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We study a semiempirical model of the evolution equation for the probability distribution density 
of the energy dissipation rate of flows in an incompressible liquid. We use the invariant simulation 
method which is a generalization of the "k - E" model to obtain a universal solution of the 
equation. We compare it with experiments. The unrefined theory of locally isotropic turbulence is 
confirmed when the Reynolds number Re increases without bounds. The lognormal distribution 
for the dissipation turns out to be nonuniform with respect to the parameter of the asymptote. The 
intermittence indexp is not a universal constant, but depends asymptotically on Re: 
p -In (ln (Re) ) /ln (Re). Consequences of the proposed model are the transfer equations for the 
average energy of the pulsations and of the average energy dissipation rate; they contain extra 
terms as compared to the analogous equations in the traditional semiempirical turbulence theory. 

1. INTRODUCTION 

The probability distribution density of the dissipation 
rate of the energy E is one of the most important characteris- 
tics of turbulence in the refined Kolmogorov-Obukhov the- 
o r y . ' ~ ~  Landau3 had noted that the statistical properties of 
the random field ~ ( x , t )  must determine the probability dis- 
tributions for the small-scale components of the turbulence. 
In the original variant of the theory of locally isotropic tur- 
bulence4s5 the average energy dissipation rate was chosen as 
the single parameter determining the structure of the pulsa- 
tions in the inertial range of the spectrum. 

In the refined theory a turbulent energy dissipation rate 
E ,  was considered which was averaged over a region of space 
with a characteristic dimension r referring to the inertial 
range. On the basis of qualitative ideas about the cascade 
process of the breaking up of the eddies in turbulent flows, 
expressed first of all by Ri~hardson,~ Kolmogorov,' and 
O b u k h ~ v , ~  a hypothesis about the logarithmic normality 
(lognormality) of E, (the so-called "third Kolmogorov hy- 
pothesis") was proposed. The hypothesis is based on the 
central limit theorem of probability theory and was first ap- 
plied by Kolmogorov7 to the multiplicative break-up pro- 
cess of particles. Novikov and Stewart8 proposed for the 
study of the cascade process a model in which a discrete set 
of embedded spatial regions are considered. Yaglom9 and 
Gurvich and Yaglom" have shown that such a model leads, 
under some rather general assumptions, to the logarithmic 
normality of the E, distribution. Novikov, in Refs. 11 and 12, 
considered a more general method, which does not require 
discretization of the breaking up, for studying the statistical 
characteristics of the energy dissipation rate field in the scal- 
ing range. 

In a number of papers doubts were expressed about the 
hypothesis of the lognormality of the turbulent energy dissi- 
pation rate distribution. OrszagI3 showed that the set of all 
the moments, which were the same as the corresponding mo- 
ments of the lognormal distribution, does not determine the 
probability distribution uniquely and, in the case of dynami- 
cal equations the initial values of all the moments, does not 
enable one to determine their evolution, even if the dynami- 
cal problem as a whole has a unique solution. No~ikov". '~  
obtained from the scaling hypothesis for the moments of the 

turbulent energy dissipation rate distribution an inequality 
which is violated by the leading moments of the lognormal 
distribution. KraichnanI4 suggested that one of those possi- 
bilities is the cascade process, satisfying scaling, of the break- 
ing up of the turbulent eddies allows different possibilities 
for the dissipation probability distribution and the lognor- 
mal dissipation rate, averaged over small spatial regions. A 
number of papers (Refs. 8 and 15-18) studied a model (the 
so-called D-model) a characteristic feature of which is the 
assumption that there is a finite probability that the turbu- 
lent energy dissipation rate tends to zero. Turygin and Che- 
chetkin19 proposed a restricted lognormal probability distri- 
bution for E,. In the same paper the P-model and its 
modifications were subjected to a detailed analysis. It was 
shown that the experimental results obtained by Meneveau 
and Sreeniva~an~"'~' (see also the summarizing Ref. 22) dis- 
agree with the conclusions of the b-model. Schertzer and 
L o ~ e j o ~ , ' ~  using a model of the break up proposed by Man- 
delbrot,I5 studied the "hyperbolic" or a-model. In this mod- 
el the turbulent eddies break up into smaller eddies which 
obtain a strictly defined part of the energy flux. A particular 
case of this model is the "binomial" or p-model2' in which 
the turbulent energy dissipation rate is considered to be a 
two-scale Cantor set. In Yamazaki's B - m ~ d e l ~ ~  a beta-dis- 
tribution was proposed for the break-up coefficient. Accord- 
ing to the model proposed by Andrews et has a gam- 
ma-distribution and the distribution density of the 
unaveraged energy dissipation rate can be expressed in terms 
of a modified Bessel function (K - 1 distribution). In Ho- 
sokawa's modelz6 the square root energy dissipation rate is 
distributed exponentially. 

