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In this paper we suggest a theoretical description of magnetic phase transitions in hexagonal 
exotic superconductors with an order parameter having two complex components. For different 
values of magnetic field H and the Ginzburg-Landau functional coefficients we have 
qualitatively considered the problem of the energetically most favored structure of the vortex 
lattice near Hc2 when H is along the sixfold symmetry axis. Near Hc2 a single-quantum lattice 
(SQL) could be regular triangular or rectangular. When the field decreases, a transition from a 
SQL to a two-quantum vortex lattice (TQL) is realized in the widest range of the functional 
coefficients. For further decrease in H a reverse TQL-SQL transition should occur in 
superconductors with a Ginzburg-Landau constant x % 1. We have also found a coefficient range 
in which singular vortices are converted into nonsingular vortices. The values of the magnetic 
fields corresponding to these phase transitions are calculated as functions of the functional 
coefficients. 

1. INTRODUCTION 

The mixed state in superconductors with nontrivial 
pairing primarily associated with heavy-fermion supercon- 
ductors can have some distinctive characteristics. For exam- 
ple, in Refs. 1-4 the anisotropy of the upper critical field in 
these superconductors was studied. The structure of vortices 
and vortex lattices for fields Hcl < H < Hc2 is also of great 
intere~t ,~*~-" since there is evidence of magnetic phase tran- 
sitions in heavy-fermion superconductors. In UPt, such a 
transition has been for H- 0.6Hc2. These ex- 
periments have been explained theoretically in Refs. 3,5-12. 
The phase transitions in the mixed state can be related either 
to changes in the structure of separate vortices or to vortex 
lattice distortions. One of these theories involves a phase 
transition for fields Hclose to Hc, from a lattice of nonsingu- 
lar single-quantum vortices, in whose core at least one of the 
components of the superconducting order parameter is non- 
zero to a lattice of singular vortices for H close to H,, .789 In 
Ref. 7 the phenomenological Ginzburg-Landau (GL) equa- 
tions have been solved numerically for a magnetic field along 
the anisotropy axis and it has been shown that nonaxisym- 
metric nonsingular vortices may exist near H,, in a wide 
range of the functional coefficients. Then in Ref. 9 an analyt- 
ic approach has been proposed to analyze the core structure 
of nonaxisymmetric singular and nonsingular vortices in ex- 
otic superconductors with symmetry groups D,, and D,, . 
This approach has allowed arbitrary orientations of H rela- 
tive to the crystal axes to be treated and the angular depend- 
ence of Hcl to be obtained. Another possible explanation of 
magnetic phase transitions has been proposed in Ref. 8. Us- 
ing the Wigner-Seitz method of lattice energy calculation, it 
has been shown there that in a certain range of the GL func- 
tional coefficients a regular triangular lattice of two-quan- 
tum vortices is more favored than a regular triangular lattice 
of single-quantum vortices. Since near H,, the latter are pre- 
ferred from the energy standpoint in superconductors with a 
GL constant x )  1, in Ref. 8 a transition from a single-quan- 
tum lattice (SQL) of vortices for low fields to a two-quan- 
tum lattice (TQL) for fields near H,, has been suggested, 
but numerical calculations have shown that a transition 

from a TQL in the intermediate H range to a SQL in fields of 
order Hc2 is also possible.I0 

These magnetic transitions have been treated in Ref. 11 
by a group theory approach and the formation of two- and 
three-quantum vortex lattices has been proposed. 

In the present paper we quantitatively consider the pre- 
ference, from the energy standpoint, of different vortex lat- 
tices near H,, for a field H directed along the sixfold symme- 
try axis z and for a wide range of the coefficients of the GL 
functional corresponding to two-dimensional representa- 
tions of the symmetry group D, . As is well known, trial func- 
tions, which are the solutions of the linearized GL equations 
for H = H,, , are usually used in lattice energy calculations, 
and the superconducting seeds corresponding to the eigen- 
functions of these equations for fields H, < Hc, are not taken 
into account near H,, [ ( 1 - H /H,, ) < 1 1. This is undoubt- 
edly true for superconductors with a single-component or- 
der parameter for which the intervals between the fields H, 
are large [H, = Hc2 /(2n + 1 ) 1. The lattice energy f GL cal- 
culated in this approximation is of the order of 
- ( 1 - H /Hc2 ) ', the corrections being proportional to 

higher powers of the small parameter ( 1 - H /Hc2 ) (Ref. 
16). In the case of a two-component order parameter one of 
the fields H,, (we will denote it by 2) may be close to Hc, 
[that is, ( 1 - a / ~ , ,  ) < 1 1. Then we must allow for super- 
conducting seeds corresponding both to Hc2 and g. As is 
shown below, the preferred vortex lattice can change with 
decreasing H field, which means that magnetic phase transi- 
tions exist. 

In Sec. 2 we give and discuss the initial relations used 
below. In Sec. 3 we find the structure of the vortex lattice 
near H,, for different values of the functional coefficients. 
The magnetic phase transitions, which occur when the field 
decreases, are considered in Sec. 4. The SQL-TQL transi- 
tion, and the transition from a singular to a nonsingular lat- 
tice of single-quantum vortices, are found as functions of the 
field and functional coefficients. For superconductors with 
the GL constant x 1 a reverse TQL-SQL transition should 
occur, when H further decreases. The phase diagrams plot- 
ted in Sec. 4 allow us to reconcile the results of Refs. 8 and 10. 
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2. INITIAL RELATIONS 

In the case when the superconducting classes for hexa- 
gonal crystals are generated by two-dimensional representa- 
tions of the group D,, the order parameter has two complex 
components q, and 7,. We write the GL functional in a 
magnetic field as follows: 

For b2 >O, a phase with broken time-reversal invar- 
iance occurs in the absence of a magnetic field. This corre- 
sponds to solutions with ( 7 7 , ; ~ ~ )  - ( I ,  i). For UPt, there 
are pieces of experimental evidence which indicate that pre- 
cisely these phases exist.17 Therefore in what follows we lim- 
it ourselves to the case b, > 0. 

