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We determine analytically the effect of a point dipole moment on the spectrum and wave 
functions of Rydberg electron states in polar molecules of arbitrary symmetry. We determine the 
change required in the Rutherford formula for scattering of a slow electron by an ion of a polar 
molecule, and calculate the oscillator strength for radiative transitions of a Rydberg electron 
between discrete levels. 

1. INTRODUCTION 

Rydberg states of atoms and molecules have been of 
scientific interest for many years.' These states are simpler 
to describe theoretically than ground states or low-lying ex- 
cited states-a Rydberg electron in an atom, for example, 
essentially moves in a pure Coulomb field. 

The same opportunity for simplification also exists for 
Rydberg states in nonpolar molecules. The dipole moment 
of a polar molecular core, however, significantly alters the 
motion of a Rydberg electron. In the present paper, we dem- 
onstrate that it is possible to allow accurately for the influ- 
ence of a point dipole moment on a Rydberg electron by 
appropriately choosing the angular part of the latter's wave 
function. It then turns out to be possible in general-apart 
from the case of a dipole of finite dimensions-to classify the 
Rydberg states of any molecule, including an asymmetric 
top. 

The difficulty of classifying the low-lying states of an 
asymmetric molecule results from the lack of a symmetry 
axis for which the projection of the electron angular momen- 
tum is conserved. This distinguishes asymmetric molecules 
from symmetric molecules, which produce Z,II,A, ... terms.* 
For the Rydberg states of a polar molecule, the appropriate 
symmetry axis lies in the direction of the dipole moment of 
the molecular core, which is precisely the direction in which 
the projection of the Rydberg electron's angular momentum 
is conserved. 

In actuality, a Rydberg electron will always be far from 
the core, and the spherically symmetric Coulomb field will 
be perturbed mainly by the multipole moments of the core 
that die off most slowly. Here we have an appealing analogy 
with the Rydberg states of the noble gases, whose fine struc- 
ture is attributable to the quadrupole moment of the atomic 
core.3 In a polar molecule it is the contribution of the dipole 
moment that dies off most slowly, and the latter therefore 
dominates the perturbation of the Coulomb levels. Since the 
dipole moment is axially symmetric, so are the Rydberg- 
state wave functions. Thus, if we choose the dipole moment 
to define the quantization axis in a coordinate system fixed 
to the molecule, it makes sense to speak of Z,H,A, ... Rydberg 
states, even when the molecular core as a whole is not axially 
symmetric. 

2. ANGULAR PART OFTHE WAVE FUNCTION 

Choosing a spherical coordinate system with polar axis 
in the direction of the dipole moment d, we may write the 

Schrodinger equation for a Rydberg electron in the field of a 
point dipole: 

Herep is the mass of the electron and Z is the charge on the 
molecular core; in general, Z is not necessarily equal to 1. 

We now introduce the functions y(&A;B,q,), which sat- 
isfy the equation 

and the standard boundary conditions: they are periodic in 
the azimuthal angle q, with period 2n-, and they are regular at 
B=OandB=n-. 

Forfl= 0, the y become the usual spherical harmonics 
Y,, (B,g,), withA = l ( l +  I ) ,  I >lml. 

The functions ymake it possible to separate variables in 
Eq. ( 1 ) and write the equation for the radial part of the wave 
function: 

The eigenvalues A thus define a modified centrifugal energy, 
which now incorporates the interaction with a point dipole. 

The functions y have been studied in the context of the 
Stark effect in a linear rotator, both for the weak-field (small 
P)4 and strong-field (large 8)' cases. They have also been 
utilized to describe bremsstrahlung emitted by an electron 
scattered by a polar mole~ule .~  Reference 6 also cites other 
papers in which the ya re  encountered. 

In the present paper, we represent the eigenvalues A as 
continued fractions. 

For our purposes, it is sufficient to expand the T i n  
spherical harmonics: 
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Substituting (4)  into (2),  we obtain the recurrence relation 
for the coefficients a,, aria: = a;,a1~,=6i,~,. 

1 I 

Changing the sign of the dipole moment in the recur- 
rence relation (5) and making use of (7),  we have 

m 

(5) a / , ,  (-b) = (-1) '+"al~~ (b ) .  (9 )  

We thus obtain the way in which the transform under 
Nontrivial solutions of the system of equations ( 5 exist spatial inversion: 

when the determinant of that system vanishes. The vanish- 
ing of the determinant then yields the eigenvalues A. Pl," (b ;  -H) =(-I) 10lm(-p; r ) .  (10) 

We list some of the eigenvalues thus obtained in Table I. 
More detailed data can be found in Refs. 4 (equations) and 5 4. RADIAL FUNCTIONS FOR BOUND STATES 
(plots). 