The models listed here are either approximations of the 
experimental results or are based upon rather arbitrary as- 
sumptions of a statistical nature which are not directly con- 
nected with the Navier-Stokes equations. An exception is 
Kraichnan's paper27 in which, by analogy with the "turbu- 
lence" of the Burgers equation, an equation was proposed 
for the velocity gradient distribution density (She2' and She 
and Orszag2' have developed the ideas of Ref. 27) and also a 
paper by Kuznetsov and Sabel'nikov3' (see also Ref. 3 1 ) in 
which the equation for the E,  distribution is obtained from 
the hydro-dynamical equations. The closure of the dynami- 
cal equations in Refs. 27-29 is based upon physically plausi- 
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ble but in general arbitrary assumptions. The intermittence 
model considered in Refs. 30 and 3 1 is close to the 0-model 
and can apparently not be made to agree with the experimen- 
tal data of Refs. 20-22 when one studies the dissipation dis- 
tribution moments of "negative" orders. We also refer to the 
model by Yakhot etal.32 in which refinements of the Kolmo- 
gorov-Obukhov theory are obtained by applying the renor- 
malization group method to the Navier-Stokes equations. In 
Refs. 33-39 and in a number of other papers the characteris- 
tics of turbulence in the inertial range of the spectrum are 
obtained by means of a numerical integration of the hydro- 
dynamical equations or of their simplified analogs. A more 
detailed analysis of the existing models for the turbulent en- 
ergy dissipation rate distribution is given in Refs. 19 and 22. 

In the present paper we study the possibility of an invar- 
iant simulation using the "k - E" theory for the transfer 
equation for the energy dissipation rate probability distribu- 
tion in developed flows of an incompressible liquid. The pro- 
posed model is directly based upon ideas of the Kolmogorov 
and Obukhov theory. We assume that the small-scale struc- 
ture of the pulsations in any developed turbulent flow is "ad- 
justed" in a universal manner to the evolution of the large- 
scale (energy-containing) components of the turbulence 
spectrum. We choose for the parameters of the universal 
equilibrium distribution the average energy and the average 
dissipation rate of the turbulent pulsations and the molecu- 
lar viscosity coefficient. 

In statistical hydrodynamics the number of unknowns 
is always larger than the number of exact equations which 
can be obtained from the Navier-Stokes equations (see Ref. 
40 for the "closure" problem in the theory of turbulence). 
The unknown functions appearing in the equation for the 
dissipation distribution density are in the proposed theory 
not given ab initio but are looked for in a rather general form. 
The actual form of the closed relations is determined by us- 
ing the invariant simulation method. The essence of this 
method consists of the following: if some quantity (in this 
case the dissipation distribution density) depends in a uni- 
versal manner on well defined parameters this dependence 
can be determined from a consistent consideration of the 
appropriate evolution equation in various kinds of flow. As a 
rule one chooses as a test flows which (due to symmetry 
properties) are very simple. 

The invariant simulation method was first used for the 
closure of the equations of turbulent motion by Da~ydov.~ '  
An attempt at an invariant simulation of the probability dis- 
tribution of impurity concentrations in developed turbulent 
flows was made in Ref. 42. 