For Hllz the solution of the linearized GL equations and 
the expression for Hc, have been found in Ref. 12. We 
change over from ql,q2 to Y1,Y2 according to the relations 

The eigenfunctions have the form 

and Y,, -pn -, and Y2, -pn for n>2, where pn are the 
functions corresponding to the nth Landau level in the prob- 
lem of electron motion in a magnetic field. The functions 
(Y,, ,Y,, ) are the solutions of the linearized GL equations 
only for definite values of the magnetic field H = Hn . Below 
we will need the expressions only for the two largest fields 
Hn : 

hc 
If" = 

2et2(1tC-D) ' 

where 

For D > C2/( 1 + C), we have H, > H y and, therefore, 
Hc2 = H, . The superconducting seeds arising for H = Hc2 
are given by the functions Y,, and Y,, . If D < C 2/( 1 + C), 
then H,, = H y and the corresponding eigenfunctions are: 

It follows from (2)  that b1~0.5. We denote the smaller 
of two fields H, and H y by H. As has been noted already in 
the Introduction, the fields Hc2 and may be close to each 
other (for sufficiently small values of Cand D). Consequent- 
ly, considering the vortex lattice near Hc2, it is necessary, in 
general, to allow for superposition of the functions 
(Y ,, ,Y2, ) and (Y ,, ,Y2, ). However, for fields smaller than 

Hc2 but sufficiently large compared with 
H(o < 1 - H /Hc2 ( H /H - 1 ) only the eigenfunctions cor- 
responding to H = Hc2 need be taken into account. We will 
carry out these calculations in the next section. 

3. VORTEX STRUCTURE FOR FIELDS CLOSE TO H, 

In this section we study the vortex lattice structure in 
the field range O <  1 - H/Hc2 (H/& - 1. As mentioned 
above, the behavior of the order parameter (Y, ,Y2 ) de- 
pends crucially on the values of the coefficients C and D. For 
D >  C ,/( 1 + C), the only nonzero component of the order 
parameter in this field range is Y,, and the lattice structure 
and energy are found in the same manner as in ordinary 
superconductors. Therefore we will consider here only the 
case D < C 2/( 1 + C), when both Y, and Y2 have nonzero 
values. For a vortex lattice with a unit cell in the form of a 
parallelogram enclosing a quantum of magnetic flux a,, the 
order parameter has the form 

-U.5( (y- rt6, sin cY.)iL,,)') 

where a, b,sina = 2rL L, a, and b, are the parallelogram 
sides, a is the angle formed by these sides, p = b,cosa/a,, 
and R is the constant given by the condition that the free 
energy be a minimum. 

As pointed out in Ref. 8, in a certain coefficient range a 
two-quantum vortex lattice (TQL) can be energetically fa- 
vored. Qualitatively, this possibility follows from the core 
structure of a single vortex near H,, (Refs. 8,9). In this case 
the GL equations have an axisymmetric solution of the form 

where m and n are related by the equation m + 2 = n, and 
(r,O) are polar coordinates in the plane perpendicular to the 
vortex axis. If, for example, at large distances p- w the 
function R ,, is finite, a vortex contains m quanta of magnet- 
ic flux. It is important that in particular cases m = - 2, 
n = 0 or m = 0, n = 2 either R ,, or R2, is finite on the vor- 
tex axis, which means that two-quantum nonsingular vorti- 
ces are possible. The core energy of such a nonsingular vor- 
tex could be smaller than the core energy of a singular 
single-quantum vortex. At the same time, for x ,  1 the ener- 
gy related to superconducting currents in a vortex with m 
flux quanta is 

Here L is the vortex filament length, and R- is the magnetic 
field penetration length. The latter gives the main contribu- 
tion to the single vortex energy, and, consequently, two- 
quantum vortices are energetically unfavorable for fields 
close to H,, . We might, however, have a different situation 
for fields close to H,, , when the distance between vortices is 
of the order of the core size. Therefore, considering the vor- 
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tex lattice structure, we must allow for the possibility of peri- 
od doubling. We write the expression for the order param- 
eter in the case, when the unit cell encloses two quanta of 
magnetic flux: 

V , = R  zcn cxp(lnins/u..-0.5( (y- nb, s in  a) iL,)'). 

I Oeven exp (rnpn ( r l  - I ) ). 
c,,=O, c . \ p ( i x - ~ ( ) ~ ~  ( 1 1 -  1)) = 

O,,, exp (ixptl(t2- 1 ) ) .  

The upper expression is valid for even n, and the lower one 
for odd n. Note that for O,,,, = Odd = 1 the formulae (9)  
reduce to (6).  Arbitrary values of O,,,, and O,,, correspond 
to a lattice with two vortices of Y, per unit cell. In the case, 
when these vortices merge into one, we have a two-quantum 
vortex lattice. 

Let us explain the terminology used. In the mixed state 
of a superconductor with a two-component order parameter 
there are vortices both of VI, and Y, . Given the function Y, , 
we can find Y,, so in what follows we will classify the solu- 
tions indicating only the type of the Y, vortex lattice. The 
expression (9)  gives two types of VI, vortices: 1) single- 
quantum vortices for which the phase of \I/, changes by 2n-, 
when we go around the vortex axis, and 2) two-quantum 
vortices for which the phase changes by 4 ~ .  The lattice of 
vortices belonging to the first type will be called a single- 
quantum lattice (SQL), if the magnetic flux through its unit 
cell equals the quantum Q,. The second type of vortices 
form a TQL lattice. The expression (9)  describes also lat- 
tices of single-quantum Y, vortices with two flux quanta per 
unit cell, but in this case we will not introduce special nota- 
tion. 

Let us find the relation between the coordinates of the 
VI, vortices and the complex constants I!?,,,, and Odd. The 
location of the zeros of the function Y, is schematically giv- 
en in Fig. 1. Let (x, ,yo ) be the point where Y, vanishes. 
Equating expression (9) for Y, to zero, we find 

-0,5((yo-2sbo sin a)YL,)"). 

