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A systematic theory is derived for the resonant scattering of neutrons by nuclei for the case in 
which an intense electromagnetic wave induces transitions between neighboring s andp levels of a 
compound nucleus. A theory for the corresponding reactions is also derived. The neutron 
scattering amplitudes are calculated. The cross sections for scattering and for reactions are 
calculated. The role of the crystalline medium is taken into account. The inelastic diffraction of 
neutrons in a crystal accompanied by the absorption or emission of a photon is also analyzed. 

1. INTRODUCTION 

The effect of laser light on the resonant scattering of 
neutrons by nuclei and on the corresponding reactions (ra- 
diative capture, fission, etc.) continues to hold interest. The 
capture of neutrons t op  levels of a compound nucleus as a 
direct result of the absorption or emission of a photon of an 
intense electromagnetic wave was analyzed in Refs. 1-3 by a 
valence (one-particle) approach. Zaretskii and Lomono- 
sov4*5 took the same approach to analyze the role played by a 
mixing of the s andp levels of a compound nucleus in a laser 
beam. The collective nature of these states was taken into 
account in Ref. 6. Cross sections for the inelastic scattering 
of neutrons by nuclei and for reactions near an s-wave or p- 
wave resonance, accompanied by the absorption or emission 
of an optical photon, were calculated in the distorted-wave 
approximation in Refs. 1, 2, and 4-6. In other words, the 
probability for a transition between states of the nucleus- 
plus-neutron system which are interacting with each other 
was calculated in first-order perturbation theory. The inter- 
actionhof this system with the classical electromagnetic 
wave, Vf ( t ) ,  was treated as the perturbation. Only that part 
of the wave function of the system, 4: +', which describes 
the free neutron outside the nucleus, was taken into account 
in Refs. 4 and 5. This simplified apprych proved sufficient 
for calculating a matrix element for VJ" by means of the 
Ehrenfest theorem, with the residual interaction of nucleons 
being ignored. An approximate expression for the wave 
function of the system, $I, + ', including amplitudes for neu- 
tron capture by the nucleus, averaged over spin, was used in 
Ref. 6. All experimental to observe the effect 
have yielded negative results, because low-power lasers have 
been used. 

In this paper we derive a systematic theory for the reso- 
nant capture of neutrons to the s or p level of a compound 
nucleus, followed by: a laser-induced transition of the nu- 

for the cross sections for induced scattering and for reac- 
tions. We also analyze inelastic neutron diffraction in a crys- 
tal containing a resonant isotope. 

2. BASIC EQUATIONS 

We consider a neutron-plus-nucleus system in a crystal 
in a classical electromagnetic wave. The electric field of this 
linearly polarized wave is, in the dipole approximation, 
E ( t )  = E, cos at. The quantized electromagnetic field must 
also be taken into account; the interaction with this field 
results in the emission of y rays by the compound nucleus. 
We write the Hamiltonian of this system in the form 

where q represents all the coordinates of the system. The 
unperturbed Hamiltonian is 

A h  h 

where HN,Hph, and H, are the Hamiltonians of, respective- 
ly, the nucleus, the crystal lattice, and the quantized electro- 
magnetic field; and m is the mass of the neutron, with the 
radius vector r. The perturbation operator is 

h 

where the operator V, rEpresents the interaction of the neu- 
tron with the nucleus, V, represents the interaction of the 
compound nucleus with the quantized field, and Vf ( t )  rep- 
resents the interaction of the nucleus with the classical elec- 
tromagnetic wave. 