2. EQUATION FOR THE DISSIPATION DISTRIBUTION 
DENSITY 

We can obtain a transport equation for the energy dissi- 
pation rate E from the Navier-Stokes equations 

[where the u, (j = 1,2,3) are the components of the velocity 
along the appropriate axis of the Cartesian coordinate sys- 
tem x,, p is the pressure, p is the density, v is the kinematic 
viscosity coefficient, the symbols d, and d, denote, respec- 
tively, differentiation with respect to the time t and the xj 
coordinate, A is the Laplace operator, and summation from 

1 to 3 is understood over repeated indices] and the incom- 
pressibility condition 

In the case of an incompressible liquid one can use the Stokes 
formula 

3 

to express the E energy dissipation rate in terms of the veloc- 
ity gradient and the transport equation for E has the form 

M ~ n i n , ~ ~ . ~ ~  Lundgreq4' N o ~ i k o v , ~ ~  Kuznet~ov,~' and 
a number of other authors have proposed a method for find- 
ing the exact evolution equation for the distribution density 
of a random quantity (velocity, velocity eddy, impurity den- 
sity) from the transport equation for the same quantity. One 
can similarly obtain from Eq. ( 1 ) an equation for the proba- 
bility distribution density P(E;x, ,t) of the energy dissipation 
rate E: 

The bar indicates here a probability average and the condi- 
tional average for a fixed value of the energy dissipation rate 
E is represented as an operator (...I&), 

and the prime indicates the pulsation of the corresponding 
quantity. 

It is immediately clear from Eq. (2)  that the evolution 
of the distribution density P(~;x, , t )  is due to the following 
factors. 

1. Transfer of the average velocity (second term on the 
left-hand side of the equation). 

2. Transfer of the pulsational velocity (third term on 
the left-hand side of the equation). 

3. Interaction between the velocity gradients and the 
pressure (first term on the right-hand side of the equation). 

4. Peaking of the velocity gradients due to the action of 
the molecular viscosity (second term on the right-hand side 
of the equation). 

5. Accentuation of the velocity gradients due to the 
stretching of the vortex tubes (third term on the right-hand 
side of the equation). 

The physical meaning of all terms in Eq. (2)  is com- 
pletely lucid and their value can, in principle, be determined 
experimentally. However, the use of this equation for an im- 
mediate theoretical analysis offers apparently few perspec- 
tives. This is connected with the fact there occur quantities 
in Eq. (2)  which are averaged for a fixed value of E and 
which cannot be expressed rigorously in terms of the re- 
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quired function P. The closing of Eq. (2)  may turn out to be 
a more time-consuming problem than determining the ener- 
gy dissipation rate probability distribution density itself. We 
note that a separate simulation of the generation and dissipa- 
tion terms is also difficult. One can show that for large values 
of the Reynolds number the sum of these terms is finite and 
comparable to the other terms in the equation. However, 
separately the generation and dissipation terms do not have 
an order of magnitude which is comparable with that of the 
other terms of the equation. 

3. INVARIANTSIMULATION OF THE EQUATION FOR THE 
DISSIPATION DISTRIBUTION DENSITY 

The classical Kolmogorov-Obukhov theory is based on 
a representation of the balanced and localized character of 
the statistical characteristics of small-scale turbulence. One 
assumes that these characteristics (amongst which there is 
also the energy dissipation rate) are in quasiequilibrium 
with the large-scale structure of the flow and depend implic- 
itly on the latter through a small number of well defined 
parameters. 

Following the hypothesis proposed in Kolmogorov and 
Obukhov's papers and qualitatively confirmed both by di- 
rect and by indirect experiments (see, e.g., Ref. 40) it is 
natural to assume that the energy dissipation rate probabili- 
ty distribution density in developed turbulent flows (for 
large values of the Reynolds number) relaxes to a stable uni- 
versal state which depends solely on the local characteristics 
of the flow turbulence and on the molecular properties of the 
liquid. 

The study of the relaxation process of an arbitrary ini- 
tial dissipation distribution to an equilibrium state as well as 
the analysis of the stability of the limiting distribution is a 
self-contained problem. In the present paper we study only 
the characteristics of the equilibrium distribution. The phys- 
ical basis for the assum~tion about the quasi-stationarity of 
the dissipation distribution with respect to the macro-char- 
acteristics of the turbulent flow is an analysis of the charac- 
teristics for the dissipative frequency range. The characteris- 
tic time for changes in the dissipation field is determined by 
the Kolmogorov microscale time, 

Since 

we may assume that the energy dissipation rate distribution 
density in developed turbulent flows "manages to adjust it- 
self' to the smoother changes of the large-scale quantities. 
We clearly do not consider here flows formed immediately 
behind a grid in a tube and similar ones. Such flows must be 
studied in the framework of a more general approach con- 
nected with an analysis of a nonequilibrium dissipation dis- 
tribution. 