For a SQL we have 

z,,,=aO/2f bo cos a ,  yo,=-b, sin a/2. (11) 

Let us now find the coordinates of the zeros of the function 
Y, for a TQL. Note that the order parameter (9) does not 
change under inversion with respect to the points with co- 
ordinates 

x'--(n+1/2)uo+b, cos a(1/2-2m), y'=2mbo sina. (12) 

Therefore, the zeros of Y, are symmetric with respect to 
these points, where two Y, vortices merge into one (in the 
case of a TQL) for the following values of O,,,, and O,,, : 

FIG. 1. Schematic location of the zeros of the function TI in a lattice 
whose unit cell encloses two quanta of magnetic flux: p = 0.3, u = 0.5, 
xo = 0.8a0, yo = - 0.3b0sina, and a represents a zero of the function 
TI. 

where u = b, sin a/ao. 
Not only Y, does vanish at the points (x1,y'), but also 

its derivatives with respect to x and y, which agrees with the 
asymptotic form (see Ref. 17) 

Using the expressions (9)  for Y, and Y,, we can find 
the lattice energy for x % 1 : 

Here V is the superconductor volume, b = b,/b,, and the 
angle brackets in the expressions of a ( 1 Y, 1 ') type denote 
averaging over the volume. Further, it is necessary, general- 
ly speaking, to analyze the behavior ofpas a function ofp, u, 
xo and yo. If we set y to zero in (9),  then Eqs. ( 14) and ( 15) 
will give the energy of a usual superconductor with a single- 
component order parameter. In this case, as is well-known, 
the free energy minimum (and, consequently, the minimum 
of the function 0) corresponds to a regular triangular SQL 
(p = 1/2, u = 3'12/2). Among all TQL with different p and 
o the minimum offl also corresponds to a regular triangular 
TQL (p = 1/4, a = 3'12/4). 

For y#O we will, therefore, compare the energies of 
regular triangular SQL and TQL. Such a comparison has 
been done in Ref. 8 by an approximate method similar to the 
Wigner-Seitz method and yields results in a simple analytic 
form. This method has been shown to give very good results 
for superconductors with a single-component order param- 
eter. '* As a unit cell, we take a circle enclosing magnetic flux 
equal to the flux quantum Q, for a SQL and 2Q0 for a TQL. 
Let us assume that the cell center coincides with the vertex 
lattice site, where the component Y, vanishes. To describe 
approximately the functions Y, and Y, inside the cell, we 
take the solutions of the linearized GL equations for 
H = H,, with a definite angular momentum. To this end, we 
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choose the gauge of the vector potential A in the form 
A, = rH/2, where (r,0,z) is the cylindrical system of co- 
ordinates with the z-axis oriented along the magnetic field. 
For a SQL, the solution corresponding to H,, has the form 

For a TQL we have 

For a SQL the unit cell radius equals r, = L&, and 
for a TQL it is r, = 2L,. Using (16) and (17), we find P, 
and Bz for the SQL and TQL respectively: 

Setting 8, equal to f3,, we get a boundary in the by 
plane separating the regions, in which regular triangular 
SQL or TQL are favored. The condition of TQL preference 
from the energy standpoint can be written in the form 

Due to conditions (2),  0 < p  <4. For b <  b,, where 
b, ~ 0 . 2 8  for any C and D satisfying Eqs. (2),  a SQL is fa- 
vored. Because of an arithmetic error, an incorrect value of 
the threshold b was obtained in Ref. 8. In reality, the region 
( 19) where a TQL is energetically more favored than a regu- 
lar triangular SQL is somewhat wider than that found in 
Ref. 8. 

This method of/3 calculation assumes that the unit cell 
is well approximated by a circle of radius r, for a SQL and r2 
for a TQL. Such an approximation is valid only for regular 
triangular lattices. To determine the smallest fl and the cor- 
responding vortex configuration, it is necessary, however, to 
consider the case of arbitraryp, u, x, and yo. Using (9) ,  we 
find the following general expression for 0: 

For arbitrary fixed O,, , tIeven and u the function is 
periodic i np  with a period 1 and satisfies the condition 

Therefore in finding the smallest o ,  it is sufficient to limit 
ourselves to the interval of a p  change: 0 < p  < +. Note also 
that for Odd = OeVen = 1 the lattice energy should not 
change, when the unit cell sides a, and b, are interchanged. 
Introducing a complex variable 5 = p + iu, we write this 
property in the form 

Let us find now the range on which the coordinates 

(x, ,yo ) of the component-Y, zeros vary in a lattice cell, 
which is necessary to consider studyingoas a function of x,, 
yo. Note the following properties of Y, (x,y,xo ,yo ) : 

y1 (5 ,  Y ,  so. YO)=Y,  (x, y,  ao+bo cos a - s o .  - y o ) ,  

Y ,  (5,  y .  ao/2+ bo cos a-so. -bo sin a / 2 -  yo) 
Xexp ( -2ni(xolao-xlao+p)  ) =Y, (x- bo cos a ,  

y-tb,  sin a. ao/2+bo cos a+xo, -bo sin a / 2 + y o ) ,  (23) 

(2-ao/2,  y, so-ao/2. y o ) = - Y :  (2.  y ,  so: y o ) .  

Similar relations hold also for Y,. From these symme- 
try properties and Eq. ( 15), it follows that to find B as a 
function of x,, yo, it is sufficient to consider the region 
shaded in Fig. 1 and given by the conditions 

-bo sin a /2<yo<0 .  
(24) 

a,/2+br cos a / 2 -  yo ctg a<xo<ao+bo cos a / 2 -  yo ctg a. 

We have found the minimum of the function 
P(x, ,yo ,p,u,b,y) with respect to the variables xo , yo , p  and u 
by numerically summing the series (20). The results are 
shown in Fig. 2, where the regions are indicated in the by 
plane, in which various types of SQL and TQL are energeti- 
cally favored. 

For the values of the parameters b and y corresponding 
to the region I ,  the minimum of fl is realized for a regular 
triangular SQL (x, =x,,, yo =yo,,  p = +, a =  31'2/2). 
At the boundary between the regions I and 2 the energy of 
this lattice becomes equal to the energy of a square SQL 
(x, = x,, ,yo =yo, ,p = 0,o = 1 ). In the region2 a rectangu- 
lar SQL (p = O,u# 1 ) has the minimum energy. When b and 
y increase, first, a first-order phase transition from a regular 
triangular SQL to a square one occurs, then a second-order 
phase transition from a square SQL to a rectangular one. 
The lines of the two phase transitions in the by plane are 
close to each other and practically coincide with the bound- 
ary between the regions I and 2. Hence the region where a 
square SQL is energetically favored is not shown in Fig. 2. 
The dashed line in Fig. 1 corresponds to equal fl for regular 
triangular SQL and TQL. This line coincides well with the 

FIG. 2. Regions of energetic preference for different SQL and TQL types 
near H,, . The region I corresponds to a regular triangular SQL, the re- 
gions 2and 2 ' to a rectangular SQL, and in the regions 3 and 4 the values of 
Bcorresponding to a TQL and a rectangular SQL are equal to an accuracy 
of lo-'. 
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boundary of the region ( 19) found in the Wigner-Seitz ap- 
proximation. Of course, to get thep minimum in the regions 
2,3,4, and 2 ', the Wigner-Seitz method is not good, since in 
these regions the rectangular SQL, which cannot be treated 
by this method, is energetically favorable. In the region 3 in 
the by plane, to an accuracy of 10- 3, the values ofD corre- 
sponding to a regular triangular TQL 
(x, = xl,yo = yl,p = 1/4,a = 3'12/4) and a rectangular 
SQL become equal. To the same accuracy of 10 - ,, the values 
of 8 in the region 4 are equal for a rectangular SQL and a 
square TQL (x, = x1,y0 = y',p = 0,a = f ). In the region 3 
the TQL energy minimum with respect to p and u corre- 
sponds to a regular triangular TQL, while in the region 4 it 
corresponds to a square TQL. 

