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The behavior of the zero-order mode, the least localized in the longitudinal direction, is studied in 
conditions where the overlap of edge states is weak. It is found that the population corresponding 
to this modein the N th channel is much lower than that for states with numbers n = 0, 1, ..., N - 1. 
The special role of the N th channel is that only in this state is backscattering possible. Thus, by 
lowering the probability of backscattering the zero-order mode increases its localization scale. 

1. INTRODUCTION tial holding the electrons within the wire is assumed to be 
Anderson localization continues to draw great interest. quadratic: 

In recent years this interest has been whetted by successful V ( y  ) = 1 / 2 m o o 2 y Z .  
experiments with mesoscopic structures at low tempera- 

(4 )  

tures, where the quantum-mechanical nature of transport This makes it possible to write the wave functions explicitly. 
properties manifests itself. Quantization of ballistic conduc- Suppose that a weak random potential is specified on the 
tivity through a point has shown that the number lattice, 
Nof channels open to electrons is a measurable quantity. As 
noted in Ref. 3 and 4, in a disordered "wire7' whose length L U ( T  v ) =  C 11 a'&(% - a ~ ) i > ( y - - a l )  ( 5 )  

exceeds the mean free path I there remains a finite number of 
1 

ballistic channels, and has the form of white noise: 

According to Landauer's formula, to each channel there The lattice constant a is assumed small compared to the oth- 
corresponds a conductance - e 2 / h ,  with the result that as L er characteristic scales in the problem. 
grows, the conductance decreases by Ohm's law. However, In the absence of a random potential, the solution of Eq. 
at L- 1, the number N,, is of the order of unity. A further (3)  has the form 
increase in L leads to a situation in which there are no more 
ballistic channels. As a result the conductivity begins to fall exp ( i k , , x )  
off exponentially, = { A  -5- 9 Y -Y-.) 

o-t~sp(--L/1,): 

which is the manifestation of localization in a long wire.5 

exp ( - i l r ,x )  
B,, /2" " 2  

 calculation^^-^ of the characteristic scale I ,  yield 
where we have introduced themomenta 

I ,  =ax/ ,  (2)  (1) 

k ,  = - 2  n[E,-o~('/,i-~~) I)'!* 
where a = 1/2, 1, and 2 for, respectively, the orthogonal, 00 

unitary, and simplex ensembles.lo3'l 
The centers of the edge states are located at the points 

A unitary ensemble corresponds to a system with a 
magnetic field. The results of Refs. 6-9 cannot, however, be . y n =,?(. n 1 ri : Q , , ~ / ( I ) ~ .  (9)  
applied directly to the case of a strong field, when very pro- 
nounced edge states, whose overlap may be assumed Here we have used the 

~ e a k , ' ~ , ' ~  are formed. This paper is devoted to the calcula- 1 
o= I". --- = e H 

/ ) toH = -, 
tion of I ,  in such a situation, and the conclusions reached c 

(10) 

qualitatively agree with the numerical calculations of Refs. 
14-16. 

2. THE QUANTUM-WIRE MODEL 

We consider the simplest model of a wire in a magnetic 
field.I3 The appropriate two-dimensional Schrodinger equa- 
tion is 

The gauge is taken in the form A = ( - Hy,O,O). The poten- 

and p, (y) is the nth wave function of a linear oscillator with 
a frequency w.  The quasiclassical condition 

(k,11>1 (11) 

makes it possible to restrict oneself in sum (7)  to edge states 
with real-valued k, and ignore other modes. Thus, the num- 
ber of edge states with the same direction of velocity is equal 
to N + 1, with N the maximum admissible value of param- 
eter n in Eq. (8 ) .  

The localization length I ,  can be calculated in two ex- 
treme cases. In the first, trivial, case, where N = 0, 
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and we need only find the mean free path prior to back- 
scattering, 1. This quantity, as follows from Eq. (38), at 
N = 0 depends on the overlap of the two remaining edge 
states, that is, on the magnetic field. 

We are primarily interested in the second solvable case, 

The magnetic field is assumed so strong that the overlap of 
the neighboring edge states is negligible: 

Combining this with condition (13) yields 

W H  % W& I f 2  . (15) 

The states with large numbers n obey the quasiclassical ap- 
proximation, 

The classically accessible region can be represented as fol- 
lows: 

Inequality ( 15 ) implies that the classically accessible re- 
gions of the edge states with n -N do not overlap. On the 
contrary, they are far from each other. 

