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We develop an ion-acoustic turbulence theory for a plasma of hot electrons and two species of cold 
ions and establish the distribution of ion-acoustic waves over frequencies and wave-vector angles. 
We show that because of absorption of energy by ions in the process of induced scattering of waves 
on them, an anisotropic two-temperature Maxwellian distribution sets in for the majority of the 
ions. Explicit dependences of the longitudinal and transverse ion temperatures on time, plasma 
parameters, and the strength of the electric field that generates the instability are determined. 

The theory of ion-acoustic turbulence (IAT) can be 
regarded as well developed (e.g., Refs. 1 and 2). At the same 
time, the theory has not allowed for the peculiar condition 
that arises in a plasma containing several species of ion. The 
interest in such a plasma is due both to the situation in which 
the presence of a large number of impurities is a characteris- 
tic feature (see the reviews in Refs. 3 and 4) and to such an 
object as a plasma with negative ions5 or a dusty plasma,6 
where there are generally fewer electrons than ions. We also 
note two papers, Refs. 7 and 8, that consider the properties of 
aplasma with cold heavy and hot light ions, where there may 
be an additional purely ionic mode of vibrations similar to 
ordinary ion sound. Both papers focus on establishing the 
plasma properties that are responsible for the existence of 
the additional vibrational branch. At the same time, the spe- 
cific properties caused by the well-known ion-acoustic wave 
are yet to be established of a multicomponent plasma with 
hot electrons. 

The aim of this paper is to fill the existing gap and offer a 
theory of IAT for a plasma that contains two species of ions 
in addition to hot electrons. The difference between such a 
plasma and a plasma considered earlier with a single species 
of ion manifests itself in the difference in probability of in- 
duced scattering of ion-acoustic waves on ions. The result is 
a change in the functional dependence on the wave vector of 
the short-wave spectrum of turbulent pulsations and a vari- 
ation in the dependence of the intensity of such pulsations on 
plasma parameters, which, among other things, manifests 
itself in a new expression for the Knudsen turbulence num- 
ber. Finally, the peculiar nature of induced scattering in a 
plasma with two species of ions manifests itself in the trans- 
formation of the distribution function for the bulk of the 
ions. In contrast to a plasma with ions of a single species, in 
which a slowly decreasing power-law distribution of thermal 
ions  form^,^,'^ here an anisotropic two-temperature Max- 
wellian distribution sets in. Such a distribution varies in time 
primarily because of changes in the longitudinal and trans- 
verse temperatures of the ions. Below we establish explicitly 
the dependence of the temperatures on time and plasma pa- 
rameters. We demonstrate that the transverse temperature 
of the ions grows much faster than the longitudinal, especial- 
ly in thelimit of low Knudsen turbulence numbers, when the 
angular distribution of pulsations is highly anisotropic. 

Let us consider a plasma consisting of electrons and two 
species of ions. In such a plasma the dispersion law of ion- 
acoustic waves with a phase velocity much lower than the 
root-mean-square velocity of electrons but much higher 

than the root-mean-square velocity of ions has the form 

where rDe is the Debye electron radius and 
2 2 w, = w, , + mi,, with w,, = (4n-e: n,/m, ) "' the Lang- 

muir frequency of ions with charge e,, mass ma, and number 
density n, (a = 1,2). The smallness of w/k in comparison to 
the velocities of the majority of electrons is realized if w, is 
lower than the Langmuir electron frequency. In turn the 
phase velocity of ion-acoustic waves for kr,, < 1 is 
v, = w,r,, and exceeds the velocity of the majority of ions if 
the Debye ion radiuses are small: rD, gr,, w,/o,,. 