Let the smallest value o f p  for all TQL with differentp 
and a be p,,, and let p,, be the smallest value of p for 
different SQL. Numerical calculations have shown that 
pZm >Dl, holds for all b and 71. In region 2 ', as in region 2, a 
rectangular SQL is energetically favored. In this region the 
difference @ = p,, - Dl, increases with increasing b and 
y and, for example, for b<5 satisfies the A p 5  0.2 condition. 
Parameter a in SQL with P = f i lm also increases with in- 
creasing b and y, and, for instance, for 1.2 < b < 5 and 
y = 0.5 we have az2 .5 .  Thus, in the region 2 ' a rectangular 
SQL is, in fact, a set of vortex chains. The distance between 
the chains can be much larger than the distance between the 
vortices in one chain and increases with increasing b and y. 
For a fixed and sufficiently large value of u the value of 0 
depends only weakly onp. This means that the lattice energy 
does not change much when vortex chains are displaced with 
respect to one another, if the distance between the chains 
remains constant. Note that, as a result of formation of such 
a lattice, transport properties in the mixed state could be 
highly anisotropic. 

A regular triangular SQL becomes energetically unfa- 
vorable only for finite values of y > y,, (b)  (see Fig. 2).  The 
existence of such a threshold in y is easy to understand by 
virtue of symmetry considerations leading to the conditions 
(21) and (22) valid for all y. It follows from Eqs. (21) and 
(22) that the point p = +, a = 3'/'/2 is an extremum point 
for P(p,a),  even if y# 0. Then, if for y = 0 the function 
,O(p,a) has a minimum, the corresponding lattice could be 
energetically unfavorable only for finite values of y. 

To conclude this section, we note a feature of the func- 
tionp directly related to the fact that for a regular triangular 
TQL fi is always larger than or equal to Dl,. Numerical 
calculations have shown that for p = 1/4, a = 3"'/4 the 
function p is independent of x, , y, . These values of p and a 
correspond to a vortex lattice formed by regular triangular 
sublattices embedded into each other. When these sublat- 
tices coincide, we have a regular triangular TQL. Such an 
energy degeneracy occurs only near H,, and is lifted with 
decreasing field (see Sec. 4).  For x, = x,, ,yo = y,, we have 
a SQL withp = 1/4, a = 3'/'/4. Thus, the smallest value of 
p for a SQL cannot exceed P for a regular triangular TQL. 
Numerical calculations give the following expression for 0 
(p = 1/4,a = 3'/,/4) : 

This result agrees fairly well with Eq. ( 18b) found in 
the Wigner-Seitz approximation. Note that for a regular 

triangular SQL numerical analysis has shown thatp (b,y) is 
accurately described by Eq. ( 18a) found in the present ap- 
proximation. 

4. MAGNETIC PHASE TRANSITIONS 

In this section we consider how the lattice structure 
varies with decreasing magnetic field H. As H decreases, the 
expression ( 1 - H /H,, )/(H / g  - 1 ) becomes of order 
unity, and we have to allow for superconducting seeds corre- 
sponding to the solutions of the linearized GL equations 
both for H = H,, and H = 3. Let us seek the solution of the 
nonlinear GL equation in this field range in the form 

Here both F and p, contain the wave functions of the 
zeroth Landau level. We limit ourselves in what follows by 
the case D < C '/( 1 + C) . This case is of interest more often 
than the opposite one, since, due to approximate electron- 
hole symmetry near the Fermi surface, the coefficient 
D = (K, - K, )/2K1 is very small,I9 and the coefficient C 
in UPt,, according to Refs. 20 and 21, is approximately 
- 0.29. 

Let the vortex lattices given by the functions Rp, and 
yRp, have the form (9).  The lattice structure correspond- 
ing to Fneeds a special treatment. Substituting (26) into the 
GL-functional, we find for the free energy 

The terms in (27) in which F is absent give the contri- 
bution to the free energy described by Eqs. ( 14) and ( 15). 
As H decreases, the sum of the terms quadratic in Fceases to 
be positive definite for a certain field value H = H,, <&, 
where H,, depends on the lattice structure. 

For fields larger than H,, the function Fis small in com- 
parison with VI, , and for H-+H,, we have F/R -0. Consider 
first the solution just in this field range, assuming ly( -4 1, 
which is justified by the inequality 1 yl < 3 following from 
Eqs. (2)  and (5).  The F-dependent terms in (27) are taken 
into account by perturbation theory. We neglect in (27) 
terms of the third and fourth order in F, as well as the terms 
proportional to f ,  $, and write the resulting expression for 
f: 

Let us treatf, as a perturbation, substituting into it the 
value R = R, obtained by minimization of f, : 
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We get an expression for f accurate to terms of order flinclu- 
sive. Note that the term g R  ( 1 + 2b) ( 1 po 1 1p2 1 ') is taken 
into account in&, since for fairly large b it might not be small 
even for small y. 

We are looking for F in  the form 

From the condition thatfbe a minimum with respect to 
the coefficients S,, we find the following equation for S, : 

x S m + k c n + ~ . ~ , ~  exp (-na(n2+m2) ) 
nm 

= (1+2b) yR." ~cm,kcn+,c.;m+k(~,5-no (n-m)') 
nm 

X exp (-no (n2+mZ)). 

The coefficients c, are defined in (9) .  The solution of (3 1 ) 
has the form 

seven exp (ircpk (k-l) ), 
S. = exp ( i q k  (k- l ) )sk = [ 

exp(inpk(k-i) ). 
(32) 

The upper expression is valid for even k, and the lower for 
odd k. Substituting (32) into (3 1 ), we can find seven and s,, . 
Using this solution, we getf: 

The quantities Q,, Q,, a , ,  a, ,  a, ,  and Po depend onp, a, 
O,,,, and Odd (their formulae are given in Appendix). 