In agreement with what has been said above we assume 
that the equilibrium energy dissipation rate probability dis- 
tribution density P(&;xj,t), apart from on the probability 
argument E, depends only on the average energy dissipation 
rate per unit mass Z(xj,t), the average kinetic energy of the 
velocity pulsations per unit mass k(x,,t) : 

and on the molecular viscosity coefficient v. We shall assume 
that the dissipation distribution density P(E) is a universal 
function of these parameters in any kind of turbulent flows 
with an arbitrary geometry. The spatial and temporal de- 
pendence, on the other hand, we assume to be an implicit one 
(through 'E and k) . 

The standard dimensional-analysis procedure gives 

where 

Equation (3)  significantly restricts the leeway in the 
choice of the type of probability distribution for the turbu- 
lent energy dissipation rate. To find the actual form of the 
function F(l ,Re)  one has to adopt some hypotheses which 
make it possible to model the right-hand side of Eq. (2),  i.e., 
to "close" this equation. 

We write the expression within the pointed brackets on 
the right-hand side of Eq. (2)  in the form of a sum 

where the dimensional factors A, (x,,t) depend on various 
averaged characteristics of the flow while the dimensionless 
functions f, ((,Re) depend only on the dimensionless argu- 
ments of the function F. In that case Eq. (2)  becomes 

11 

We assume that each term in the sum on the right-hand 
side of the semiempirical Eq. (4)  reflects some well defined 
physical process in the transfer of the distribution density 
P(E) in probability space. Each factor A,, apart from on the 
average energy dissipation rate, the average kinetic energy of 
the velocity pulsations, and the viscosity, depends then on 
the characteristics of the corresponding process. 

Let the first term in the sum be determined by the iso- 
tropic evolution of the distribution density P(E),  i.e., the 
evolution which is not connected with the fact that the flow 
may be inhomogeneous or anisotropic. We assume that the 
factor A, depends only on 2, k, and v. We assume for A, that 

since the dependence of the first term in the sum on the tur- 
bulent Reynolds number Re can, without loss of generality, 
be included in the function f, . 

We connect the second term of the sum with the anisot- 
ropy of the pulsational motion and as the characteristic of 
this we choose the anisotropy tensor av:  

For the factor A, we obtain 

and we require that the function B, (av,Re) vanish identical- 
ly when the anisotropy tensor is equal to zero. Since the 
energy dissipation rate distribution density is a scalar invar- 
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iant, the function B, depends clearly on the invariants of the 
anisotropy tensor. 

We specify that the action of the shear of the average 
velocity on the dissipation distribution density describes the 
third term in the sum. We shall look for the factor A ,  in the 
form 

where we require of the dimensionless factor B, only that it 
vanish when there is no average velocity shear, i.e., when we 
have 

We connect the fourth and fifth terms in the sum of the 
products A d k  with the inhomogeneities, respectively, of the 
average energy dissipation rate and of the average pulsation 
energy. We shall assume that the coefficient A, vanishes 
when there is no gradient of E and that the coefficient A, 
vanishes when there is no gradient of k. 

We need in what follows a transport equation for the 
average kinetic energy of the turbulent pulsations and a 
transport equation for the average energy dissipation rate. In 
the case of developed turbulence (neglecting molecular dif- 
fusion of averaged quantities) the first of these equations has 
the form4' 

where we have introduced the notation 

We assume that the vector 4 is linearly connected with the 
vectors I, and Q,, where 

and we shall assume the proportionality coefficients to de- 
pend on k, 2, and v. From dimensional considerations we 
have then 

and the transfer equation (8) for the turbulence energy be- 
comes 

A model equation for the average energy dissipation 
rate can be obtained from Eq. (4).  Multiplying the latter by E 

and integrating over E we find 

where 

Since the proposed hypotheses must be satisfied in dif- 
ferent (arbitrary) flows, i.e., must be invariant with respect 
to the type of the turbulent flow, we consider consecutively 
several very simple cases. 