In such a plasma a fairly strong uniform time-indepen- 
dent electric field E = (O,O,E) generates an ion-acoustic in- 
stability. If the instability threshold is considerably exceed- 
ed, to determine the electron distribution functionf, we can 
employ a quasilinear equation in which ordinary Coulomb 
collisions are completely ignored: 

where e and me are the electron charge and mass, D, the 
components of the quasilinear diffusion tensor in the spheri- 
cal system of coordinates, and c = cos0, with 0 the angle 
between vectors v and - E. Since for the majority of elec- 
trons v- v, = w,, r,, B v, >w/k (here w,, is the Langmuir 
electron frequency), we have Dgp 5 Dul 5 Duu, and the com- 
ponents proper are 

The turbulence frequencies v, ( y )  in Eqs. ( 3 )  are deter- 
mined by the axially symmetric distribution of the ion- 
acoustic waves over the wave vectors, N(k)  = N(k,x), 
where x = case,, with 0, the angle between vectors k and 
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- E, and are given by the following formula: 

where k,, and k,,, are the boundaries of the turbulence 
region in k, n, is the electron number density, and n = 0, 1 ,  
2. 

Allowing for Eqs. ( 3  ), we can seek the solution to Eq. 
( 2 )  in the form of the sumf, =he + Sf,  of a large isotropic 
termf,, and a small anisotropic correction Sf,. Over large 
intervals of time, when v2 (sine) t )  1, this correction can be 
unambiguously expressed in terms of foe. This allows, 
among other things, writing the electron growth rate of the 
ion-acoustic instability in the form 

where y, ( k )  = ~ ~ k v , o , / w , , ,  and v, =  me^/ 
m,vs U >  0, with U = ( 2 ~ ) " ~ v ~ n :  tf,, ( v , ) .  

The electron growth rate ( 5 )  gives the quantity by 
which the number of ion-acoustic waves increases because of 
the Cherenkov radiation given off by moving electrons. On 
the other hand, the Cherenkov interaction of the waves with 
ions drives this number down. Since the phase velocities of 
the waves considerably exceed the root-mean-square veloc- 
ities of ions, we can conclude that n,,, the number density of 
ions with v>w/k that resonantly interact with the waves, is 
low, n,, &n, . Because of wave absorption a small group of 
the resonance ions with v>w/k gets rapidly heated. Already 
at moments of time at which 

the root-mean-square velocities of resonance ions, v,,, con- 
siderably exceed the speed of sound us.  This makes it possible 
to describe resonance ions in the same way as electrons.12 
For this in Eq. ( 2 )  we need only replacef, with fa and DU 
with D ha' = (e,m,/em, )'DV and drop the term containing 
E. The fact that we can ignore the effect of the electric field 
on fa in the subsequent description of wave damping is due 
to the smallness of the parameter lean,, /en, 1 ,  that is, 
lea n,, /en, I 4 1.  In these conditions the rate of damping of 
the waves on hot resonance ions is 

where the parameter 6 ,  is the ratio of the rates of wave 
damping by hot resonance ions and electrons, 

with f,, (v ,  ) the isotropic part of the distribution function 
for the resonance ions. 

As is known,13 allowing only for the Cherenkov damp- 
ing on electrons and hot ions does not lead to a quasistation- 
ary IAT spectrum. Such a spectrum establishes itself if we 
also allow for induced scattering of sound on ions. Owing to 
the Cherenkov interaction of ions with beats of ion-acoustic 
waves, it becomes possible for the wave energy and momen- 
tum to be transferred to the majority of thermal ions, which 
leads to stabilization of the turbulence noise level. Following 
Refs. 1 4  and 15,  we can write the rate of damping of waves 
due to induced scattering on ions as 

where W, (k ,k1 ,v )  is the scattering probability, 

w a ( k ,  k', v )  =4(2n)'l&(k, k g ,  v) l z  
ai? (a,  k )  ae (a', k') -' ] 6(01 ' -Vv) ,  a o a m f  