The expressions (33) are valid until 0 < J(H)P,  < 1. It 
follows from them that in the fields close to 
Hc2 (H/Z - 1 % 1 - H/Hc2 we can neglect the quantity 

In this case the results of Sec. 3 are valid. If, however, we 
have H /@ - 1 - 1 - H /Hc2, then J- fl. In spite of their 
smallness, these corrections can affect the lattice structure, 
since, as seen from Sec. 3, the values of Po for different lat- 
tices are fairly close to one another. In the case of a SQL, the 
expression for J ( H )  reduces to 

Here B, =Po ( y  = 0) for a SQL. As is well-known, a 
square SQL and a regular triangular SQL correspond to the 
extremaof the functionp @,a), and, consequently, for them 
J(H) vanishes. For arbitraryp and owe have J(H) #O, and 
J(x,y) corresponds to a SQL coinciding with the compo- 
nent-*, vortex lattice. 

The expressions ( 33 ) have been analyzed numerically. 
By virtue of smallness of the coefficient D mentioned above, 
we have set D = 0. The lattices of the type (9) with arbitrary 
Oeven and Odd have been considered. Calculations have 
shown that P(H) achieves its minimum only for the values 
of 8,,,, and O,, corresponding to a SQL or a TQL. In a 
certain parameter range the TQL can be rectangular, but, as 
the field decreases further, it always becomes regular trian- 
gular, for which 8,,/8,,,, --, 1.366(1 - i), and the coeffi- 
cient ratio seven/s,, =: - 1.366( 1 + i) does not depend on 
H. Such values ofseven and s,, can be found from ( lo) ,  if we 
set xo = 5ao/8, yo = - 4bosina/3. The position of the ze- 
ros of the functions Y, and Fin a regular triangular TQL is 

I 

shown in Fig. 3 The zeros of the function Fare located at the 
intersections of the medians of the triangles, the vertices of 
which contain the Y, vortices. Before discussing at length 
the results of numerical calculations, let us generalize the 
suggested approach to the case of fields H < H,, , when the 
sum of the terms quadratic in F in Eq. (27) ceases to be 
positive definite. For fields below H,, the function F is not 
small in comparison with Y, , and, in order to find it, it is 
necessary to allow for terms of third and fourth order in F in  
the expression for the free energy. This can be done relatively 
simply only in those cases when the component-Y, lattice is 
a SQL or a regular triangular TQL. 

To solve this problem, let us use the perturbation theory 
in y. Without the terms proportional to y, fl,?, and y4, the 
free energy (27) takes the form 

The absolute value of the function F, corresponding to 
the free-energy minimum, should have the same periodicity 

FIG. 3. The location of the zeros of the functions Yl and F for a regular 
triangular TQL: @ is the function-PI zero, and X is the function-Fzero. 
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as the function lpo I. The nonzero component Y2 = F ap- 
pears against the background of the already existing compo- 
nent Y, = Rp, only in the fields H < H,, , where Hi, is de- 
fined by the equation 

Note that Hi, exists not for all b > 0, and only for b 
smaller than a certain critical value. 

In the case when p, corresponds to a SQL, we seek Fin  
the form 

Here ( 2  , j )  is the vector, by which the vortex lattice corre- 
sponding to F is displaced with respect to the lattice p,. In 
Eq. (35) only the quantity ( lpo I 'IF I ') depends on 2,j. Min- 
imizing it with respect to these variables, we can find 2, , j, 
corresponding to the Y, lattice and, consequently, the lar- 
gest possible field H,, for the given function p, (with defi- 
nitep and a). For a regular triangular SQL 

and the transition field H,, has the form 

For a square SQL 2, = a0/2, j, = - a0/2. For a rec- 
tangular SQL with a sufficiently large parameter a >  2 the 
quantity (Ip, I21F 1 2, has a very weak 2-dependence, and 
j, = - bo/2. 

I=-0,s ( 2 - H / H . 2 ) 2 / P ( I I .  z), 

For a regular triangular TQL of the component Y, F is 
chosen as a function describing a lattice with p = 0.25, 
a = 3"'/4, and a flux through the unit cell equal to 2@, 
displaced by the vector (2, j )  : 

F=RFGF (x, O='z R J .  exp (2nin (x -~ ) /oo  

The coefficients S, have the form (32). Substituting 
$ = R $(I G, 12) in (35) and taking into account that the 

relation (IG, 14)/(1 GFI2), forp = 0.25, u = 31'2/4 does not 
depend on seven and sod, (see Sec. 3), we make sure that the 
minimumofthe f function (Ipo121GF12)/((I~o(2)()GF12)) 
corresponds to the minimum of the function f with respect to 
2, j ,  seven and s,, . The following values of the variables, for 
which this minimum is realized, have been found numerical- 
ly: 2 = 0, j = 0, seven /sod, = - 1.366( 1 + i). It follows 
from (36) that the field H,, is largest for these values. 

Let us now analyze the terms in y and in the expres- 
sion (27) for the free energy. For a regular triangular TQL 
of the component Y, , the form of the function F found for 
y = 0 coincides with the induced solution for F for y#O in 
the field range H < Hc2 considered above. This allows to 
assume that in the whole range of fields H sufficiently close 
to Hc2 the solution (Y, ,\y, ), in this case, can be sought in 
the form (26), where p, and p, are found from Eq. (9),  the 
function F from Eq. (39), and f = j = 0 ,  
80,d/8even =1.366(1-i), S ,~~~/S , , ,=  -1.366(1+i). 
We substitute this solution into (27), neglecting the terms in 
y3 and y4. Making the change R, = RT and finding the mini- 
mum off with respect to R, we get 

if 
(1-H/HC2)Al+ B,lr12(I-H/R)>O; 

j=O. for (~-R/N,,)~~,+B,(TI~(~-II/~)GO. 

Here 

The formulae of the averaged functions are given in the 
Appendix. 

It is convenient to find the minimum ofB(H,.r) numeri- 
cally. The functionp,, (H)  in the range 3 < H < Hc2 is giv- 
en by Eq. (33) for a regular triangular TQL in the quadratic 
approximation in y. 

Let us consider now the case of the component-Y, SQL. 