Strictly speaking, the superscript on each eigenvalue 
il f, denotes its rank in size order. This ordering is a conve- 
nient one, however, since the numbers il clearly converge 
quite rapidly to the asymptotic value 1(1+ 1) [as can easily 
be seen directly from (5)  1. 

Note that states with m = 0 ( Z  terms) have negative 
eigenvalues il f, , which means that the modified centrifugal 
energy in Eq. (3) corresponds to an additional attraction of 
the Rydberg electron toward the moleculear core, beyond 
that produced by the Coulomb force. 

3. PROPERTIESOF THE ANGULAR PART OFTHE WAVE 
FUNCTION 

For the sake of brevity, we write 

and where there is no danger of confusion, we omit the vari- 
able P. 

In this new notation, the expansion (4)  becomes 

By virtue of the symmetry of the matrix describing the set of 
linear equations (5),  the coefficients a;, can be assumed to 
be positive. Their values are then uniquely given by 

Since the differential operator in (2)  is Hermitian, the 
functions yare orthogonal, which, together with their com- 
pleteness, yields 

TABLE I. Eigenvalues A !,, . 

The solutions of Eq. (3)  are formally no different from 
the solutions of the corresponding Coulomb problem with 
no dipole potential, and they can thus be expressed in terms 
of the Whittaker function that is regular at r = 0. To within a 
normalization factor, 

The energy quantization conditions follow from the re- 
quirement that the functions ( 11 ) remain finite as r+ CO, 
which is true when the Whittaker function reduces to a poly- 
nomial: 

p(ZeZ)" ZZ 
En ,I.n = - = - - Ry, v=n,+p+'lz, 2A2 (n,+p+'/,) v2 

where n, = 0,1,2 ... is the radial quantum number. Natural- 
ly, whenil ; = 1(1+ I ) ,  Eq. ( 12) yields the familiar energy 
spectrum of a hydrogen-like atom: En = - Ry Z2/n2, 
n = n, + I + 1. In general, both the effective principal quan- 
tum number v and the spectral energy E, - EnJ, depend on 
the values of the quantum numbers I and m. 

When A f, < - 1/4, the eigenvalues ( 12) are no longer 
real, and the bound states become unstable. This is the well- 
known case of the Rydberg electron "falling to the center" 
(Ref. 2, $35). In the present case, the lack of stable bound 
states implies that the point dipole approximation is inappli- 
cable. 

A calculation shows that il < - 1/4 first for Z terms 
when the dimensionless dipole moment P> 1.28, which cor- 
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responds to d > 1.620. To describe the B terms of molecules 
which such large dipole moments, it is necessary to somehow 
regularize the dipole potential at small distances. There are, 
however, a great many molecules for which the point dipole 
approximation holds for all terms. These include all of the 
nitrogen oxides, CO, NH,, and CHCl,, among others. 

To conclude this section, we present the normalized ra- 
dial eigenfunctions in terms of confluent hypergeometric 
functions and associated Laguerre polynomials: 

- - [ r ( ~ + ~ + * / , )  l d h (  ;)o* 

vrI' (2p-tl) an,! 

Here a = fi2/,uZe2 is the Bohr radius for a hydrogen- 
like atom with charge Z. 

5. CONTINUOUS SPECTRUM 

If we assume in Eq. ( 11 ) that E = fi2k ' /~ ,LL,  we may 
write the solution of Eq. (3)  for positive energies: 

where Nis a normalization factor. The asymptotic behavior 
of ( 14) is given by 

if N takes the form 

The functions ( 14) are then normalized on the "wave 
number scale" (Ref. 2, $33): 

The quantities 7 and ~ ( p  - 1/2)/2 in ( 15) embody the 
influence of the dipole moment on the scattering phase of the 
electron. In a pure Coulomb field, 7 becomes the well- 
known Coulomb phase, and ~ ( p  - 1/2)/2-~1/2. 

As in the case of bound states, when R !,, < - 1/4,p is a 
complex quantity and the scattering phase is no longer a 
viable concept. Under those circumstances, scattering from 
a dipole and scattering from a spherically symmetric 1/? 
potential are indi~tinguishable.~ 

If we formally introduce the principle quantum number 
n = n, + I + 1, Eq. ( 12) can be rewritten in the form adopt- 
ed in the theory of atomic Rydberg states, 

where S,, = I + 1/2 - p is the quantum defect. Comparing 
this expression with ( 15), we see that when k-0, we obtain 
the usual relationship between the quantum defect and the 
scattering phase from a pure Coulomb potential, 

for k-0, usually the following relation is valid:7 

6. SCATTERING AMPLITUDE FOR A SLOW ELECTRON 

The above expressions for the wave functions of the 
continuous spectrum can be employed to derive the cross 
section for scattering of an electron from an ionized polar 
molecule. In that event, however, the electron must be mov- 
ing slowly enough that attention can be restricted solely to 
scattering by the Coulomb and dipole fields. The formal con- 
dition for this approximation to hold is then 

where a, is the scale length for the molecular core. 
The general theory of scattering in a nonspherical po- 

tential has been developed by Demkov and Rudakov8 (see 
also Ref. 9) .  No explicit allowance was made in either Ref. 8 
or 9 for the possibility of odd-parity terms in the Hamilto- 
nian, however, so we derive the equations for the amplitudes 
here. 