First of all we turn to the case of homogeneous and 

isotropic turbulence. Equations (4),  ( 8 ) , and ( 10) will have 
the form 

Substituting the function Pin the form (3)  into Eq. ( 1 1 ) and 
using Eqs. ( 12) and ( 13) we obtain 

where we have introduced the notation 6 = ln(Re). 
Similar to the preceding case we find for a turbulence 

which is homogeneous, but not isotropic 

We now apply the invariant simulation method to a sta- 
tionary turbulent flow with a constant shear. The character- 
istics of the turbulent quantities are constant along the flow 
in such a flow: generation is compensated by dissipation. 
Equations (4)  and ( l o )  then become, respectively, 

Using Eqs. (14) and (15) we find 

where 

Here B :  is the value of the coefficient B, in a flow with a 
constant shear. 

To close in Eq. (4) the term describing the turbulent 
diffusion of the energy dissipation rate probability density 
we put 

One can show that Eq. ( 19) is a generalization of the gradi- 
ent hypothesis which connects turbulent flows with the gra- 
dients of averaged quantities to the energy dissipation rate 
distribution density. Substituting Eqs. ( 14), ( 15), ( 18), and 
( 19) into Eq. (4)  we obtain 

We apply a Mellin transform4' with respect to the f variable 
to Eq. (20). Using Eqs. (9)  and ( 10) we get 

+v,a(I,+ (9 -  t)V,(Q,d,a)le 
-d,UI, ( Q  d Re)  R e - Y A e d , ( l  ' k i  -q \Y , ( l ,n .e ) lk  

D 

+d,P,(ZlalRe)~i (kRe)=- Z A . ~ ~ ,  (21) 
k 4  
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where 

Let 

Using the definition of the quantity E and expressing the 
turbulent Reynolds number Re in terms of the average ener- 
gy and its average dissipation rate we transform Eq. (21): 

In the general case the shear of the average velocity, the 
gradient of the average energy dissipation rate, and the gra- 
dient of the average turbulence energy are linearly indepen- 
dent. Therefore, and also by virtue of the assumption that 
the coefficients A, and A, vanish when the gradients of the 
dissipation and of the energy are respectively equal to zero, 
Eq. (22) splits into a set of equations 

and 

A,=(QjajE) h+yi (Qjajk)lk, 

AS= (eZjajk) lkz+yz (Ijaji?) lk, 

' Ijaji?=yQjajk, 

where 

We have thus shown that if the proposed hypotheses 
about the form of the energy dissipation rate probability dis- 
tribution density in developed turbulent flows are valid the 
sum on the right-hand side of Eq. ( 10) for the average ener- 
gy dissipation rate must contain at least five terms. In that 
case Eq. ( 10) will have the following form: 

a,~+z$,T+a,Q,= [a, +az& (a,,) 

+2as<u,'u,'>a,il,l[ (i3-%3)8] 1E21k 
+a, [ (Q,ap) E+y,(Q,a,k)  lkl +a5 [ (eZ,a,k) /h.'+yz ( I , a b )  i k l .  

(33 

Equation (33) can in principle contain additional terms 
which on the right-hand side of Eq. (2 1 ) correspond to func- 
tions x, of the form 

similar to the function X, which is connected with the ani- 
sotropy of the velocity pulsations. 

Starting with a paper by Davydov41 (see Refs. 49, 50, 
and others) the action of the mean velocity shear has been 
described in semiempirical transfer equations for the aver- 
age energy dissipation rate by an expression similar to (23). 
However, Lumleysl suggested the need to supplement this 
expression with additional terms depending on the average 
velocity shear. If the hypotheses proposed above are valid 
there is no need to generalize Eq. (23). 

There occur in Eq. (33) new terms, as compared with 
similar equations in semiempirical theories, which vanish 
only when the coefficients a ,  and a ,  are equal to zero. In 
contrast to those theories Eq. (33) is not postulated a priori 
but is obtained as a consequence of a model based upon the 
theory of locally isotropic turbulence. This equation is the 
result of a more general application of the widely used 
"k - E" method for closing the set of equations describing 
turbulent flows. 

Using (24)-(27) to eliminate the functions 6,, 6,, \V, , 
and \V, in Eq. (28) we get for the functions @ of the normal- 
ized dissipation moments the equation 

where 

The coefficients 4 depend in the general case on g, i.e., on 
the turbulent Reynolds number Re. 