E (o ,  k )  =1+6~. (0 ,  k)+del (o, k )  +dcZ(o,  k ) ,  

and k" = k - kt ,  with w" = w - w', &(w,k)  = 1 
+SE,  ( w , k )  + a&, ( w , k )  + ( w , k ) ,  SE, ( w , k )  the partial 
contribution to the dielectric constant from particles of the 
a-species, and A, (k ,k l , v )  the scattering amplitude, 

eaz kk' 1 1 
h (k,  k', V )  = ( 2 ~ )  -'o { - -- 

ma kk' ( o - k v )  (o f -k 'v )  
4nea +--EL 1 dv' 
kk' ,=e, l ,zmt k l ' z~  (a1/, Y )  J .o''-k.iv' 

Let us simplify Eq. ( 10).  We first allow for the fact that the 
phase velocity of the waves is much higher than the velocity 
of the majority of ions but much lower than the velocity of 
the majority of electrons. Next we note that in IAT theory 
the more important wave numbers are those smaller than or 
of the order of the inverse of the electron Debye radius. Be- 
cause of this, if r,, )rDa for at least one species of ion, the 
partial contribution to the longitudinal dielectric constant 
from this species is great: SE, (w",kn ) $ 1  and SE, (w",kn ). 

In addition, we assume that r,, , r,, max [ 1,1 e, n,/en, 1 "'1 
for at least one species of ion, which allows ignoring com- 
pletely the electron contribution to the scattering amplitude 
A, (k ,kl ,v)  ( 10).  Taking all this into account, we arrive at 
the following approximation: 

e kk' 
&(k, kt ,  v ) - ( ~ ~ ) - s L - - { ~ :  or kk' ma + k$) o 
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where retaining SE, of a given species of particles makes 
sense only if SE, ) 1 and SE, ) SE,. 

By combining Eqs. (9) and ( 11 ) with the expansion 
S[w" - (kVv)]  =S(w") - (k"v)aS(wW)/aw we can trans- 
form the damping rate (8).  Assuming the distribution func- 
tion for thermal ions to be axially symmetric in velocity and 
introducing the definitions of longitudinal and transverse 
temperatures, 

with n = - E//EI, and x the Boltzmann constant, we ob- 
tain 

dk' Ik-k'12 kk' "8(m-m') 
lNL(k)= j K ~ ( k f )  

61Lh z dm 

(To, (n, k+kl)'+T,,[n, k+k'12) 
0-1.2 

x [a,,'ba,'(~, k") +mr:6a.'(0, kfr)  I) .  ( 13) 

In the case of an anisotropic Maxwellian distribution of par- 
ticles, the DC dielectric constants assume the form 

where k t  = (ken) ,, and k : = k - k :. For an isotropic 
Maxwellian distribution, where the longitudinal and trans- 
verse temperatures coincide, SE, (0,k) = l/k ,ria.  

If the plasma consists of ions of a single species, the last 
term in the braces on the right-hand side of Eq. ( 13) vanish- 
es, and the other two terms lead to an expression for yNL 
used earlier in IAT t h e ~ r y . ' , ~ . ' ~  For a plasma with two spe- 
cies of ions with el /m, + e, /m, all terms in ( 13) are gener- 
ally important. The first two terms stem from a velocity- 
dependent term in the scattering amplitude A, (k,kl,v) 
given by Eq. ( 11 ) and lead to a trivial generalization of the 
known expression for yNL (Ref. 16) to the case of a plasma 
containing two species of ions. The last term in the braces in 
( 13) comes from a contribution, independent of ion veloc- 
ities, to the scattering amplitude ( 11) and exists only in a 
plasma containing ions with different charge-to-mass ratios, 
el /m ,  #e,/m,. In view of this it is interesting to examine 
the conditions in which this term dominates in yNL and 
when one can expect the most striking deviation of the IAT 
theory from the corresponding theory for a plasma with one 
species of ion. The appropriate conditions are realized when 
the plasma parameters are such that 

where & = xTa/4.rre:n,, and Ta = (TI,, + 2T,, )/3. 
Condition (15) can be met, for instance, in a plasma 

consisting of cold ions with commensurable charges 

el -e, - Z  lei, masses m, -m,, number densities n, - n,, 
and temperatures TI - T, - T, and hot electrons with a tem- 
perature T, % T/Z. The only requirements here are that the 
plasma strongly differ from an isothermal one and that the 
charge-to-mass ratios for the ions of different species not be 
too close: 