Let n and n' be the direction in which the electron is 
moving before and after scattering. The scattering amplitude 
may be derived from the asymptotic behavior of the wave 
function, 

It should be noted that (22) is in this case heuristic, 
since it contains only the leading (exponential) terms of the 
asymptote. Owing to the slow damping of the scattering po- 
tential, the asymptote of the wave function acquires also 
power-law  term^^,^ due in particular to the logarithmic 
growth of the scattering phases in the Coulomb field. How- 
ever, the exponential terms already written out make it pos- 
sible to separate unambiguously from the wave function the 
incident and scattered waves, while the omitted power-law 
terms do not change this interpretation. 

We can then expand the electron wave function dictated 
by the asymptotic behavior (22) : 

Substituting the asymptotic behavior of the function 
R,,, given by (15), and making use of the asymptotic ex- 
pansion of a plane wave, 

elkr - 3 z i ' s i n  kr 1," ( k r  - ~ ) ~ ~ ~ * ( k ) ~ , , , , ( r ) ,  

we can extract the amplitude from Eq. (22): 
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f (n ,  n f ) =  lim r expi-ikr} [ Y  (r ) -e ikr]  
T - f P )  

The limit in ( 2 4 )  exists if the coefficient of the incoming 
spherical wave vanishes. This condition yields the equation 
for the coefficients, 

which can easily be solved by using Eqs. (8)  and ( 9 ) :  

We then have 

The last term of Eq. ( 2 6 )  is a delta function by virtue of 
the completeness of the sperical harmonics. We can thus 
rewrite the amplitude in the equivalent form 

In the limit of spherical symmetry ( P - 0 ) ,  Eqs. ( 2 6 )  
and ( 2 7 )  yield the usual expression for the scattering ampli- 
tude in a central field. 

Using Eq. ( 10) and the fact that the phase c,, are inde- 
pendent of the sign of m, it can be shown that the amplitude 
satisfies a reciprocity relation, indicating that the scattering 
process is T-in~ariant:~ 

f (n ,  n') = f( - nr, - n). 

The unitarity of the amplitude is also directly demon- 
strable. 

To conclude this section, we write out an expression 
analogous to ( 2 5 )  for the coefficients A ', which in accor- 
dance with ( 2 3 )  determine the continuous-spectrum wave 
function corresponding to "plane wave + incoming spheri- 
cal wave" asymptotic behavior: 

2n 
A;!' ( k ) =  - i t  e x p { - i g l m } ~ l ~ ( ~ ;  k ) .  

k 

7. SCATTERING CROSS SECTION 

The equations for the scattering amplitude derived in 
the preceding section enable us to calculate the differential 
cross section, and in particular, to find the corrections to the 
Rutherford formula for a slow electron scattered by a molec- 
ular ion. 

If we disregard forward scattering, for which of course 
the Rutherford cross section diverges, we can drop terms 
from Eqs. ( 2 6 )  and ( 2 7 )  that do not contain the phase c,,. 
Having done so, we can then omit the divergent term In 2kr, 
which is a factor common to all of the partial amplitudes. 
Furthermore, the calculations are facilitated by explicitly 
extracting from the amplitude that part due exclusively to 
the Coulomb field. The net result for the differential cross 
section is then 

1~ r ( l - i x )  
f c ( " ) =  -- 

2k sin ( @ / 2 )  r ( I + & )  

where 7: = arg T( I + 1 - ix) is the finite part of the Cou- 
lomb phase, a,, is given by ( 19) ,  f, is the Coulomb ampli- 
tude, and O = cos-' (nn' )  is the scattering angle. 

In practice, the quantity of most interest is the cross 
section ( 2 9 )  averaged over orientations of the dipole mo- 
ment. To carry out the averaging, we transform to a coordi- 
nate system in which the z axis is directed along n. In that 
system, the polar angle of the dipole moment is obviously 6, 
and the azimuthal angle is effectively arbitrary. As before, 
we denote the latter by p. 