3. THE TRANSFORM MATRIX 

The random potential (5)  causes an electron to hop 
between neighboring edge states. Hence, the amplitudes A,  
and B, in (7)  begin to vary slowly with x.  For a wire of 
length L we can connect the amplitudes on the left, A f; and 
B f;, with the amplitudes on the right, A fP and B fP, by a trans- 
form matrix t: 

In the case of the unitary ensemble considered here, where 
time-reversal symmetry is broken by the magnetic field, the 
following parametrization of the t-matrix takes p l a ~ e : ~ . ~ . ' ~  

[u'  "[ch' s11 f'][E 0 ] 
t =  

0 v sh r ;h 1' 0 5 ' 

where u, v ,  ii, and F are four different unitary 
( N  + 1 ) X ( N  + 1 ) matrices and T is a diagonal real 
( N  + 1) X ( N  + 1) matrix. 

Using the explicit form (20) of the t-matrix, we can 
separate ( 19) into N + 1 normal channels: 

The eigenvalues T ,  are assumed ordered in ascending val- 

ues: r, < T ,  < e . .  T N .  To each of these values there corre- 
sponds transmission coefficient 

T , , = l / ( c h  r,)' 

for each normal channel. Knowing the rate of exponential 
decay of T, (L - co ), we find the N + 1 longitudinal scales 
I. : 

2 d 
-=-- (In T , ) .  

1, ax (22) 

The maximum of these scales, I,, is identified as the localiza- 
tion length I,. When the wire is long enough, 

L>l /  (zn-LznLii)> (23) 

the transmission coefficients T, become exponentially dis- 
tinct: 

T,<T,< . . . <TN. (24) 

Let us now define the Markov process for the t-matrix. 
If the length L of the wire is increased by adding a transverse 
layer of thickness a on the right, the transfer matrix acquires 
an increment 

The matrices of Born amplitudes for forward scattering, f l  
andp, and for backscattering, y, are 

Because the wave functions overlap only slightly, we retain 
only the transition-matrix elements between neighboring 
edge states: 

The diagonal matrix elements f l , ,  and p,, can be ignored 
because they lead to a non-essential phase shift and do not 
send an electron from one channel to another. Averaging of 
the squares of the scattering amplitudes can be done via Eq. 
(6) :  

1072 Sov. Phys. JETP 74 (6), June 1992 0. N. Dorokhov 1072 



Equations (39)-(41) are none other than the Langevin 
equations with random forces 8, B, and y. Using them we 
can construct the Fokker-Planck equation for the distribu- 
tion function W(L;T,u,v). This has been done in Ref. 6. 
Thus, instead of Eq. (22) we can write 

The integrals 

In the long-wire limit [Eqs. (23) and (24) 1, the increments 
Au and Av cease to depend on r , ,  as Eqs. (40) and (41) 
clearly show: 

have been calculated by Martin and Feng.13 In conditions 
where the edge states overlap only weakly, the integrals can 
be evaluated by the saddle-point method: 

(36) 

These quantities directly determine the mean free paths: In this limit Eq. (43) assumes the form 

1 1  -=-z ~ ( ~ - n 1 ~ ~ ~ ~ a , f i ~ 2 ~ v , ~ ,  ~ + + ~ ~ ~ ~ ~ l ~ ~ ~ . ~ ~ ~ )  
1" In,, w .  

This results in the following sum rule: 

The special features of edge states are revealed in (26)- 
(38), while the increments Ar ,  Au, and Au, which follow 
from (25), are of a very general nature? 

In (44)-(47) we have allowed only for the transition matrix 
elements between neighboring edge states [Eqs. (29) and 
(30) 1. In the same conditions the expression for the (maxi- 
mum) localization length I ,  becomes quite simple: 

4. CALCULATING THE LOCALIZATION LENGTH 

Let us now calculate the average in Eq. (48). First we 
use (13) to simplify expressions (44) and (45) for Au,, and 

Avo,, : 

A ~ 0 ~ = i ~ o , ~ - 1 P ~ - t , , ~ $ . i ~ ~ , , ,  +IP t + l , . r + i ~ o N ~ N N S n . r ; ,  (49) 

AvOn=- ivO.n - l~n - l .n+ ivo .n+ l~n+ i ,n+  ~ u ~ ~ Y ~ ~ ' ~ S ~ ~ + .  (50) 

The evolution of the unitary matrix 

S=vfu ( 5 1 )  