4. SOLUTION OFTHE EQUATION 

We shall show in Sec. 6 that the dependence of the coef- 
ficients / Z j  on the Reynolds number is important, albeit 
weak. For a comparison with experiments we therefore as- 
sume that the functions A ,  (g),  A, ( l) ,  and A, (6) have a 
finite asymptotic behavior for large f (as Re- co ). The gen- 
eral solution of Eq. (34) will in that case be of the form 

Since the coefficient of 6 in the index of the exponent of the 
function @ is positive for values of the parameter q which are 
large in absolute magnitude, the coefficient C ,  does not van- 
ish identically. We can then for large 6, which are the only 
ones to be considered, neglect the second term in (35) as 
compared to the first one. Applying an inverse Mellin trans- 
formation4' to Eq. (35) we find a formal expression for the 
function E 

51 Sov. Phys. JETP 75 (1), July 1992 P. L. Van'yan 51 



5. COMPARISON WITH EXPERIMENTS 

The statistical characteristics of the energy dissipation 
rate in the inertial range of the spectrum have been studied 
experimentally in Refs. 20-22. Let us see how the conclu- 
sions reached in the present paper are related to the results of 
those experiments. 

If we use the scaling hypothesis of Refs. 11 and 12, we 
can state that the normalized moment E, ( r )  of order q of the 
energy dissipation rate, averaged over a region of dimension 
r , 

behaves as follows: 

E.,(r)  - ( r lL ) -+ '~  when q<<r<L. 

E , ( r ) = @  (g. 5 )  when r e q .  

Here L is the external turbulence scale: 

7 is the Kolmogorov microscale: 

and the coefficient p, depends on the order of the corre- 
sponding moment. We introduce a scale 17,: 

From scaling considerations it follows that 

Since V / L - R ~ C ~ ' ~  we find, by comparing Eqs. (35) and 
(36), that 

For values of the parameter q which have a large absolute 
magnitude the increase in the exponents p, is linear, which 
agrees with Novikov's analysis12 of the way the dissipation 
moments depend on their order. 

The main attention in Refs. 20-22 was paid to the multi- 
fractal structure of the energy dissipation rate field. The gen- 
eralized dimensionalities D, are defined by the equation 

where D is the effective dimensionality of the space in the 
experiment. Since in Refs. 20-22 a one-dimensional (tempo- 
ral) series of data was studied, we have D = 1. We then get 
from Eq. (37) 

We show in Fig. 1 the experimental values'"-LL of the dimen- 
sionality D, and the function (38) approximating them. The 
values of the parameters of the distribution are A ,  ~ 2 . 3 7 ,  
A, -0.0, A, =. - 0.43. 

FIG. 1. The generalized dimensionality D, as function of q. The experi- 
mental points are from Ref. 22 and the solid curve is according to Eq. 
(38 ) .  

In the study of the multifractal properties of developed 
turbulence there has recently been widespread use of an 
analysis of 'y- a" curves, or of the so-called multifractal 
s p e c t r ~ m ~ ~ , ~ ~  (see also the references in those papers) which 
is defined by the relations 

Substituting expression (38) for D, in the defining functions 
(39) and (40) wefindforf ( a ( q ) )  anda (q )  

From Eq. (42) we can find the function q ( a )  : 

1 3  &:+As 
q(a)= - - -(a-I) 

2 2 [ 1M:+9h3 (a- 1)' 
1". (43) 

To simplify the formulae we take the parameter A, to be 
equal to zero. Using Eq. (43) to eliminate the parameter q in 
Eq. (41), we get an explicit expression for the multifractal 
spectrum: 

Substituting q = + w in Eq. (42), we find the range within 
which a varies: 

We show in Fig. 2 the multifractal spectrum according to the 
data of Refs. 20-22 and the model expression for it given by 
Eq. (44). 

Equation (37) makes it possible to determine the power 
index 6, of the velocity structure function in the inertial 
range. According to Ref. 22 we have 

where 

and Su, is the value of the velocity difference in points at a 
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FIG. 2. Multifractal spectrum. The eaperimental points are from Ref. 22 
and the solid curve is according to Eq. (44).  

FIG. 3. The power index lp of the velocity structure function as function 
of the orderp. The experimental points are from Ref. 22 (data from Refs. 
22 and 54) and the solid curve is according to Eq. (45).  

we decrease the scale by a factor b, where the scales r and r /b  
distance rfrom one another. In accordance with Eq. ( 3 8 )  we lie the scaling We then have (see Refs. 12, 22, 
have 

and 54)  

+ [ ( h * + ~ r + ) '  -,L$($- I ) ] " ' ) .  ( 4 5 )  o 
Through the substitutions 

We show in Fig. 3  the results of the experimental determina- 
tion22,53 of the index 6, and also the theoretical expression 

given by Eq. ( 4 5 ) .  

