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Collision-induced magnetization and dispersion interaction of atoms in a magnetic field are 
determined by an energy correction AE(R,B) , which depends simultaneously on the interatomic 
distance R and on the magnetic-field induction B. We determine the structure of the susceptibility 
tensor D L2' which is a coefficient of the principal term of the series AE(R,B) 
= - 8, 8, D :' (aB) "/R " (a is a constant of a thin structure). A procedure for a quantitative 

calculation is developed and the numerical values of the components of the tensor D ;,'are 
determined for diatomic systems of hydrogen, alkali-metal, and inert-gas atoms. 

1. INTRODUCTION 

The solutions of the classical quantum-mechanics prob- 
lems involving magnetization of a solitary atom and the dis- 
persion interaction between atoms have already been treated 
in sufficient detail in the literature (see, e.g., Ref. 1) .  The 
energy of a diamagnetic atom was calculated not only in a 
purely magnetic field, but also in crossed magnetic and elec- 
tric or optical fields., The structures of the asymptotic series 
for binary and nonadditive three-atom energy were investi- 
gated and methods were found for their s ~ l u t i o n . ~ - ~  The in- 
fluence of electric and optical fields on the dispersive interac- 
tion of atoms was determined.637 The problem of the 
influence of the magnetic field on the dispersion interaction 
of atoms is still unsolved. Mention can be made only of one 
studyR in which the energy of a two-atom system was ob- 
served to contain a term corresponding to interaction of elec- 
tric quadrupole moments induced by a magnetic field in the 
atoms. The existence of astrophysical objects with ultra- 
strong magnetic fields calls for an exhaustive study of the 
influence of magnetic fields on interatomic forces, and this 
may yield additional information on the properties of these 
objects. 

We study in the present paper the structure of the 
asymptotic series for the dispersion energy of atoms in a 
magnetic field, and propose a procedure for calculating the 
diatomic susceptibilities that determine the first nonvanish- 
ing terms of this series. 

Just as in the case of an electric field, the dispersion- 
interaction energy AE of atoms A ,  and A ,  (see Fig. 1) sepa- 
rated by a distance R > a  (R = Rn, a is the linear dimension 
of the atom) in a magnetic field with an induction B = Bb (b  
is a unit vector) can be represented in the form of a dual 
series in powers of the small parameters B/B, and a/R, 
where Bo is the induction of the intra-atomic magnetic field 
(we use throughout the atomic system of units 
e = f i = m = a = B  o - 1 ) :  - 

Here a = 1/137 is the fine-structure constant. The suscepti- 
bility tensor D 2' is defined both by the mutual orientation 

of the vectors R and B and by the internal structure of the 
atoms A ,  and A,  (we assume for simplicity that the atoms 
are in spherically symmetric S-states). Obviously, the series 
(1) includes the series for purely diamagntic energy 
(m = 0 )  and for purely dispersive interaction (n = 0).  In 
this case D 2' = Cm , where Cm is the dispersion-interaction 
constant, the first nonvanishing one being the Van der Waals 
constant C,; a'"'D F' = X ,  is the diamagnetic susceptibility 
of nth order, the first nonvanishing one being 

or the total susceptibility of the atoms A ,  and A, .  It is ob- 
vious from symmetry considerations that the values of the 
index n in ( 1 ) can be only even. The values of m correspond- 
ing to nonzero susceptibilities D :' can be even or odd. For 
n = 0 and n = 2, in particular, the first nonvanishing terms 
of the series correspond to m = 6, 8, and 10, and at m > 10 
nonzero D 2' correspond to m of either parity. For n = 4, 
the first nonvanishing susceptibility is D k4', and the sub- 
scripts m > 5 can be even or odd. 

The symmetry properties, as well as the numerical val- 
ues of the tensor components D :', can be obtained by per- 
turbation theory (PT) from the interactions of the atoms 
with one another and with the magnetic field. In Sec. 2 we 
describe a PT procedure for calculation and expansion into 
the irreducible parts of the tensor D 2'. In Sec. 3 we obtain 
analytic expressions for the components of the tensor D k2' in 
terms of diatomic matrix elements, and present computation 
equations using a Sturm expansion for single-atom Green's 

FIG. 1. 
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functions. In Sec. 4 we describe a procedure for an approxi- 
mate calculation of two-atom matrix elements in terms of 
single-atom quantities. The numerical values of the compo- 
nents of the tensor D k2' are tabulated. 