Recalling, then, that 

we have 

The D matrices here represent finite rotations. Making 
use of the usual relations from angular momentum thoery, 
we can average over 8 and p in the expression that we have 
derived, yielding 
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($) =lfc(e) I Z - ~ R ~  [t:(e) ~ s ~ ~ l l ~ l l ~ ~ ~ ~ e ~ ]  
ll 'm  

where the Pare Legendre polynomials. The first term in Eq. 
(30) is the Rutherford term, and the last is the pure dipole 
contribution to the cross section. The second term is due to 
interference between the Coulomb and dipole potentials. 

Equation (30) is difficult to analyze. We therefore 
make use of (21) to simplify it, since the error committed is 
minor if we take a =a,. Representing the phases qfand a,, 
up through the leading terms in x, we obtain 

8 
x 8 Z { ( - ~ ) ' + l '  sin[2x insin - 

l l 'm  2 

- s in(2x  in s i n z )  2 6 1 1 p } ~ l v  (cos @) 

Clearly, when (21) holds, the main corrections to the 
Rutherford scattering formula are due to the interference 
term in the cross section. By way of illustration, we present 
some numerical values of these corrections for p= 1. One 
convenient parametrization of the cross section is then 

We list the coefficients b, and phases yi : 

i: 0 1 2 
b,: -1,166 0,123 -0,048 
T i :  0,865 -1,04 -0,57 

We see that the sum of Legendre polynomials converges rap- 
idly. At the same time, the corrections are fairly sizable. 

8. RADIATIVE TRANSITIONS IN THE DISCRETE SPECTRUM 

Electromagnetic transition probabilities are important 
characteristics of Rydberg states, and a great deal of effort 
has been devoted to the calculation of oscillator strengths for 
Rydberg-state atoms (see, e.g., Refs. 10-13). In this section, 
we discuss some of the analogous characteristics for the 
Rydberg states of polar molecules. 

In the one-electron nonreiativistic approximation, it is 
well known that the probability of a dipole transition de- 
pends on the matrix element of the electron radius vector, 

Here the integration over angular variables is straight- 
forward: 

\ ,  

LL' 

The radial wave functions in the foregoing integral are 
givenby (13). 

One special property of the Rydberg states is that in 
addition to being hydrogenlike, they are also quasiclassi- 
~ a l . ' ~ . "  The fact that the atomic wave functions are also 
quasiclassical is exactly why the atomic integrals analogous 
to (32 ) can be calculated. 

The claim that the Rydberg states of polar molecules 
have quasiclassical wave functions is not always true, the 
point being that the centrifugal potential A /? in ( 3 )  only 
satisfies the requirements for applicability of the quasiclassi- 
cal approximation when IA I 1.',14 IfA > 0, we can formally 
circumvent the problem that arises for smallA by making the 
substitution A -A + 1/4, which is analogous to the well- 
known substitution 1 ( E  + 1) - ( i  + 1/2)* for motion in a 
centrally symmetric field. 

No such substitution exists, however, for A< 0. Math- 
ematically, the reason is that for A > 0 the quasiclassical radi- 
al integrals that define the wave functions are evaluated be- 
tween the turning points of the classically allowed motion, 
while for A < 0 one of the turning points is replaced by r = 0, 
and the integrals diverge. Therefore, in the most interesting 
case-A < 0-the integral in (32) cannot be calculated to the 
same accuracy as the analogous atomic integral. 

Nevertheless, the integral in (32) can indeed be calcu- 
lated to zeroth order in A /v ,  which is entirely adequate for 
most applications of the theory of Rydberg states. To do so, 
note that just as for the atomic states, the principal contribu- 
tion to the integral comes from larger, where the centrifugal 
potential is much smaller than the Coulomb potential. One 
can then neglect the A/? potential in calculating the radial 
dependence of the wave functions, including it solely in the 
quantum defects, in the same way that this is done in atomic 
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calculations using the quantum defect method. '%ssuming 
that 

]Y-v' /  e v .  ( 3 3 )  

we can make use of results derived by Davydkin and Zon." 
To  zeroth order in R /v, 

where A = v - v' and J is Anger's function V = (vv') ' I 2 .  

In this approximation, the radial integral is clearly in- 
dependent of 1 and I f ,  which is not at all surprising. The 
dependence on I and 1 ' resides wholly within the Q factors, 
which at the same time distinguish the molecular from the 
atomic oscillator strengths. 

Note that Eq. (34) is even applicable when the nonin- 
teger difference between the principal quantum numbers v 
and v' is due not only to dipole moment of the core ( 12), but 
to other short-range forces as well. In that sense, the analogy 
with the atomic quantum defect method is complete. 

The calculation required to obtain the radial matrix ele- 
ments when (33) does not hold are much more involved. 
Besides determining the radiative transition probabilities be- 
tween discrete Rydberg states, these matrix elements also 
determine the probability of photoionization from a Ryd- 

berg state. l 2  Appropriate results will be published separate- 
ly. 
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