But if the number density of one ion component is much 
lower than that of the other, say n, g n ,  , condition (15) as- 
sumei the form 

Conditions specified by ( 17) not only guarantee the relative 
smallness of the contribution to yNL ( 13) from the terms 
that dominated in the IAT theory for a plasma with a single 
species of ion, but also allow ignoring SE, (O,kl') in ( 13). 
The nonlinear damping rate yNL defined by (13) is then 
determined by the induced scattering on ions with a lower 
number density and is described by an expression that does 
not depend on the explicit form of SE, (O,kt'), the partial 
contributions of ions to the longitudinal dielectric constant: 

a k 3 ~  kk' kk' 2 

x -{-I d k  do /dk  d ( c o s ~ ) j ~ ( l - ~ ) ( ~ )  
-, 0 2,' 

X N (k, cos €4') ), (18) 

where p; is the azimuthal angle of the vector k', and 
WLZOL1. 

Formula ( 18) can also be applied when m, ) m, if in- 
stead of ( 17) the following conditions are realized: 

which do not contradict each other in a highly nonisother- 
ma1 plasma, ZT,/T% (m, /ml ) 2. 

As noted earlier, under conditions defined by the in- 
equalities ( 17) and ( 19) there proved to be no need to detail 
the form of SE, (0,k") when deriving Eq. ( 18). Explicit ex- 
pressions for SE, (O,kl') become necessary in conditions de- 
fined by the inequality ( 16) for n ,  -n, and m, -m, or for 
n, %n, %n,m,/m, when m, % m l .  To construct a theory of 
the IAT spectrum in such conditions it has proved sufficient 
to employ ( 14) for SE, (0,k" ). The resultant expression for 
the nonlinear damping rate yNL differs from the damping 
rate ( 18). This difference, however, is essential only in the 
presence of an ion temperature that is anisotropic and mani- 
fests itself in a change in the dependence of the IAT spec- 
trum on the angle of the wave vector. Indeed, if the longitu- 
dinal and transverse temperatures coincide, TII, = T,, , then 

(0,k" ) = (k " rDa ) - ,, and the dependence of the nonlin- 
ear damping rate on k remains the same as in (18). This 
means that the IAT theory based on the use of the nonlinear 
damping rate ( 18) is applicable also for n, - n, and m, - m, 
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or for n, %n, %nlml/m2 if in (18) m i 2  is replaced with 
(o:.lr;, + ~Zzr4,2)(&1 + 6 2 ) ' .  

Now that we know the electron growth rate (5)  and the 
rates (6)  and ( 18) for wave damping on resonance and ther- 
mal ions, respectively, we can determine the quasistationary 
spectrum of turbulence noise, N(k,cosO,). The basis for 
finding N(k,cosO, ) is the following equation: 

re (k ,  0,) +rs (k ,  0,) +72 (k ,  € I b )  + y N L  (k ,  € I b )  =0. (20) 

By employing the approximation m/ku, - 1 in the last 
term in the square brackets in Eqs. (5)  and (6),  which has 
been tested in IAT theory," we can seek the solution of Eq. 
(20) in the form N(k,cosO, ) = N(k)@(cosO, ). For thedis- 
tribution function in the wave numbers we then arrive at 

with y ( x )  defined as 

which yields the following asymptotic behavior: 

The distribution of fluctuations over the wave numbers in 
the long-wave region, where kr,, 4 1, follows the Kadom- 
tsev-Petviashvili scaling,I8 as it does in a plasma with a sin- 
gle species of ion. In the short-wave region, where kr,, % 1, 
the level of fluctuations decreases slower than it would ac- 
cording to the Galeev-Sagdeev formula N(k) a k - I' (Ref. 
191, which describes a plasma with ions of a single species. 

