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We discuss the onset of screening of an electric charge introduced into a classical isothermal 
plasma. Within the framework of the formalism of a linear response and on the basis of the 
analytic properties of the dielectric constant, we obtain a general expression for the electric field 
strength in the plasma as a function of coordinates and time for an arbitrary mode of introduction 
of an external charge into the plasma. With numerical calculations we show that for a Maxwell 
plasma Debye screening sets in over a time interval equal to many periods ofplasma oscillations, 
and the number of these periods grows as the distance from the charge increases. 

1. INTRODUCTION 

The solution of the problem of the time-independent 
potential of an electric field generated by a small point exter- 
nal charge at rest in a plasma is well-known.' The respective 
coordinate function is the Debye screened potential: 

where e, is the magnitude of the external charge and a the 
electron Debye radius defined as 

with T the plasma temperature, and N the electron number 
density (for the sake of simplicity the ions are assumed to be 
infinitely heavy). This result refers to a collisionless Max- 
well plasma and is caused by the fact that the electrons in the 
plasma are attracted to a specified (positive, for the sake of 
definiteness) external charge screening the charge's Cou- 
lomb field. 

This paper analyzes how such equilibrium sets in with 
the passage of time as an external electric charge is intro- 
duced into the plasma. The introduction process is assumed 
spherically symmetric and is modeled by a charge density in 
the form 

which corresponds to a current 

where f(t) is the "switch-on" function, arbitrary except for 
the following limits: f( - w ) = 0 and f( + w ) = 1. The 
current is longitudinal, and so the problem deals only with 
the longitudinal component of the electric induction vector. 

The goal of our study was to determine the time it takes 
the equilibrium potential ( 1 ) to set-in in units of the period 
of electronic plasma oscillations, which justifies the choice 
of a simple spatial pattern in (3).  The above mode of intro- 
duction of a charge may be impact ionization of an atom by 
plasma electrons. 

As is clear from general physical considerations and 
subsequent calculations, introduction of a charge is inevita- 
bly accompanied by excitation of Langmuir waves. Long- 
wave modes, as is known, decay weakly; hence, the concept 

of the setting-in time for screening requires clarification. We 
will interpret it as the time of formation of a stationary 
charged cloud with a charge practically equal to - el and 
with dimensions of approximately 10a. The case where the 
charge is introduced very slowly is trivial, and the time it 
takes the screening to set in is defined as the time in which 
the switch-on function f(t) changes substantially. Hence, in 
calculations involving a smooth switch-on function [see Eq. 
(28) below] we assume that the constant of its variation, A, 
is equal to a,. 

A qualitative answer to the posed problem would be 
obvious if the problem amounted to the response of a single 
linear oscillator with low damping to an external impact 
(sharp or smooth). In our problem, however, screening is 
the response not of a single oscillator but of a continuum set 
of oscillators with essentially different damping constants, 
up to y- w,, and it cannot be said that that any one oscillator 
plays the dominant role. 

Such reasoning formulates the physical meaning of the 
problem and, as we see, the variation in time of the test 
charge does not contradict the Maxwell equation used in the 
time-independent case. 

The linear response approximation is valid when the 
magnitude of the introduced charge is small compared to the 
total charge of the electrons in the plasma's Debye volume, 
el 4 Na3e. In practice e, -e, so that this condition is reduced 
to that of a rarefied plasma, Na3> 1, which we assume valid. 
In the linear response approximation, the electric induction 
vector and the electric field vector are related in a linear 
manner, and the proportionality factor is the longitudinal 
dielectric constant of the plasma. 

2. GENERAL SOLUTION OFTHE MAXWELL EQUATIONS 

Let us write the Maxwell equation for the Fourier com- 
ponent y (k ,o )  of the scalar potential in coordinates and 
time: 

cp (k, o) =4np (o) /kZ& (k, o). (5) 

where ~ ( k , o )  is the Fourier component of the longitudinal 
dielectric constant, andp(w) the Fourier component of the 
density of the introduced charge, 
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with f(w) a Fourier component of the switch-on function for 
the external charge. 

It is convenient to first perform the inverse Fourier 
transformation for the scalar potential q, in the coordinates. 
Since q,(k.m) is independent of the angles of the wave vector 
k, integratwn with respect to the angles of this vector can be 
done explicitly. The result is 

m 

and we have introduced the parameter 

up= (4nNeZ/m) ", (16) 

known as the electronic-plasma or Langmuir frequency (m 
is the electron mass). Let us now calculate the electric field 
strength in the case of a Maxwell plasma. 

2e,f ( a )  sin (kr)dk*. 
q ( r , o ) = -  j 

nr ke(k ,  o )  
3. THE ELECTRIC FIELD IN A MAXWELL PLASMA 

Function (15) is a Cauchy type integral. Hence, the 
dielectric constant ~ ( k , w )  as a function of w can be contin- 
ued analytically into the lower half-plane of the complex 
variable w .  This half-plane is known to contain the roots 

We can now easily find the Fourier component in time 
of the electric field strength, which has only a radial compo- 
nent in a spherical system of coordinates: 

z=*o(k)-iy ( k )  (17) 

of the dispersion equation with 
m 

2erf ( w )  s in(kr)-(kr)cos(kr) 
~ ( r ,  0)=-5 dk. (9)  

o ke (k ,  0 )  

e (k ,  z )  =O. (18) 

These roots correspond to a pair of poles in the expression 
(12) for the function I(k,t) ,  which also has a pole at w = 0 
corresponding to the perturbation's switch-on function. 

If we consider instants t > 0, the integration contour in 
( 12) can be closed in the lower half-plane of w. The contour 
is shown in Fig. 1, which also indicates the motion of poles as 
k grows. Thus, evaluating integral ( 12) is reduced to calcu- 
lating the residues at the simple poles. 