6. ANALYSIS OFTHE RESULTS 

Notwithstanding the good agreement between the ex- 
perimental data and the model functions we must note that 
the solution ( 3 5 ) ,  obtained under the assumption that the 
coefficients Aj are constant, cannot be deemed to be exact, 
but must be considered to be an approximation. This is con- 
nected with the fact that, as we shall show in what follows, 
Eq. ( 3 7 )  forp, is in contradiction to the scaling hypothesis 
of the field E,. 

We consider the probability distribution density 
p(M,b)  of the break-up coefficient M ( M  = E , / E , , ~  ) when 

y=-ln (Mlb) ,  

s=q-*I2. 

p(M, b)=g( y, b )  exp ( 3 ~ 1 2 -  (3/z+4ht/3)ln 6 ) .  

Eq. ( 4 6 )  is transformed into 

4 
= erp{ln ( b )  [ - s+  - ( - h , ) ' " ( s ' - ~ ' / L - ' / ~ ) ' ~ ' ] }  3 ( 4 7 )  

Applying an inverse Laplace transform48 to Eq. ( 4 7 )  we 
find the function g(y ,b ) .  Changing from the variable y to M  
we obtain 

where expansion of the function pq which is uniform in the param- 
eter a as Re -. 03. 

The main term 6(64) of the asymptotic expression for 
6 )  1 of the fundamental solution of Eq. ( 3 4 )  in which we are 

M -b('ls)(-b) 
1 - interested has the form56 

J, is a first-order Bessel function and 6 is a Dirac delta func- 
tion. 

We show in Fig. 4 the function p(M,2) .  When 
M <  Mo (Mo ~ 0 . 3 )  this function is alternating55 which is 
apparently a consequence of the assumption that the 4 coef- 
ficients in Eq. ( 3 4 )  are constant. One can show easily that 
this conclusion remains valid when A, f 0 .  

We note that when the hypotheses proposed in the pres- 
ent paper are valid the function p, cannot be independent of 
the turbulent Reynolds number Re. However, Eq. ( 3 7 )  is 
not only not exact, but it also cannot be the main term of an 

G(5 ,  q )  exp {I [- (h,+h,q)+S'"l d ~ ) ,  ( 4 9 )  

where 

The analysis given in this paper shows that as Re-. m 
the index p, -0.  We then find from Eq. ( 4 9 )  that for large 
Re the parameter A ,  can no longer be a constant and that the 
parameters A, and A, tend to zero. In order that the disper- 
sion of the logarithm of the dissipation increases when the 
Reynolds number increases it is then necessary that the coef- 
ficient A, (for a power law asymptotic behavior of 6 )  de- 
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FIG. 4. The probability distribution density of the break-up coefficient 
when the scale is reduced by a factor 2, according to Eq. (48). 

crease not faster than 6 - I .  We assume that the functions 
Aj (6) can for 6) 1 be expanded in negative powers of 6. As 
we are only interested in the main terms of the expansion we 
shall assume that 

In that case the main term of the asymptotic expansion of the 
function @ which is uniform in q has the following form: 

q)=C(q)ex~{-~q(q-l)/[A,+(h.t~-hq(q-f)lE)'"I 

-(a/Al) q(q-l)ln [En(h,+ (LZ-hq(q-I) it)")] ). (5 1 ) 

From the normalization conditions we have 
C(0) = C(1) = 1. In agreement with Eq. (36) we get 

The parameter I, can in the general case depend on the 
order q of the corresponding moment. However, since the 
minimum scale of the eddies which can exist in the turbulent 
flow is of order 7, we have I, - 1. For the further asymptotic 
analysis it is sufficient that the logarithm of I, be bounded. 

In order that the function (52) for q with a large modu- 
lus satisfy the above mentioned Novikov inequalityI2 and 
agree with experiment it is necessary that 

In [C (q) 1 -l(hlh,) q 2  In [ (-A)'" lql I Tconst 1 ql . 