2. PERTURBATION THEORY FOR A TWO-ATOM SYSTEM IN A 
MAGNETIC FIELD 

The perturbation operator in a system of two atoms A ,  
and A, ,  separated by a large distance R and located in a 
magnetic field B, are given by 

where 

is the interatomic-interaction operator, 
C,, = ,!4~(21+ 1 ) Y,, is a modified spherical function, 
and Q, is the 2'-pole electric moment of the atom. We repre- 
sent the operator of interaction with the magnetic field in 
standard form 

V,= T7,+ Va, ( 5 )  

where 

takes into account the magnetodipole interaction, 

is the magnetodipole moment operator, 

is the diamagnetic-interaction operator, and r is the radius 
vector of the valence electron relative to the atomic nucleus 
(the contribution of the inner-shell electrons is of no impor- 
tance in our problem, and for multivalent atoms it is neces- 
sary to take into account the contributions of all the valence 
electrons). 

For atoms in spherically symmetric S states with zero 
values of the total and spin quantum numbers J and S, the 
operator V, can contribute only in the higher perturbation- 
theory orders if the corresponding matrix elements contain 
intermediate states with nonzero J. 

Let us take into account the correction introduced into 
the system energy by interaction (3),  accurate to terms of 
second order in the interatomic interaction V, ,  and in the 
magnetic-field induction B. To this end it suffices to calcu- 
late the terms of the PT series in Vup to fourth order inclu- 
sive. 

The first-order correction differs from zero only for a 
diamagnetic interaction Vd and determines the first nonvan- 
ishing term for the diamagnetic energy: 

where X ,  is the diamagnetic susceptibility (2).  Here 10) is 

the wave function of the system of noninteracting ions, so 
that the mean value of the operator 9 in (2)  can be calculat- 
ed for an isolated atom. 

Nonzero contributions in second-order perturbation 
theory are made by the operators Vd and V , ,  . The corre- 
sponding corrections determine the terms of fourth order in 
the field and the dispersion-interaction energy which is inde- 
pendent of B: 

where 

is the nonlinear diamagnetic susceptibility that determines 
the correction, quadratic in B, to the diamagnetic suscepti- 
bility (2) ,  

is the energy of the second-order dispersion interatomic in- 
teraction, and C E  are the corresponding dispersion con- 
stants; CF ' ,  in particular, is the Van der Waals force ( G  is 
the Green's function of the two-atom system). 

In third-order perturbation theory, nonzero contribu- 
tions are made only by the operators V, ,  and V d .  Beside the 
terms that determine only the interaction with the field B 
and only the disperison term, there appear crossover terms 
that depend also on the magnetic induction and on the inter- 
atomic distance R simultaneously: 

Here 

is the nonlinear magnetic susceptibility of the order that fol- 
lows (10) 

is the dispersion energy of third order and determines the 
dispersion constants C iz + , with odd indices, correspond- 
ing to the series terms with odd powers of the parameter 1/R 
(Ref. 3). 

The third term in ( 12) is the interaction energy of the 
electroquadrupole moments induced in the atoms by the 
magnetic field: 

where a{ = 2(01 rfP, (cosO,)Grf~, (cos0,) 10) is the 21-pole 
polarizability of the atom Ai (i = 1,2), and P, (cos0) is a 

15 SOV. Phys. JETP 75 (I),  July 1992 0. Ya. Lopatko and V. D. Ovsyannikov 15 



Legendre polynomial. Note that the third term in ( 12) alters 
the asymptotic dependence of the interatomic potential on 
the distance R: the principal term of the series for the atom 
interaction energy in a sufficiently strong magnetic field is 
proportional to R - 5  rather than to R -6. This circum- 
stance was first noted for the potential of the hydrogen mole- 
cule in Ref. 8. A similar term corresponding to interaction of 
induced dipoles is contained also in the expression for the 
interatomic potential in an electric field: 

where 

is the electric-dipole moment of the atom A, ,  and F = Fe is 
the electric field-intensity vector. 