In what follows it proves expedient to operate with di- 
mensionless variables for time and coordinate, 

The physical meaning of Q(r,w) is that it is the temporal 
Fourier component of the total charge inside a sphere of 
radius r, which follows directly from Gauss's law. 

Now let us turn to the inverse transformation of charge 
Q(r,t) with respect to time. For an arbitrary switch-on func- 
tion f( t ) ,  using the properties of the convolution of func- 
tions, we calculate the charge Q(r,t) in general form: 

f 

Q (r,  t) = 3 f (tl) Qi (r ,  t-t') at', 
- .x 

where we have introduced the notation for the real and imaginary parts of the frequency, 

and, finally, for the wave number, 

with 
m 

exp ( - i d )  d o  
1 (k ,  t )  = i j  

- - 2n (o+iO)e ( k ,  o )  

Evaluating the integral ( 12) by the theory of residues, we get 

where we have introduced the notation Clearly, Q, (r,t) is the charge inside a sphere of radius r at 
time t when the charge e ,  introduced into the plasma is 
"switched on" in a step-like manner at time t = 0. 

As is known, causality requires that the dielectric con- 
stant ~ ( k , w )  be analytic in the upper half-plane of the com- 
plex variable w and tend to unity as w -+ co in this half-plane. 
Hence, for t < 0 integral ( 12) is zero, that is, 

Here, in accordance with ( 17), we have w = w({) and 
g = g(6) .  Substituting (22) and (23) into ( 11 ) and per- 
forming integration with the first term on the right-hand 
side of (22) explicitly, we get Q, (r, t )  =O for t<O. (13) 

Up to this point we have not specified the concrete form 
of the temporal and spatial dispersion laws for the dielectric 
constant. We now consider the case of a Maxwell plasma. 
According to Ref. 1 we have 

where the function F(x) is defined by the integral2 

FIG. 1. The contour of integration for ( 12). 
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We can now substitute this expression into ( 10).  Performing 
the integration explicitly with respect to time with the first 
term, we arrive at a formula for determining the charge 
Q(p,t)  concentrated inside a sphere of radius p = r /a:  

where we have introduced the notation 

The first term on the right-hand side of (25 )  corre- 
sponds to time-independent, or stationary, Debye screening, 
while the second term corresponds to the decaying perturba- 
tion caused by introduction of the charge into the plasma. 

a," 
I 

Z 4 6 8/0121%167820 ' 2 4 6 8 / 0 / 2 / + / 6 / 8 M  

Thus, in terms of the spectra of plasma waves we have ob- 
tained an explicit expression for the electric field created by 
the charge introduced into the plasma. 

The numerical calculation of Q(p,t)  was performed 
with two switch-on functions, a step function, 

and a smooth function, 

4. DISCUSSION 

The results of the numerical calculation of function 
Q ( p )  for various values of the dimensionless time wpt  are 
represented in Fig. 2 for the step function ( 2 7 )  and in Fig. 3 
for the smooth switch-on function (28 ) .  All diagrams also 
show the Debye result for the same function, corresponding 
to infinite time, wp t - CQ , where Eq. ( 1 ) holds true, that is, 

For the sake of simplicity we have set e ,  = 1 everywhere. 
We start by discussing the numerical results for the case 

of instantaneous introduction of the charge into the plasma. 
Figure 2 shows that at T = 0.3 screening is practically nil. 
For r < 6a screening is achieved only at T = 20, that is, very 
slowly. As for great distances r > 10a, Debye screening is not 
attained even at T = 50, as shown by Fig. 2; more precisely, 
at great distances from the introduced charge there exists a 
large charge oscillating in time and alternating in sign. 

Figure 3 depicts the situation with the charge inside a 
sphere of radius r for different moments when the external 
charge is introduced smoothly in accordance with the 
switch-on function (28 ) .  On the whole, Debye screening is 
achieved faster. Already at T = 0.3 and, more than that, at 
T = 1 the electric field is close to the one described by the 
Debye formula ( 1 ) . Nevertheless, if we again turn to the 
case of great distances, r > 6a, the charge proves to rapidly 
oscillate owing to propagation of the perturbation via plas- 

FIG. 2. The charge inside a sphere of radius r for the case where an exter- FIG. 3. The charge inside a sphere of radius r for the case where an exter- 
nal charge is instantaneously introduced into the plasma, as a function of nal charge is smoothly introduced into the plasma in accordance with 
r /n  at different instants of dimensionless time opt = 0.3 (a) ,  1.0 (b) ,  3.0 (28), as a function of r/a at different instants of dimensionless time 
(c), 5.0 (d),  10.0 (e),  20.0 (f), 30.0 (g),  and 50.0 (h) .  Curves 1 corre- w,t = 0.3 (a) ,  1.0 (b) ,  3.0 ( c ) ,  and 5.0 (a) .  Curves I correspond to the 
spond to theresults ofnumerical modeling, curves2 to theDebyecontour. results of numerical modeling, curves 2 to the Debye contour. 
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ma oscillations. The damping of the charge oscillations is 
due to the damping of the plasma oscillations (see Refs. 3- 
5 1. 

Thus, we can conclude that the greater the distance 
from a given point in space to the introduced charge, the 
slower Debye stationary screening sets in. The above results 
demonstrate numerically the extent of this approach to the 
state of equilibrium. Note that because of the self-similarity 
achieved by introducing the dimensionless quantities ( 19)- 
(21 ) corresponding to the main characteristics of the prob- 
lem, the obtained patterns are extremely general and solve 
the problem completely. 
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