In the c.m. frame oQhe compound nucleus, with z axis 
parallel to E,, we write Vf(t) as follows for the case of E 1 
transitions: 

P, ( t )  =-do I E,(cos Ot. (4) 
cleus to a neighboring excited state with the opposite parity, 

Here do is the z component of the nuclear dipole moment, 
and the decay of that state. Our theory is derived by analogy 

given by 
with the theory'' of the double y-magnetic nuclear reso- 
nance, in which transitions between sublevels of a Moss- Z 

(5) 
bauer nucleus are induced by an rf field. We calculate the d o = e x  r < i ( $ )  "' Yio(Oi. q,), 
amplitudes for scattering, and we find the cross sections for i-I 

scattering and reactions. In particular, we calculate the total 
cross section, which has never been calculated before. The e is the charge of the proton; r,,8,,p, are spherical coordi- 
role of the crystalline surroundings is taken into account. nates; i specifies a proton of the nucleus in the c.m. frame; 
The method used here leads to more-accurate expressions and Y,,  is the spherical harmonic. 
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We assume that the initial state of the system is de- 
scribed by the wave function 

Here I, is the nuclear spin, M, is thez projection of this spin, 
,u is the projection of the neutron spin onto thez' axis, which 
is parallel to 16, ICvO,)) is the wave function of the crystal, 
with an initial number of phonons {v ; ) ,  the function 10) 
describes the vacuum of the quantized electromagnetic field, 
and E, is the initial energy of the system, given by 

Here w ,  is the frequency of the lattice oscillator of index y. 
For the calculations it is convenient to use a composite 

Hilbert space Li, ,  of the periodic functions 
$(q,t) = $(q,t + T), in which the scalar product of the 
functions $(q,t) and p(q,t) is defined by"." 

The wave function of the system is given by'2v13 

h 

Here T is the transition operator: 

h h 

Here G ,+ and G ' + ' are Green's operators with 7 - + 0: 

where 7t = c,n; r, represents the widths of the s andp levels; 
and $, = E, + nfiR. 

Working from the Wigner-Eckart theorem, and using 
(5),  we find 

where cGMM are the Clebsch-Gordan coefficients, and d ::' 
= (slldollp) is a reduced matrix element. It can be seen from 
( 15) that a linearly polarized wave mixes states of the com- 
pound nucleus which have identical spin projections Mp 
= Ms. The cross sections for induced scattering and reac- 
tions were calculated in Refs. 4-6 in the resonant approxi- 
mation fiR -- I Es - Ep I .  However, estimates were later made 
for 139La, for which we have IE, - Ep 1 = 38.2 eV. In other 
words, this energy is much larger than the photon energy of a 
neodymium laser, fin = 1.17 eV. We accordingly use the 
one-photon approximation d $')E,I 4 T,,,, . Over its life- 
time, the compound nucleus then has time to absorb or emit 
only a single photon. Equations ( 14) are solved by an itera- 
tive procedure. In particular, we find 

(s; 7 2  1 G ( + )  (E , )  ) p ;  0) 
{ s ;  T I  I V t ( t )  IP; 0) 

(~- -~ .*f i~+i r , /2 )  (E-E,+ irp/2) ' 

where 

The amplitude for the sum and difference scattering of 
neutrons from the state k,,p to the state k1,,u' by a nucleus in 
a crystal in which n photons are absorbed (n < 0 )  or emitted 
(n > 0)  is related to the Tmatrix byI2 

3. TRANSITION MATRIX 

The resonant scattering and reactions are determined 
by a transition matrix on a quasienergy surface: 

( b ;  n l f l a , O ) = ~  vd..{ct; n ( d ' + ) l c ; ~ ) ~ , ,  
C ' . E  

(12) 

where the functions 

describe intermediate states, and I,,,, and M,,,, are the spin 
of the compound nucleus and its z projection. The Green's 
matrix in ( 12) is determined by the system of algebraic equa- 
tions 

[ (E.-8.+ir.12)8..8.- { X  (of (t) 1 .")I c.... = 8,-,  
l1" 

(14) 

where la) and 10 ) are the initial and final states of the scat- 
terer. The amplitude for coherent scattering of neutrons by 
nucleus j in the unit cell, f 6,: I), is found by averaging f h$ I '  

over the phonons, the spins, and the isotopes. For unpolar- 
ized targets and for unpolarized incident neutrons, with 
E z  Ep , we find the following result in the approximation of 
fast collisions (654 I?, where 7 j  is a characteristic phonon 
frequency14,15 ) : 