Expression (52) shows that for fixed q and as 6- w the 
moments of the turbulent energy dissipation rate probability 
distribution are described with arbitrary accuracy by the 
corresponding functions of the lognormal distribution. The 
intermittency parameter p ( p  = [ a  ;,p, ] 1, =, ) has the 
asymptotic form 

p-ln(E)/E for ln(E)Bl .  (53 

In actual experiments the logarithm of the logarithm of the 
Reynolds number reaches a maximum value of -- 3-4. For 
such values of 6 we find in accordance with Eq. (52) 

p- [In (E)+const] /E for ZBl. (54) 

It is clear from Eq. (49) that the solution (37) obtained by 
assuming that the exponents p, are independent of the 

Reynolds number is no more than a convenient approxima- 
tion of the experimental data. We note that the numerical 
values of the parameters used in the comparison with the 
results of measurements are not estimates of the coefficients 
in Eq. (34). The solution (37) satisfies the normalization 
conditions 

and for values of the parameter q with a large modulus there 
is a linear growth. The solution depends weakly (logarithmi- 
cally) on the Reynolds number and it is therefore not sur- 
prising that good agreement with experiment is reached us- 
ing constant fitting coefficients. 

The experimental values of the intermittency index p 
obtained by a number of authors (see, e.g., Ref. 31) vary 
considerably: p z 0.2-0.5. In the paper by Kuznetsov et ~ 1 . ~ '  
the smallest known value of the parameter, p = 0.15, was 
found. The spread of the experimental data exceeds, appar- 
ently, the accuracy of the measurements. The nonuniversa- 
lity of p is determined in Ref. 57 by the variation of the 
external intermittence coefficient. The presently available 
experimental data do not allow us to accept or reject the 
hypothesis that p is universal. We note that the range of 
variation o fp  in the experiments is in qualitative agreement 
with Eq. (54): when the turbulent Reynolds number 
changes by several orders p changes by a factor of two to 
three. 

A model was proposed in Ref. 58 in which the param- 
eters of the lognormal dissipation distribution are not uni- 
versal constants but depend on the logarithm of the Reyn- 
olds number. One shows easily that the hypothesis of a 
power law dependence of the dispersion of the dissipation 
logarithm on the ratio r /L,  assumed in the present paper, 
contradicts the scaling hypothesis of Ref. 12. In the pro- 
posed model, the scaling dependence of the dissipation mo- 
ments, which follows from the scaling for 7 < r < L ,  is pre- 
served. The dissipation distribution turns out to depend not 
only on the external scale L, a dependence which is the basis 
of the refinement of the theory of locally isotropic turbu- 
lence, but also on the internal (Kolmogorov) scale, i.e., on 
the Reynolds number. 

7. CONCLUSION 

We have shown the possibility of a semiempirically 
closing of the transfer equation for the energy dissipation 
rate probability distribution density. Using the invariant 
simulation method (a  modification of the "k - E" model) 
we found that when the turbulent Reynolds number in- 
creases without bounds the small-scale turbulence structure 
is described by the non-corrected 1941 theory of Kolmo- 
gorov and Obukhov. 

The lognormal distribution for the dissipation is uni- 
form for the leading moments of the asymptotic expression: 
one can indicate for the moment of any order a Reynolds 
number for which the moment is the same with prescribed 
accuracy as the asymptotic one. However, for any fixed Re 
there is a moment which differs arbitrarily strongly from the 
corresponding moment of the lognormal distribution. It is 
clear from Eq. (52) that the applicability region of this 
asymptotic behavior increases as the root of the logarithm of 
the Reynolds number. The intermittency parameter p is not 
a universal constant, 
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p- [In (ln (Re) ) +const] lln (Re) for In (Re) >> l .  

The excess coefficient K of the velocity gradient has the fol- 
lowing asymptotic form: 

K-ln(Re)+const for ReBl. 

We found the asymptotic expression for the moments of 
the distribution which satisfy the Novikov inequality and 
which agree well with experiment. 

The proposed method enables us to model the ("k - E" 

type) set of equations for turbulent motion starting from the 
theory of locally isotropic turbulence. The term describing 
the generation and dissipation in the semiempirical trans- 
port equation for the average energy dissipation rate must 
contain quantities connected with the inhomogeneity of the 
average energy and the average dissipation in order that the 
proposed model be valid. 

The author is grateful to A. S. Monin and A. M. Yaglom 
for discussions of the results of this paper. 
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