I 

The lattice corresponding to F for y = 0 is displaced by the 
vector (1, ,j, ) with respect to the \y, lattice. Therefore the 
averages 

arising in Eq. (27) in the next orders in y reduce to zero. This 
is related to various transformation properties of the func- 
tions p,, p,, and F under translations through lattice vec- 
tors. For F these properties can be found from (37): 

]?(xi-a,. y)  =F (x, y)  c s p  (2nifj,l ( b ,  sin a) ) . 
ff(:c+b, cos a.  y-b, sir1 a )  

=P (2, y)  exp (-2niz/a,+2xi~,,/aO+2nifj, ctg ala,) . (41) 

Performing these transformations of the integration vari- 
ables in the expression ( I p, 1 'q, F *), we find, for example, 

< ~qo~%p2F'>-=exl~(--2nifjml(~, sin u))(lcpOIZ~~F*). 

Hence, for j, #nb,sina, it follows that 
( (p ,  I2p2F*) = 0. Using such relations, it is possible to 
prove that all the averages mentioned above vanish, if F does 
not coincide with pO. 
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Allowing for these properties of the solution for y = 0 
and taking into account that for y #O we have F = sp, in the 
field range i? < H < H,, , we look for Y, and Y, in the form 

Substituting (42) into (27), we find in the approximation 
quadratic in y 

f=l,,+j,. 
yo= (H/HC2-1) < Icpol')R2+0,5 ( ( 1  ( p o l 4 )  

+2y'(1+211)< i~p~ l~ (~pz l ' ) )K~  
+(H/R-1) (1'(2<(vo(2>+ ( I + ~ ~ ) ( ( ( P ~ ~ ~ ( G ~ ' ) R ~ \ V / ~  
+O.:,I 171'< lcpol">. 

~I=(HiH,2-l)~~S<I(P212)H'S2yZI vI'~72(i~2191G12) 
+y'RZ Re (<cp?2G"> I,.*') 
+Isl'((If/R-l)<(cpoIZ>+RZ(.l+-2b)(\ yol"> 
-+zjr7i3clcj21qol'>) 

+2y (~l-t2b)R"Re(~(Icp,l~(~~"cp,,>)+4yR~ t7~28e(s<lGILcp2'cp,>) 
+2yR Re (s 17*2(GIZcpO~2)). (43) 

Here G ( x , y ) = p , ( x - % , , y - J , ) e x p ( i J , x / L & ) .  
Since s-y, we will treat a part of the free energy f, as a 
perturbation, substituting into it the values of I V,  I and R, 
found from the minimization off,. For H > H,, , we have 

For H < H,, , then 

1fc2/ll- 1 
,I..=,.? [, 4- - 

I -  cl+ao)z/(p,<lqel->L) I - '  
Here Z =  (lpo121G12), 8, is defined by (29), and 

PA = P 0 ( y = o ) .  Note that the term 
2?(1 + 2b)(lpo121p,12)R4 may not be small and so is in- 
cluded in fo, similar to (28). Finding now the minimum off 
with respect to s, we get the following expression for the 
energy: 

f=-0 . . I  - ( l--///lfc2)2ip (H) .  

3-'  f N )  = (2/a) "X (14-27') -xL/3,/a 

+(YO)" (1-HIl7)wI (I-HIH,,) 
-$,021a-~o (2 (I+-2b)Z-'-y2r) 
-2xwy%e (<q2-G">exp (-2isV)) (46) 

Y'X I (iL2b) ~p,+2wp,-2wa'~. exy (2ib) (G2cpo'rpz') 1 + 
(20) " ' ( H , 8 - -  1)/(1-H/H,,)+ (1+2h)y,$,+40Zo ' 

The expressions for the averages Z, r, p ,  , and p, are 
given in Appendix. The coordinates 5, and j ~ ,  are deter- 
mined here by numerical minimization of Z. For the case of a 
regular triangular Y, lattice the averages (p :G *') and 
(G 'p ,*p :) reduce to zero. If the T I  lattice is rectangular, 
these averages do not vanish, but the contribution of the 
relevant terms in (46) is small, and the free energy depends 
weakly on 6,. 

Note that since the function G(x,y) transforms under 
translations like the function F in  (37), the absolute value of 
the component q2 for y#O can be periodic in the x,y plane 
with periods other than those of lp, I. The unit cell of such a 
lattice can contain several single-quantum vortices of the 
component q , ,  and, consequently, the magnetic flux en- 
closed by the cell can be larger than @, . Thus, for example, if 
the Y, lattice is rectangular (p = 0 )  , then j ,  = - b, /2, 
2, = ao/2 and Iq, I has the following properties: 

In this case the unit cell encloses two quanta of magnet- 
ic flux. The lattices of the type (42) are nonsingular for 
H<H,,  (and we have V#O). 

We now present the results of numerical analysis of Eqs. 
(33), (40), and (46) for various values of the parameters b 
and y. In Figs. 4-6 we have shown in the Hb plane the re- 
gions in which various lattice types are energetically pre- 
ferred for fixed y values. From the above-mentioned condi- 
tion D = 0, as well as from Eqs. (2)  and ( 5 ) ,  it follows that 
the parameter E = C / (  1 + C )  should satisfy the inequality 

I E ~  <0.5. This being the case, we have 
I yl < m- 1~0 .225 .  

In the case y = 0 (Fig. 4a) we have i? = H,, , and, con- 
sequently there is no field range where the results of Sec. 3 
are valid. The quantity P does not depend on H [see (40) 
and (46) 1. The optimization of Eq. (46) for ,B with respect 
top and aand  comparison with a TQL [Eq. (40) ] show that 
for all b > 0.45 a regular triangular singular SQL has the 
lowest energy (in this case either Y, or Y, vanishes). A 
nonsingular rectangular SQL corresponds to b < 0.45 (see 
Fig. 4a). Forb = 0 its energy becomes equal to the energy of 
a regular triangular TQL. 

Let us explain these results. A nonsingular lattice with 
givenp and a is more favorable than a singular one with the 
same p and a for b < b ', where 

h ' ( p .  0)=0.5(( lqo14)/(lqn121FIL)-4). 