(19) 

Here pj is the probability for finding the resonant isotope at 
site j; exp[ - 2W(Q)]  is the Debye-Waller factor; and 
Q = k, - k'. The amplitude for the capture of a neutron 
from the state k y  to the p and s levels of the compound 
nucleus is 
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I*%I = C si'gr, (af, el, O) %&Me (a', P r y  0) C K ~ U ' K ~ T ~ .  
KsKo' 

Here KO and Kp are the projections of the spins I, and I, onto 
k; K and K, are the projections of spins I, and I, onto k'; 
&a, and p ',at are the spherical angles of the wave vectors k 
and k', respectively; gir',,(a,P,y) is the rotation matrix; 
and T, and Tp (j) are the scalar amplitudes for neutron cap- 
ture from an s wave and a p  wave, respectively, with a total 
angular momentum j (Refs. 16 and 17). These amplitudes 
can be expressed in terms of the partial neutron widths of the 
s and p levels, which depend on the energy E: 

r,!" (k) =2kJ T,I2, ry' (k) =2k ( T , ( j )  12, 
(21) 

(P) (P'I*! +ry*lz) I-,, =rm 

4. CROSS SECTIONS 

The cross section for the induced transition a -+ b is giv- 
en byI2 

(TI )  2n u - I { b ;  rll P la; 0) I26(Ea-Eb* f iQ ) ,  
f i io (22) 

where j, is the flux density of the incident neutrons. Substi- 
tuting ( 12) and ( 16) into (22), we find the cross sections for 
scattering and reactions induced by the electromagnetic 
wave. Near ap-wave resonance (Ez  Ep ), the integral cross 
section for induced neutron scattering by a nucleus in a crys- 
tal is1' 

whereg({vT')) is the statistical distribution with respect to 
initial states of the crystal, u is the displacement of the nu- 
cleus from its equilibrium position, E is defined in (17), and 

The reaction cross sections " are found from (23) by 
replacing l?:' by the corresponding partial widths r:'. For 
free nuclei we would have a' ' " = e, ' 7 " (E);  k, and E 
would be the wave vector and kinetic energy of the relative 
motion of the neutron and the nucleus; and m would be the 

reduced mass. Significantly, cross section (23 ) is completely 
independent of the angle between the vectors k, and E,, dif- 
fering in this regard from the results of Refs. 4-6. 

The amplitude of the electromagnetic wave, E,, can be 
expressed in terms of the average energy flux density of this 
wave: 

where c is the velocity of light. The ratio of the cross section 
for induced scattering of neutrons by a free nucleus, on the 
one hand, to the cross section for scattering in the absence of 
the laser light (u,,, =, ), on the other, can be written as fol- 
lows in the case E = Ep : 

This ratio contains the intensification fac- 
tor rF)/r:p) - lo5-lo6. 

To estimate d ::', we take the approach of Refs. 16 and 
17. That approach has led to good agreement with neutron 
experiments on parity breaking. We note that the wave func- 
tion II,,,, M,,,, ) is of the form of an expansion in the func- 
tions $, describing various excited one-particle and collec- 
tive states. - - The number of terms in this expansion is - N = D,/D, wherez is the average distance between levels 
of the compound nucleus, and Do is the average distance 
between the one-particle resonances (N- lo4-lo6). We 
then have 

The expectation value of the matrix element between one- 
particle functions is 

where a is the radius of the nucleus. The component of d $" 
from collective components of the wave function is inconse- 
quential, having a value - 1/N. 

In the optimum case of the exact resonance, with 
fin = IE, - E, I, where a -  10-l2 cm, N- lo4, I'~'/I'~p' 
- lo6, and r, ~ 0 . 1  eV, we find an estimate of the laser pow- 
er from (26)-(29): 3- 10'7.R W/cm2. The screening of 
the nucleus by electrons far from electronic transitions 
makes the amplitude IE,I near the nucleus smaller by two to 
four orders of magnitude than the amplitude of the incident 
wave.4 Correspondingly, the laser power must be raised by 
four to eight orders of magnitude. 