Note that neither the dipole-dipole energy ( 16) nor the 
quadrupole-quadrupole energy in ( 12) vanishes when aver- 
aged over the orientations of the atoms (over the directions 
of the vector n )  . They make therefore no contribution to the 
interatomic interaction in the atomic medium and do not 
manifest themselves in its macroscopic properties. An im- 
portant role is assumed here by calculation of the terms that 
determine the change of the coefficients of the dispersion 
series ( 11) and ( 14) under the action of the field B. As fol- 
lows from ( 12), the expression for the energy of a diatomic 
system in a magnetic field acquires a series having the same 
dependence on the interatomic distance R as the dispersion 
series (1 l ) ,  with coefficients proportional to B 2. This 
expression is formally manifested in the dependence of the 
dispersion-series coefficients on the induction of the magnet- 
ic field. Account must also be taken here of the contribution 
of the magnetodipole interaction V, , which yields in fourth- 
order perturbation theory a similar series with coefficients 
that depend quadratically on B: 

m 

Combining this series with the last term of ( 12), we obtain 
for the correction to the dispersion energy, in second order in 
B: 

w 

where 

These quantities determine the correction quadratic in B to 
the coefficients of the dispersion series ( 1 1 ) : 

On the other hand, the coefficients D :: are indicative of the 

change introduced into the diamagnetic susceptibility by the 
interaction between the atoms: 

It must be borne in mind, however, that in the fourth and 
fifth orders of perturbation theory, where account is taken of 
the corrections cubic in the interaction V12 between the 
atoms, there appear terms proportional to odd powers of 
1/R, starting with ( 1/R ") (Ref. 3) ;  these, strictly speaking 
should be taken into account in the expression for x2 (R) .  To 
find the corrections to the nonlinear susceptibilities X, 
( n  > 2), and also corrections of higher degree in a B  to the 
coefficients of the dispersion series (2 1 ), expressions of even 
higher orders of perturbation theory must be used. 

3. IRREDUCIBLE PARTS OF THE TENSOR D':A(n,b) 

After integrating over the angle variables in the expres- 
sion (20) for atoms in S-states, we obtain: 

where cose = bn, and 

is the anisotropy that determines the difference between the 
longitudinal D:2,',, and the transverse D ydL components, 
which yield in turn the values of the coefficients D :2,' in (21 ) 
arid (22) for RllB and RIB, respectively. In addition to the 
foregoing, one can introduce one more averaged characteris- 
tic, called the isotropic susceptibility: 

which yields the value of D z) averaged over the orientations 
of the vector n. 

All these quantities can be expressed in terms of linear 
combinations of radial diatomic matrix elements of third or 
fourth order. In particular, 

Here g: is the radial Green's function of an individual ith 
atom with energy E, in a subspace of states with angular 
momentum I,, andgll12 is a two-atom radial Green's function 
in the subspace of states with angular momentum I ,  for atom 
A ,  and I ,  for atom A , .  The matrix elements in (26) and (27) 
can be calculated by using for a diatomic Green's function an 
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integral representation, which makes it possible to factor out 
the variables of the atoms A, and A, (generalization of the 
known Casimir-Polder formula) 

where El,, ,  is the energy of the isolated atom A ,  ( A ,  ). Using 
this generalization, the radial matrix elements in (26) and 
(27) are expressed in terms of integrals of products of single- 
atom matrix elements: 

1 = -j d w , j  do, do, Relp::;:, (io1, ioz, 
2n3 0 0 0 

where 

= (0 I r n , g y r n ,  . . . rnN EotoNrnN+l I 0) 
~ Z N  

is a single-atom radial matrix element of order N. Using the 
Sturm expansion for the single-atom Green's function 
gf(r,rl), we can represent this matrix element in the form of 
an N-fold series of hypergeometric type, which converges 
rapidly enough in the range of those integration variables in 
expressions (29a-29d) which make the main contribution 
(mi  3: 10). The speed and accuracy of calculation of the inte- 
grals (29) can be substantially increased by using the change 
of variables 

where N is the order of the matrix element. To obtain nu- 
merical values of the integrals in (29) with a relative error 
not larger than 10- it suffices to use a Gaussian quadrature 
of seventh order for each of the integrals in the multiple 
integration. A calculation of hydrogen atoms in ground 
states yields 

Note that all these values are substantially lower (by 
about 2 orders) in absolute value than the componnts of the 
tensor A, which characterizes the variation of the Van der 
Waals constant in an electric field.,.' In addition, D A:! is 
always negative, whereas A,  is positive, demonstrating that 
the electric magnetic fields exert opposite actions on the in- 
teratomic forces (increase by the electric field, decrease by 
the magnetic). 

Notwithstanding the smallness of the corrections to the 
dispersion forces in the magnetic field, it is nonetheless im- 
portant to know their values in view ofthe rapid decay (ioni- 
zation) of the atom in a strong electric field, whereas in su- 
per-strong magnetic field the atom can remain stable. 