For determining the angular distribution of turbulent 
pulsations we have, via Eq. (20), the following integral 
equation: 

In this equation 6 = 6, + v, ( ( 1 - 6 2)112) 

= vNAnx, ) )  1 -&-2)112), 

dx@ ( x )  

"Cm= 

A. = 5 du u4y ( u )  ( I + U ~ ) ~ ~ - ~ ~ :  n=0, I ,  2, 
Urn(" 

with u,,, = k,,, rDe $1 and urnin = k,, r,, 4 1. Asymptoti- 
cally the A, differ little: A ,  = 3G/4 - 121/840~0.5429 
and A, = 177~/96~0.5563, where G = 0.91596 is Catalan's 
constant. 

Using the Knudsen turbulence number 
V E  6n2 eneE oL.ZaLZ2 K ~ = - = - -  ( -  (24) 
V N  u2 U. wL7 

assuming that KN % (A, - A, ) ( 1 + 6 )  = 0.013 ( 1 + 6 )  ', 
and ignoring the small difference between A ,  and A,, we 
obtain from Eq. (23) 

where A z A ,  =A2, and also 

Equation (25) has simple solutions in the limits of small and 
large values of K,. 

Following Ref. 20, we find that in the limit of small K,, 
that is, K, <A ( 1 + 6)  ', 

4KN d X' 
(D ( x )  = 

3nA(1+6)x ( I f  e-x)'-" ' 

where E and a are determined by the system of equations 

whose approximate solution yields 

In the limit of large K,, that is, K, % A  ( 1 + 6 )  ,, the 
solution to Eq. (25) has the form 

Q ( x ) = - -  2 K N d I  
n b 2  ax , rp ( t )  (x2-tZ)'lS ' 

where the moments that determine the function p(t) via 
(26) can be found from the following system of equations 
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Numerical solution of this system yields A, = 2.47, 
d, = 1.84, d, = 1.44, and d, = 1.17. Thus, Eq. (30) 
determines the angular distribution in the form of an inte- 
gral. Figure 1 shows the graph of the function 
*(XI = ,/%@(x). 

The established distribution of pulsations over the wave 
numbers makes it possible to describe a fairly broad spec- 
trum of properties of a turbulent plasma. Below we discuss 
the ion distribution. We are interested in the distribution 
function fa =fa (v,t) for the majority of ions, which is de- 
scribed by the following kinetic equation (cf. Ref. 9): 

a 
X N(k)N ( k t )  Wa ( k ,  k t ,  0 )  (k" z)" fa. (31) 

Assuming that the distribution is axially symmetric with re- 
spect to the direction of the electric field E that generates the 
turbulence, we can write Eq. (31) for the function 
fa (v,t) =fa (u,,u,,t) in the form 

a f a  ea a f a  1 d - + - - E - = - -  
at ma av,  v , ~ v ,  

where the diffusion tensor components in the velocity space 
are given by the following formulas: 

x N ( k ) N ( k f  ) W ,  (k ,  k', 0 )  [nk/'IZ, 

x N ( k ) N ( k ' )  W ,  ( k ,  k', 0) (I&")&. (33) 

FIG. 1. Distribution of the number of ion-acoustic waves over the wave- 
vector angles. 

Clearly, the solution to Eq. (32) has the form 

where the time dependence of the temperatures characteriz- 
ing the anisotropy is specified by the equations 

Regarding solution (34) we note an important differ- 
ence between ion heating in a plasma with two species of ions 
and ion heating in a one-component plasma. As formula 
(34) shows, no slowly decreasing power-function distribu- 
tion is formed in the case under discussion. In this sense the 
theory of a plasma with two species of ions has in the initial 
heating stages no problem of stability loss due to the forma- 
tion of an anomalously high number of resonance ions.21 