While s-wave resonances with a spin I, - +<I, <Io + + 
are excited during the capture of slow neutrons under ordi- 
nary conditions, in the case of capture to a p level, with an 
induced p+s  transition, there may be an excitation of s 
levels with a spin I, - +(I, <Io + +. There is thus the possi- 
bility in principle that s levels of a compound nucleus, which 
have not previously been seen, could be excited in a laser 
beam. The detection of y lines from the decay of theses levels 
against a low background would thus make it possible to 
relax the requirements on the laser power. 

Using the optical theorem,I2 we can also find the total 
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cross section for the capture of neutrons by a free nucleus in a 
laser beam: 

where a, = , is the cross section in the absence of the laser, 
and 

2 r p  (E-E,) (E-E,-nAQ) +r.[ (E-EP)'- ( r P / 2 ) ' ]  
- [ ( ~ - ~ . - n f i Q ) ' + ( r , / 2 ) ' 1 [  ( ~ - h . ) ' +  (FJZ) ' ] '  ' 

n=SI 

5. INDUCED DIFFRACTION 

An inelastic diffraction of neutrons in a crystal accom- 
panied by the absorption or emission of a photon occurs un- 
der the Bragg conditions13 

where - Q = T + q=: T, q is the wave vector of the electro- 
magnetic wave in the crystal, T / ~ T  is a reciprocal-lattice vec- 
tor, and E ' is the energy of the scattered neutrons. Condition 
(3  1 ) reduces to the equality 

If IR lasers with fiflzO.1 eV and thermal neutrons with 
Ez0.01 eV are used in an experiment, a diffraction of these 
neutrons accompanied by the absorption of a photon will 
occur at T- (2mfl/fi) z 7  A- l .  The Debye-Waller fac- 
tor in the cross section for coherent scattering in this case is 
exp( - .r2 3) - 1, since the resonant scattering of neutrons 
occurs at fairly heavy nuclei, with an rms vibration ampli- 
tude ( 2) 'I2 -0.1 A. Calculations carried out in the kine- 
matic approximation show that the ratio of the flux density 
of inelastically diffracted neutrons, j:f " (T), to the flux den- 
sity of neutrons diffracted in the absence of a laser, 
jd (7) ,E = O ,  is on the order of R . 

Using the results of Refs. 13 and 18, we now examine 
the dynamic scattering of neutrons by a plane-parallel plate 
consisting of infinite layers of unit cells of thickness d. For 
Laue diffraction we have 

where 

2n 
5'"' (k. p;  k', p')= e x p ( i ~ ~ i ) f S !  (k. kt, p')j 

kz(vold) 

(34) 

is the dimensionless amplitude for the scattering of neutrons 
by one layer of unit cells with a volume u,, p, is the radius 
vector of atom j in a unit cell, 

g=k,,+6-k:,,-6'3~~1+tl,  k,,=k,e,, . . . , 
6d=B(O' (k, ,  p; k,,  p ) ,  6 'd=Si0)  (k'. p'; k', p'), 

( 3 5 )  

Nd is the thickness of the plate, e, is a unit vector perpendic- 
ular to the surface of the plate, and k,,, ,... are components 
along the surface of the plate. 

If Img = 0, then @ ( l )  = N at { = 0, and we have 
jd a N 2. Withincreasing 16 I, the function i@({) I2undergoes 
damped oscillations. As N- m, we have 

1 @(g) 1 -+ 2rNS({). The quadratic N dependence of j, has 
been discussed in the kinematic approximation (S = S' = 0)  
in several places (e.g., Ref. 19). The condition 6 = 0 is the 
same as the Bragg condition (3  1 ) in this case. If the spread 
Aka< (Nd) - ', then we have j, a N2.  The relative energy 
spread of the incident neutrons in this case is 
AE /E< (k,,Nd) - '; i.e., the behaviorj, a N 2  prevails only if 
the plate is sufficiently thin. 

'' In the case E-  E, , the indices s and p should be interchanged in (23). 
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