A v n , ,  = x { - i u . . ,  R...r+[1/2a ... (R. ..--R,.,,+)eth 2r. 
n,  

+ (i-a,,,) (R,,, sh 2I' , ,+~,f , ,  st1 2rn,)/ 

Here we have used the notation 
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is described by the closed Langevin equation 

To build the Fokker-Planck equation for the distribution 
function W(L;u,, v,, ) we must calculate the second-order 
increments AAu,, and AAu,, . Equations (49)-(52) clearly 
show that 

A A u o n I n + ~ = - (  I p n - l , n l Z + I P n + l , n ! 2 ) ~ o n ,  (53) 

Since 
'TI 

I s . , . , > I 2 = I ,  

in the quadratic terms in the increments (49) and (50) we 
use the fact that 

For this reason the Fokker-Planck equation does not con- 
tain mixed derivatives 

In other words, in the principal order in 1/N the parameters 
u,, and v,, are distributed independently. Hence, Eq. (48) 
becomes separable: 

The distribution function W(L;u,,, ) is described by the 
Fokker-Planck equation 

This yields the following equation for the averages: 

On the right-hand side of the terms withp, which are due to 
forward scattering, resemble the difference diffusion opera- 
tor. Hence, on distances L % I,, - , there is diffusion balanc- 
ing in the population of channels with numbers n = 0, 1, ..., 
N -  1: 

At the same time the special feature of Eqs. (59) and (60) 
for the N th channel lead to a situation in which the channel 
population attains the lower time-independent value 

Thus, the least localized zero-order mode decreases its back- 
scattering, lowering the population of the N t h  edge state. 

In this connection we call attention to  the experiment 
described in Ref. 18, where a selective transition to equilibri- 
um between the current-carrying edge states was observed. 
It was found that out of the Naccessible channels the current 
to the N - 1 channel corresponding to the lower bands rap- 
idly evens out while the fraction of current that goes into the 
Nth  channel greatly diminishes when the center of the re- 
spective Landau level approaches E,. This phenomenon is 
better considered as the separation of the Nth  channel from 
the other channelsI9 than as a general effect valid for all edge 
states. This behavior agrees with the results (61 ) and (62), 
which point to the special role of the Nth  channel, the only 
place backscattering can occur. 

Returning to Eq. (58) and allowing for the fact that u,, 
is described by formulas similar to (59)-(62), we arrive at 
the following expression for the localization length: 

Let us briefly examine this result. If the Fermi level lies 
somewhat below the bottom of the current ( N  + 1 )st band, 
we have I,, >I,,,,, - , and 

But if E, lies somewhat above the bottom of the specified 
band, two new edge states with number N + 1 form. At this 
moment the mean free paths I, + ,,, + , and I, + ,,, vanish 
because of the singularity owing to k, + , - 0 in the denomi- 
nators of (37) and (38). Here our approximation ( 11 ) is, 
generally speaking, invalid. In the final expression (63), 
however, the singularity at k,+ , = 0 cancels out: 

Note that the coefficient in (64) coincides with that in (65).  
The two expressions differ only in the combination of over- 
lap integrals (33) and (34). This makes it obvious why (64) 
and (65) differ. Prior to the formation of the ( N  + 1)st edge 
state, the electron must hop over a greater distance (64) in 
order to backscatter. On the other hand, formula (65) corre- 
sponds to a double "jump" between the tightly bound 
( N  + 1)st states that have emerged. This forces 1/1, to in- 
crease rapidly from the value (64) to (65). Further raising 
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of the Fermi level results in a smooth decrease in 1/1, to a 
value specified by (64) but with a new number N + 1. This 
sawtoothed behavior agrees qualitatively with the results of 
numerical calculations reported in Refs. 14-16. 

5. CONCLUSION 

We have considered a model with weak overlap of edge 
states. The specific form of the retaining potential (4)  is not 
important if we can keep to electron hopping between neigh- 
boring states. The overlap integrals (33) and (34) for the 
chosen model, however, must be evaluated. We have also 
established for such a system the behavior of the zero-order 
mode, which is the least localized in the longitudinal direc- 
tion, and found that the stronger the backscattering in the 
Nth channel the lower the population in this channel. In 
other words, the zero-order mode avoids backscattering 
which is the reason for the further weakening of its localiza- 
tion. At the same time, forward scattering leads to an effec- 
tive electron diffusion through channels with numbers 
n = 0,1, ..., N - 1. The discrepancy between the population 
of the Nth edge state and that of the other edge states has 
been observed in experiments.18 It is this phenomenon that 
causes the localization length (63) to be greater than the 
result that follows from (2)  obtained in Refs. 6-9. 
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