The function Fis given by Eq. (37). As a increases the quan- 
tity b ' grows and for a- co we have b ' - exp(m/4) .  For 
b < b '(p,u) the value ofp(p,a)  corresponding to a SQL de- 
creases with decreasing b and for a certain h(p,u) becomes 
smaller than the value o f 0  for a singular regular triangular 
SQL (p = +,a = 3'12/2). For certain values ofp and a this b 
could be larger than the threshold value 
b '(p = +,a = 3"'/2) = 0.13. As mentioned above, the lar- 
gest h equals 0.45 (for a, -- 3.7). With decreasing b, the 
value of a, corresponding to the most favored SQL falls off, 
and for b = 0 we have a, -- 1.73. 

For y # 0 the parameterp becomes a function of H, and 
as the magnetic field decreases phase transitions accompa- 
nied by changes in the vortex lattice structure occur. For 
H+ H,, the lattice types described in Sec. 3 are realized. The 
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FIG. 4. Phase diagrams for small E. The region I corre- 
sponds to a regular triangular SQL, the region 3 to a 
regular triangular TQL, and the regions 6 and 7 to a 
nonsingular lattice of the type (42) withp = 0, a = 1 
and p = 0, a# 1 respectively. 

I I I I 
44 45 b 41 429344 b O.I420,3 b 

E -0 € - G I  E -42 

label I in Figs. 4-6 denotes the regions, in which a singular 
regular triangular SQL is energetically favored, and the fig- 
ures 2 and 2 ' the regions of a singular rectangular SQL. 
When the field H falls off, the energy degeneracy with re- 
spect to the sublattice displacement taking place in the lat- 
tice withp = 1/4, a = 3ll2/4 for H+ Hc2 (see Sec. 3) is lift- 
ed. The minimum with respect to xo and yo corresponds to a 
regular triangular TQL. This fact enlarges the region 3 
where a regular triangular TQL is favored (Figs. 5 and 6).  In 
this case a transition to a TQL may be obtained even for 
&< H < Hc2 if we use Eq. (33). For sufficiently large values 
of b and E the transition from a rectangular SQL to a rectan- 
gular TQL (the region 5 in Fig. 6 )  occurs first, and then the 
transition to a regular triangular TQL. For parameter values 
corresponding to the regions 3 and 4 in Fig. 2 the field of the 
SQL-TQL phase transition is very close to Hc2 and its deter- 
mination is not quite correct due to the approximations used 
(xB l ,y< 1). 

For E 5; 0.23 the region 3 is divided into two parts corre- 
sponding to large and small b (cf. Figs. 4 and 5). For small b 
the transition to a TQL occurs in fields H < &, and in order 
to describe it we should use Eqs. (40) and (46). Of course, 
we neither allow for possible deviations of the TQL structure 
from a regular triangular lattice nor consider the case of 
arbitrary parameters O,,,, and Odd. 

For E 5; 0.1 and b < 0.4 the phase diagram becomes more 
complicated (Fig. 4b). Thus, for example, for E = 0.1 and 
b < 0.05 a narrow region 6 arises in which a nonsingular lat- 
tice of the form (42) with p = 0, a = 1 corresponds to the 

energy minimum. Furthermore, forb > 0.05 a transition to a 
nonsingular rectangular Y, lattice also given by Eq. (42) 
(the region 7 in Fig. 4b) may occur with decreasing field. 
The region 7 becomes larger as E decreases and the region 3 
becomes more narrow until it disappears completely as E -. 0 
(Fig. 4a). The phase transition from a singular triangular 
SQL to a nonsingular structure of the type (42) with 
p = 0.5, a = 3'/'/2 is not realized since in the fields higher 
than H,, (p = +,a = 3lI2/2) [see (38) ] either a TQL be- 
comes energetically favored or a nonsingular lattice of the 
form (42) with p = 0. 

Note that calculations have been carried out also for 
such H fields, for which the condition ( 1 - H /Hc2 ) ( 1 does 
not already hold. It has been shown in Ref. 16 that in the case 
of ordinary superconductors the approach used near H,, is 
applicable for fields H 2 0.4Hc2. Superconductors with a 
two-component order parameter are characterized by the 
existence of two close maxima H,,, : & and Hc, (see Secs. 1 
and 2). The other H,, , as in ordinary superconductors, are 
substantially smaller than Hc2. Therefore we can hope that 
the the results found above are valid even when the inequali- 
ty ( 1 - H /Hc2 ) ( 1 does not hold. 

All phase transitions between different types of vortex 
lattices (Figs. 4-6) are first-order phase transitions. 

Let us determine the symmetry groups of these phases, 
limiting ourselves to the case in which the order parameter 
corresponds to the two-dimensional representation El  of the 
group D, . Then, for example, for singlet pairing the super- 
conducting order parameter has the form 

FIG. 5. The phase diagram for E = 0.23 corresponding to the region of a FIG. 6. The phase diagram for the largest possible E = 0.5 ( D  = 0 ) :  the 
regular triangular TQL (3) divided into two parts for large and small b: region I corresponds to a regular triangular SQL, the region 3 to a regular 
the region I corresponds to a regular triangular SQL and the region 2 to a triangular TQL, the region 5 to a rectangular TQL, and the regions 2 and 
rectangular SQL. 2 ' to a rectangular SQL. 
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where (7, ,r], ) transform like the components of a two-di- 
mensional vector in the x,y plane.'9 The symmetry group of 
A(k,r) for a regular triangular SQL (the region I in Figs. 
2,4-6) includes magnetic translations T,, , Te2 through the 
vectors el = (a, ,0) and e, = (b, cosa, - b, sina), magnet- 
ic rotations through the angle a/3 (L,, ) around the axes 
parallel to z and passing through the zero points of the com- 
ponent Y, in the xy plane, reflections a, in the plane perpen- 
dicular to H, and transformations RU, [R is time reversal 
and U, denotes rotations through the angle a around the 
axes lying in the (x,y) plane] : 

where U,,, U,, , and L,, are the rotations around the axes 
passing through the point (0; - (3'/2/4)ao). For a rectan- 
gular SQL (regions 2 and 2 ' in the figures) the symmetry 
group has the form 

C,={T , , ,  T,,, -a:, -KCTLx. RU,,, -L , ) .  (48 

The rotations U,,, U,, , and L, are around the axes passing 
through the origin. For a square SQL we have 

In the case of a regular triangular TQL (the region 3 in the 
figures) we have 

and the rotation axes pass through the point (5ao/8,0). For 
square and rectangular TQL (regions 4 and 5) 

where L,, L,, , U,,, and U,, are the rotations around the 
axes passing through the point (a,/2,0). 