4. APPROXIMATE CALCULATIONS OF DIATOMIC 
SUSCEPTIBILITIES USING MONATOMIC QUANTITIES 

The variables of the atoms A, and A, in expressions 
(26) and (27) can also be separated by using the approxima- 
tion of the effective excitation energy; this reduces to the 
substitution 

where w:," is the effective excitation energy of the levels of 
the atom A, with angular momentum Ii. This value can be 
determined using a corresponding single-atom matrix ele- 
ment.3 Using (30), the elements (29) can be represented in 
the form 

The excitation energies w employed here are determined 
from the monatomic values as follows: 

The mean values of the operators ? and r4 in (32) and the 
monatomic radial matrix elements p:::,, for multielectron 
atoms can be calculated by the Fusse model-potential meth- 
~ d . ~  Within the framework of this method, the wave func- 
tions and the Green's functions are represented in simple 
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TABLE I. Numerical values of the parameters of the tensor D i2'. 

atoms (2) I AD:.) I atoms 1 - 1 AD:.) atoms 
At-A2 - D 6 ~  AI-A2 1 A,-& 

H-H 

H-He 

H-Li 

H-Na 

H-K 

H-Rb 

H-CS 

H-Ar 

H-Kr 

H-Xe 

He-He 

He-Li 

He-Na 

He-K 

Note. ( n )  = 10" 

He-Rb 

He-Cs 

He-Ar 

He-Kr 

He-Xe 

Li-Li 

Li-Na 

Li-K 

Li-Rb 

Li-Cs 

Li-Ar 

Li-Kr 

Li-Xe 

analytic form, so that the quantities in ( 3  1 ) are expressed in 
terms of Gamma functions and series of the hypergeometric 
type. In particular: 

Here N,  is the number of valence electrons, N, is a factor 
that corrects the normalization of the ground state in accor- 
dance with the pseudopotential method, and Y, and A, are 
parameters determined from the spectrum of the atom:9 
Y, = I / J ~ ,  A, = Y, - 1.  

~ h ;  table lists the numerical values of the components 
of the tensor D r' for different pairs of atoms of hydrogen, 
alkali metals, and inert gases. It should be noted that the 
deviation of the tabulated approximate value for the hydro- 
gen atom from the exact value obtained in the preceding 
section is about lo%, i.e., of the same order as the accuracy 
of the Fusse model potential used in the calculations for mul- 
tielectron atoms9 This allows us to regard the tabulated 
data as reliable enough. Just as for hydrogen, the component 
D 2:' is negative and exceeds in absolute value the positive 
anisotropy AD F' of all pairs of atoms; this corresponds to a 
weakening of the dispersion interaction, which comes into 
play more strongly in transverse directions ( R I B )  than in 
longitudinal ones (RII B )  . 

We note in conclusion that the tabulated data can be 
used to obtain the asymptotic values of the diamagnetic sus- 

Na-Na 

Na-K 

Na-Rb 

Na-Cs 

Na-Ar 

Na-Kr 

Na-Xe 

K-K 

K-Rb 

K-CS 

K-Ar 

K-Kr 

K-Xe 

Rb-Rb 

1 Rb-Cs 

Rb- Ar 

Rb-Kr 

Rb-Xe 

Cs-Cs 

Cs-Ar 

Cs-KT 

Cs-Xe 

Ar-Ar 

Ar-Kr 

Ar-Xe 

Kr-Kr 

Kr-Xe 

Xe-Xe 

ceptibility x2 ( R )  of a diatomic molecule. We know at pres- 
ent of computations of X, ( R  ) for the hydrogen molecules, 
obtained by perturbation theory on a variational basis, 
which take explicit account of interatomic correlation inter- 
a c t i on~ . ' ~ - ' ~  The numerical results for the H, molecule in 
the ground state" in the asymptotic region R  % 1 agree qual- 
itatively with the analytic relation ( 2 2 ) .  The quantitative 
discrepancies are due in our opinion to inaccuracy of the 
calculations of Ref. 10 in the asymptotic region, in view of 
the large number of approximated variational parameters in 
the wave function of the molecule. Consequently expression 
( 2 2 )  together with the numerical data in the table provide 
more reliable information on the x2 ( R )  dependence in the 
region R  % 1, where the exchange interaction between the 
atoms becomes negligible compared with the dispersion in- 
teraction, both for hydrogen and for other diatomic systems. 
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