Let us now consider Eqs. (35). To solve these we must 
find explicit expressions for the diffusion tensor compo- 
nents. Employing Eqs. (9)  and (11) and the turbulence 
spectrum described by Eqs. (2 1 ), (22), and (24), we find 
that for particles with the lower number density, which de- 
termine the nonlinear damping rate y,, Eqs. (33) yield 

xT24O) A,  02 = ------ (2, xTz(O) A,, , D,, = ----- - 
2m2 2, 2m2 .t2 

, (36) 

where T2 (0) is the initial temperature of ions of the second 
species (with the lower number density), and 
r2 = n, xT, (O)/en, u,E is the characteristic time it takes for 
the initial temperature to double, and the explicit form of the 
coefficients A, and Al l  is determined by the distribution 
function of IAT in the wave-vector angles, according to the 
following relations: 

Bearing in mind the expressions for the moments M ,  in the 
limits of large [see Eq. (30) ] and small Knudsen turbulence 
numbers, where 

we obtain from (37) 
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We see that, first, A, and All are practically time indepen- 
dent and, second, A, )A,, in both limits. Allowing for these 
properties of A, and Al l ,  from Eqs. ( 3 5 )  and ( 3 6 )  we get 
linear-in-time laws of increase of both temperatures, with 
the transverse temperature increasing faster (cf. Ref. 2 2 )  : 

This property of preferential increase in ion energy in the 
direction transverse to that of IAT anisotropy is universal. I t  
is inherent in a plasma with a single species of ions too, and, 
as noted in Ref. 9, follows from the fact that in the induced 
scattering of sound on ions the frequency of the waves 
changes little and the wave vectors proper are aligned pri- 
marily along the IAT anisotropy axis. 

We will use this property to discuss the heating of ions 
of the first species. In deriving the equations for T,, and TIIl 
we will completely ignore the dependence on TI, ,  of the par- 
tial contributions to the dielectric constant, S ~ ( 0 , k )  [Eq. 
( 14) 1, which determine the scattering probability 
W ,  (k ,k l ,O) .  The diffusion tensor components for the ions of 
the first species can then be uniquely expressed in terms of 
their values for ions of the second species as follows: 

Equations ( 3 5 )  in turn assume the following form: 

where the time constant determining the heating of ions of 
the first species is very large: 

with T, ( 0 )  the initial temperature. For the transverse tem- 
perature from Eq. ( 4 2 )  we find 

TLl(t)  =Ti (0) [ I  - *+ALt,T2 A"'" I- '  
For A , t )  7, the temperature T,, ( t )  is already close to its 
maximum value T,, ( t - .  w ) = TI ( 0 )  ( 1 - 7,/r1 ) - 
-TI  ( 0 )  ( 1  + r2/r, ), which, incidentally, practically does 
not differ from the initial value. Obviously, the longitudinal 
temperature TI, ,  changes even less. The fact that the ions of 
the first species heat up insignificantly is not surprising: 
since wave damping due to induced scattering is determined 
by ions of the second species, these are the ones that heat up 
the most. 

To sum up, the presence of two species of ions intro- 
duces special features into the theory of IAT of a plasma. 

One new result is the anisotropic nature of the velocity distri- 
bution of ions obtained in this investigation. Such a distribu- 
tion could lead to electromagnetic instability, but its discus- 
sion is beyond the scope of the present paper. At the same 
time, the appearance in the theory of two temperatures char- 
acterizing the anisotropy would seem to indicate certain 
similarities between the theory of turbulent heating of ions 
and the theory developed earlier for a plasma with a single 
species of ion.22 The temperatures in Ref. 22, however, were 
interpreted as the averaged components of the contributions 
to the kinetic energy of the ions, while the distribution func- 
tion for the ions remained indeterminate. I t  must be noted, 
though, that the general pattern of the theory corresponds to 
the one discussed in Refs. 1 and 2 .  This makes it possible, for 
one thing, to foresee the consequence of the theory, not dis- 
cussed in this paper, for the formation and heating of reso- 
nance ions and the formation of escaping electrons. 
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