For nonsingular lattices of single-quantum vortices of 
the form (42) with two quanta of magnetic flux per unit cell 
symmetry properties substantially depend on the phase Sv of 
the complex value V. For V #O, in the case of square and 
rectangular T I  lattices (regions 6 and 7 in Fig. 6) the sym- 
metry of A(k,r) with respect to the transformations R U,, 
L, and L,, is broken, but the symmetry with respect to 
combined rotations of the form R U,,L, and to combina- 
tions of rotations and translations can be conserved. For 
y = 0, the free energy does not depend on 6,. In this case the 
lattice symmetry group in the region 7 of Fig. 4a is 

G:=( T,,+e,, T e , - e , ,  -az, -Tc,Ln,  -T,,L,, 

RU2,, H U A i ,  -Te,RC',T, -T,,RU,,) 
for 6,,=0. n: (53) 

G7-={Te,+,,, T,,-,,, -OZ, -Te,Lx,  -Tc2L,.  
-ZIU,u[~.z, T e , R U s ,  Te,RU:,) 

for fi,=*n/2, (54) 

G,={Te,+,,, T,,-,,, -a,, --T,,L,, -T,..L,) (55 
for all other values of 8, .  

Here the rotations are around the axes passing 
through the origin. For y #O in the case of a rectangular Y, 
lattice the energy degeneracy in S, is lifted, and the mini- 
mum of the energy (46) is achieved for 6, = + a/2, if 

a> 1. The lattice symmetry group in the region 7 in Fig. 4b 
thus has the form (54), if the period of the function I Y, I in y 
is larger than that in x (i.e., a = b,/a, > 1 ). 

If the Y, lattice is square (the region 6 in Fig. 4b), the 
free energy is independent of 6, also for y f 0, since the aver- 
ages (P :G*~) ,  (Ig,,I2g,,g,,*), and (IGI2g,,g,,*) reduce to 
zero. The symmetry group G, of the order parameter A(k,r) 
coincides in this case with G, for S, + + a/4, 3a/4, and 
5a/4. For S, = a/4, 5a/4 

For S, = - a/4, 3a/4 

To find S, in such a lattice, it is necessary to allow for 
higher-order terms in Y, and Y, in the free energy expan- 
sion. 

5. CONCLUSION 

Thus, using the formulae (33 ), (40), and (46), we ar- 
rive at the conclusion that near H,, there are various phase 
transitions for different values of the parameters 
E = C / (  1 + C) and b. For small bg0.4 and EGO. 1 this may 
be a transition from a regular triangular SQL for high fields 
to a nonsingular lattice formed by single-quantum Yl vorti- 
ces (Fig. 4b) whose existence has been suggested in Refs. 7 
and 9. When the field decreases, a SQL-TQL transition oc- 
curs in the widest possible parameter range. This qualitative- 
ly agrees with the direct numerical solution of the GL equa- 
tions in Ref. 10, but quantitative comparison is impossible, 
since the values of the parameters b and C, for which calcula- 
tions have been carried out, are not indicated in Ref. 10. 
ExperimentsZ0 on H,, and Hc2 measurement have yielded 
6 ~ 0 . 1 7  and C z  - 0.29. For such b and C the SQL-TQL 
transition occurs for H=:0.57Hd, which is fairly close to the 
experimental value. I3-l5 

For the parameters b and C corresponding to the re- 
gions 3,4 and 2 ' in Fig. 2, the TQL and rectangular SQL 
energies are very close to each other, and a slight decrease in 
the field shows that a TQL is more favored. Thus, the esti- 
mates made in Ref. 8 by the Wigner-Seitz method are qual- 
itatively correct, sing, they indicate the TQL existence near 
Hc2. For x )  1, as already discussed in Sec. 3, single-quan- 
tum vortices are energetically favored near H,, . This means 
that besides the considered transition to a TQL for decreas- 
ing H a  transition from a TQL to a single-quantum vortex 
lattice should occur8 in the field range, for which the inter- 
vortex distance satisfies the condition ( < d  <A. 

When this paper was ready for publication, I learned 
the results of Refs. 22 and 23. In Ref. 23 phase transitions in 
exotic superconductors are studied on the basis of further 
development of the symmetry analysis proposed in Ref. 11. 
For the GL functional of the form ( 1 ) and in the case Hllz 
and b > 0 considered above only one phase transition was 
obtained in Ref. 23: from a single-quantum hexagonal vortex 
lattice to a lattice with tripled number of flux quanta per unit 
cell. The authors treat only regular triangular lattices of 
component-Y, single-quantum vortices (tripling is connect- 
ed with Y, ), and allow neither for single-quantum Y, lat- 
tices with arbitraryp and a (including rectangular ones) nor 
for two-quantum Y, lattices. As follows from the above 
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analysis, allowance for such possibilities is important and 
leads for b > 0 and Hllz to a phase transition pattern, which 
differs qualitatively from that found in Ref. 23. 

Furthermore, a singular-nonsingular vortex lattice 
transition for Hlz has been discussed in Refs. 22 and 23. 
Note that though the GL equation solutions differ substan- 
tially for Hllz and Hlz, in the latter case it may also prove 
important to allow for changes in p and o in a single-quan- 
tum vortex lattice and TQL formation. 

I would like to thank Yu. S. Barash for supervision and 
help. I am grateful to M. E. Zhitomirskii for acquainting me 
with the results of Ref. 23 before its publication, and I thank 
G. E. Volovik for helpful discussions. 

APPENDIX 

This Appendix includes some formulae used to calcu- 
late the quantities entering into Eqs. (33), (40), and (46). 

The coefficients in the expression (33) for P - '(H) 
have the form 

The coefficients in (40) for a regular triangular TQL 
can be found numerically and equal 

X exp (--2xipnm-nc~(~zVrn~) ) =0,95, 

Here OeVen and Oodd are found from ( lo),  if xo = x', yo = y', 
and seven and sod, from similar formulae for xo = 5a0/8, 
yo = - 4bosina/3. 

The averaged quantities from (46) have the form (the 
case of a nonsingular single-quantum vortex lattice) : 

-no(m2+ (n+yml (b,, sin a ) ) ' ) ) ,  

+nk2 ( (n+W,./ ( h ,  sin a) )'-mL)') cxp ( h i m  (.?,,la,--np) 
-no(mz+ (n+>g,/ (b, siu a )  )')). 

p, = (0.5-nn(n-m+~.l(I.sia a ) ) ' )  

n o  (mL+ (n+gm/ (O,, sin a)) ' )) .  
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