

Otherwise, for an injecting contact with symmetrically 
placed sinks at x-. + w it is necessary to make the replace- 
ment O(x) -.+signx in the right-hand side of (55), i.e., 

f ( t )  = :. 
Neglecting the term 6 in (55), we obtain a closed equa- 

tion for the phase Fcorresponding to plastic deformation of 
the CDW: 

ybv . 
F-bTFN- - FF1=-IoO(t) 0 ( 2 ) .  

2 
(56) 

The important point is that Eq. (56) no longer contains the 
microscopic parameters r0 = y/xZ and x - ' with the micro- 
scopic scale x .  The remaining quantities are expressed in 
terms of F by the formulas 

Thus, outside the injection layer the variations of the total 
current J and density p are negligibly small, i.e., the zeroth 
order in rO corresponds to the approximation of local electri- 
cal neutrality. The changes of the CDW currentjand soliton 
current j, cancel each other. 

We consider first the homogeneous equation corre- 
sponding to (56), i.e., the case I, = 0. Physically, it de- 
scribes the CDW after the injection pulse has been switched 
off or outside the interval between the sink-source contacts. 
This equati~n is characterized by the following length scale 
no, time scale to, and velocity scale c: 

When the condition (5 1 ) is fulfilled we have x, - 1 = v/T, 
(the lengtlfof the soliton), while to is the time of diffusion of 
the soliton over its length, and is measured directly in NMR. 

In the variables x/x, and t /to Eq. (56) acquires the 
form 

P-F" --Ff#= V @  ( t )  8 ( 2 )  , v=Ioto, (57) 

E m  vylto-T12, @= vyc-T. 

When (52) is fulfilled it is obvious that vg 1. Equation (57) 
contains only one dimensional parameter-the injection 
rate Y. It can be eliminated if we bring (56) to dimensionless 
form in other scales for the time, length, and deformation, 
respectively: 

tt=llIo2to=tolv2, ( 5 8 )  

x,= (Dt,)'"=1/Ioy2T=xo/v, 

F=GIv. 

Here, 

We emphasize that, although the scales t, and x, are 
reduced with increase of the injection rate Y, the diffusion 
relation D = x:/t, remains invariant, as too (and this is im- 
portant) does the defect density P = G '/xo. In the variables 
X = X/X, and T = t /t, we have, in the general case, 

G-G" -GIG=-0 ( t )  [0  ( x )  -f ( t )  ] (60) 

with the boundary conditions 

G' (*a, T) =P,/x,=p, 

81 SOV. Phys. JETP 75 (l), July 1992 S. A. Brazovskiland S. I. Matveenko 81 



It follows from ( 6 0 )  and ( 6 1 )  that 

Thus, although we have not undertaken a full investiga- 
tion of Eq. ( 5 6 ) ,  we can determine the characteristic scales 
of the distributions as functions of the current. We have not 
succeeded in finding the general solution of the system, al- 
though we can obtain approximate solutions for practically 
the whole plane of the variables X  and T,  with the exception 
of a number of crossover regions in which small expansion 
parameters do not exist. 

We shall investigate Eq. ( 6 0 )  for f = 0 .  In the linear 
region, in which the nonlinear term FF' is small in compari- 
son with the other terms of the equation: 

F'P<P, F " ,  ( 6 2 )  

the solution of the equation has the standard form: 

Using the conditions (59) and ( 6 2 ) ,  we obtain from 
( 6 3 )  the following results: 

1 .  Forx2<Dt and t < t , ,  

2. For x2 % Dt, x / f  % v ,  = x I  / t ,  or for x2 <Dt ,  x  < 0 ,  

In the nonlinear regime we consider the region of the 
( X ,  T )  plane in which the diffusion term DF" is unimportant: 

DF" <P, (ybu/2) F'P. 

The dimensionless equation ( 6 0 )  takes the form 

G ( i - G ' )  =-€I (X) 0 (T). ( 6 7 )  

It admits the solution 

G=Tg (X/T). 

The function g ( { )  satisfies the Clairaut equation for X >  0 :  

the solution of which has the form 

Hence, taking ( 6 6 )  into account, we obtain for P and j  the 
following result: 

3. For ( x / x I  ) 3 > t / t l ,  

where r E ybv/2. 
Finally, in the region in which the term F is small, we 

obtain the equation 

G" +GIG=O (X) 0 (T). ( 7 1 )  

It is easy to see that Eq. (71 ) admits a solution in the form 

where the function g ( 7 )  satisfies the equation 

For small 7 <  1 we seek the solution of ( 7 2 )  in the form of a 
series in powers of 7 .  We find that 

where the constants A < 0 and B are determined by matching 
to the solutions in the adjacent regions. Finally, using the 
solutions 1-3, we obtain from ( 7 3 )  the following result: 

4.  F o r t ) t , ,  ( x / x ,  ) 3 < t / t l , ~ > 0 ,  

while for x  < O ,  x2<Dt,  and ( x / x ,  )3 ,  t  / t ,  , 

We recall that in all the regions considered the current and 
electric field are related by ( 6 0 ) .  

The regions of the solutions 1-4 cover the entire ( X , T )  
plane with the exception of the crossover regions near the 
linesX3= T  for T > 1 , X 2 =  T  for T < l , a n d  T =  1 , X < 1  
(see Fig. 1 ). The regions 2  and 3  overlap on the set X >  T ,  
where the solutions 2 and 3  coincide with exponential acqu- 
racy. 

From the solutions found it follows that for any finite T  
for X )  T  we have j z  I , /IT and P z O ,  i.e., everywhere ahead 
of the front moving with constant velocity v ,  -bE the cur- 
rent has the nominal value for a moving CDW in the absence 
of solitons. 

We shall consider the development in time of the fields 
at a given point X ) t t  '. First, in a time of order T,, the 
maximum current j  = I, /T is established, the soliton den- 
sity being P z O .  Subsequently, the time dependences differ 
for the cases X >  1 and X <  1 .  

For X >  1 for times T < X  the current remains constant, 
equal to j  = I, /IT,  and the function P is an exponentially 
small quantity. In the time interval X <  T & X 3  the current 
decreases, and lP 1 increases in a power-law manner: 
j a  T  - and P a  T  while for T%X the decrease ofjand 
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FIG. 1 .  Characteristic regions in the (X,T)  plane. Line A: X = line B: 
X Z =  T; lineC: X 3 =  T. 

increase of 1 P I are slower: j a T - and Pa T ' I3.  

For X <  1 for times T<X2  the current remains equal to 
j = I,/a, and the funciion P is exponentially small. Fur- 
thermore, in the interval X < T< 1 the current is equal to 
half the maximum (j=: I, /2a), and I P I increases in a power- 
law manner: Pa T1I2. For T>1 we find the same depen- 
dencesasforx, 1 (Pa T ' I3 , ja  T 

For negative x in the region x2>Dt the current and 
soliton density are exponentially small, while in the region 
x24Dt, on account of the diffusion of solitons, the soliton 
density increases by a power law and the current decreases. 

The results of numerical calculations for the functions 
P(X,T) and j(X,T) are given in Figs. 2 and 3. 

The general conclusion is as follows. The region of the 
defect distribution propagates from the contact with the 
constant drift velocity v, = bE of the solitons. With in- 
crease of the concentration of solitons there is a decrease of 
the current and electric field, so that, over large times, the 
current is inversely proportional to the soliton concentra- 
tion: j a 1/P. 

P, rel. units 

-8 -4 0 4 8 12 16 X 

j, rel. units 

FIG. 2. Results of numerical calculations of P(X) and j ( X )  at different 
times T. 

P, rel. units 

J ,  rel. units 

FIG. 3. Results of numerical calculations of P ( T )  and j ( T )  at different 
spatial points X. 

We now consider the'case when there is an nonzero 
soliton concentration P, <O in the medium. Introducing 
the function 

we obtain the generalization of Eq. (56): 

In the problems under consideration with j , = 0 the solu- 
tions of Eq. (76) and all functions determined in terms of F 
are obtained from those found for the case Pm = 0 by the 
replacement 

We note that the magnitude of the total current J in 
leading order (Jz J, ) is not related to the function F, i.e., 
does not depend on the transformation (77), and is deter- 
mined by the unrenormalized value I,. Because of this, the 
soliton current J, does not vanish for x>  t but tends to 

By recalling that E is uniquely related to j, we find that the 
coherent part of the conductivity j/E does not depend on 
P,, whereas the total conductivity J/E is proportional to 
1 - rp, . 

4. THE STATIONARY SOLUTIONS 

We have convinced ourselves that the evolution of a 
sharp injection pulse leads to solutions that remain nonsta- 
tionary even after the diffusion front has passed. However, it 
cannot be excluded that, under certain conditions, the sys- 
tem may emerge into a stationary regime of currents and 
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(or) soliton concentration. We shall consider Eq. (76), or 
even the complete system (47), (55).  It is easy to show that, 
amongst the truly stationary solutions 
(aj/at = O,dp,/at = 0)  there is only the trivial solution 

j(x,t) = const, corresponding to an unchanged CDW veloc- 
ity. We have 

For the concentration of solitons and their current we obtain 
from (76) fork', = 0 

We have shown that for x < 0 the soliton density tends to the 
thermal equilibrium concentration p , = - P _  , /2a in 
accordance with the Boltzmann law in the field 2Ex, so that 
the diffusion current and drift current cancel. For x > 0 we 
have a constant, but nonequilibrium, soliton concentration 

We note that the CDW conductivity uc., does not depend 
on the injection conditions, whereas the additional conduc- 
tivity a,, in the injection channel is proportional to a ratio of 
currents: 

i 2 J - j  2 I ,  
(Jcnw =-=- (5. .=-=-- 

7 I"> E nyv E E 2nE ' 

(80) 

Finally, the CDW phase is 

If we confine ourselves to the condition that the cur- 
rents are steady and assume that the soliton concentration 
increases linearly with time, we obtain only the nontrivial 
solution: 

1 
- 2  .i 1 P ) ,  1 = - I, sign x. 

2n 

The solution found corresponds to an extremely specif- 
ic regime of draining off (I, < 0)  of charge and solitons be- 
cause their depletion (relative to the bulk concentration 
p, = - P, /2a) in a local region of size - D /Tj ,  increases 
linearly with time. The regime under consideration can be 
realized with a low rate of injection of minority carriers, 
recombining with bulk-equilibrium particles. However, in 
the framework of our unipolar model we cannot trace the 
development of the solutions over times 

t>t'=4npm/I'jo" P= (0, t') =0, 

when the density P passes through zero. 

5. CONCLUSION 

Thus, we have derived equations describing the dissipa- 
tive dynamics of CDW in the presence of a continuous distri- 
bution of dislocations or solitons (Sec. 1 ). We have found 
the response functions of the fields and the related correla- 
tion function of the currents for the process of spontaneous 
conversion of electrons into solitons (Sec. 2).  The principal 
experimentally significant results are related to the investi- 
gation of the one-dimensional problem of the development 
of the current pulse (Sec. 3 ) .  The simplest formulation cor- 
responds to a narrow injecting contact in a thin sample. We 
have solved the problem in the purely dissipative regime of 
the CDW dynamics, and in the diffusion approximation for 
a gas of solitons. With these restrictions we ignore both the 
possible diffusion of electrons ahead of their conversion into 
solitons, and the two-stage character of the conversion in- 
volving an intermediate distribution of amplitude a-solitons 
(see the discussion in Refs. 1 and 2). These processes effec- 
tively smear out the injection layer. We have also confined 
ourselves for the moment to the case of unipolar injection, 
which removes the possibility of considering regimes of de- 
pletion relative to both the bulk thermal and the near-con- 
tact (see Ref. 10) bare concentrations of solitons. 

We have found that at first, for very short times, the 
nominal values of the CDW current j, and the electric field 
E, aj, are established in the whole sample. However, as 
the diffusion front of the gas of solitons passes through with 
constant velocity c and the soliton concentration p, in- 
creases ( c  = bE, , where b is the mobility of the solitons), 
the local value of the currentj(x,t) decreases. In a character- 
istic regime, j(x,t) a p; ' a t We have also found the 
stationary distributions for injectionless generation of soli- 
tons in a pinning layer during passage of a CDW current. 

We draw attention to the fact that for x < 0, i.e., outside 
the sink-source interval, the region of the distribution of the 
soliton field, soliton current, and soliton concentration also 
increases. This result correlates with the experimental obser- 
vations of nonlocal effects in Ref. 11. 

As we should expect, our equations cannot describe the 
periodic oscillations that accompany the conversion of the 
current into CDW. The point is that we have not taken into 
account the possibility of aggregation of solitons into dislo- 
cations and we allow an unbounded growth of the soliton 
concentration. We can present two scenarios of the develop- 
ment. 

1. Suppose that the Coulomb constant and (or) the 
structural-anisotropy coefficient a,,, in one direction are 
(is) small in comparison with the coefficient a,,, in the 
transverse direction with the greatest CDW stiffness, so that 
(see Refs. 1, 2, and 10) the following inequality is fulfilled: 

Here, p, is the energy of an isolated dislocation, o, is the 
plasma frequency, and E ,  is the permittivity without 
allowance for Coulomb effects. Then there is a critical line, 
like the dew-point line for a gas-liquid phase diagram and 
defined in terms of the local chemical potential of the gas of 
solitons: 
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As this line is crossed, with increase ofp,, the gas condenses 
into macroscopic dislocation loops or into dislocations that 
split off from the side surface (see the literature in Refs. 1,2, 
and 10). 

2. The second scenario is realized when the inequality 
( 83 ) is violated, or, with small probability, in the gas region 
abutting the line (84). It involves the nucleation of large 
dislocations, with transverse dimensions R > A  '. To be 
more precise, the following stronger inequality, determined 
by the dislocation chemical potential p, (R), should be ful- 
filled for the size: 

In principle, this regime can always be realized, but, in view 
of the large sizes, and since direct coalescence of solitons is 
blocked by their repulsion at distances shorter than A - ', it 
should have an essential dependence on the possibility of 
nucleation. 

In both scenarios, the periodicity of the process is deter- 

mined by the alternation of regimes of depletion and restora- 
tion of the concentration in the cloud of solitons. 

I '  Asymmetry of the thermal distribution of + 2~-solitons is induced by 
violation of charge symmetry. Its most common source is phonon dis- 
persion,9 leading to splitting of the activation energy: E L  = E, + 5, 
with 5 & c, ( c ,  is the sound velocity). 
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