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This paper discusses a possible reason for splitting in the superconducting transition in UPt,, 
which may result from the fairly strong coupling of conduction electrons with the magnetic 
moments of uranium atoms. This assertion is based on a simple model described by a Ginzburg- 
Landau functional with a two-component order parameter +. The Ginzburg-Landau functional 
without interaction possesses the complete symmetry of a hexagonal crystal, D,, . Uranium 
atoms, however, have magnetic moments M, and the interaction term yl M$ l 2  in the Ginzburg- 
Landau functional breaks this symmetry locally. Averaging over the various configurations of the 
vector M is performed with allowance for the finite correlation radius a, on the assumption a < 6, 
with 6 the coherence length. This restores the symmetry of the effective Ginzburg-Landau 
functional up to D ,, , which means that in a real crystal the hexagonal symmetry is not broken on 
a scale larger than 6. Within this theory expressions for the discontinuities in the specific heat and 
an equation linking the upper critical field Hc2 with the splitting AT, of the phase transition 
under pressure variations are obtained. The difficulties associated with the fact that the magnetic 
moments of uranium atoms are small are discussed. 

1. INTRODUCTION 

Recent years have seen a surge in experimental work 
supporting the idea that there is splitting in the supercon- 
ducting phase transition in UPt, (Refs. 1-3). The tempera- 
ture dependence of the upper critical field Hc2 also exhibits a 
fairly sharp break, which suggests the existence of at least 
two superconducting phases in UPt, (Ref. 3 ) .  The number 
of theoretical papers devoted to explaining the experimental 
data is on the 

Theories based on the competition among the super- 
conducting states belonging to different representations of 
the symmetry group D ,, of the UPt, crystal4 are satisfactory 
in that the upper critical field is isotropic in the basal plane, 
but they do have an important drawback: they cannot ex- 
plain the relatively low value of the spliltting AT, (there are 
no apparent reasons why the coefficients in the Ginzburg- 
Landau functional belonging to different representations 
must be close to each other). 

Another large class consists of theories operating with- 
in the framework of a single two-dimensional representation 
of the D,,  In these theoreis the field H,, is general- 
ly anisotropic in the basal plane when there is magnetic or- 
dering, say, antiferromagnetism or spin-density waves. This 
drawback is not insurmountable, since if we consider a mode 
in which the magnetic-correlations radius a is much smaller 
than the coherence length 6, the free energy undergoes self- 
averaging on a scale greater than 6, which means there are no 
preferable directions and isotropy is restored. 

Here the way in which this averaging is carried out is 
very important. A possible approach is the one introduced 
by Imry and Ma.' Theories of this type4 do not allow for 
temperature fluctuations (i.e., we have T = O), and in addi- 
tion a fairly strong assertion is made that the solution for the 
superconducting order parameter $superposed on the given 
magnetic-moment distribution has the form of a function 
possessing a characteristic scale L determined by minimiz- 
ing the free energy as a function of L. 

This statement is, to say the least, debatable. The ques- 

tion of the existence of a state of the superconducting-glass 
type in the given conditions remains open. But, most impor- 
tant, the size of the energy gain obtained in such a theory, 

is too small. Here yM characterizes the strength of the in- 
teraction of M with $ (see above), since both a/6 and y M 2  
are small (for y~ - 1, superconductivity is suppressed). 

The above reasoning shows that the observable splitting 
cannot be explained by such effects in view of their small- 
ness; more than that, these effects can be completely ignored. 

The theory suggested here also assumes that UPt, un- 
dergoes a phase transition to a superconducting state whose 
order parameter transforms according to one of the two- 
dimensional representations of the hexagonal symmetry 
group, D,,  . In this case, as shown by Volovik and Gor'kov,' 
the density of the Ginzburg-Landau functional without any 
interaction with M has the following form 

where $ = ($,,$,) is a two-dimensional complex-valued 
vector. The third term on the right-hand side of ( 1 ) deter- 
mines the specific form of the superconducting state: for 
p2 > 0 the solution 4' = 0, that is, 4 = ( l ,i),  is preferable 
energywise; but for 8, < 0 the desired state is I/I = ( 1,O). 

The functional ( 1 ) describes a "pure" superconductor; 
from the standpoint of phenomenological theory, the aniso- 
tropic interaction of conduction electrons with magnetic 
moments (as in UPt,) or with impurities (as in 
U, -, Th, Be,,) is described by a term of the form yIMI/II2 in 
the Ginzburg-Landau functional. The effective free-energy 
functional can be found by averaging the Ginzburg-Landau 
functional over the orientations of M .  

The possible phase transitions caused by coupling with 
M are discussed below, where an expression for some phys- 
ical quantities is also derived. 
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2. AVERAGING OVER ORIENTATIONS OF VECTOR M. THE 
EFFECTIVE FREE-ENERGY FUNCTIONAL 

Let us consider a superconductor described by the func- 
tional 

The vector M( r ) ,  as noted earlier, represents the magnetic 
moment of uranium atoms. It is known9 that in UPt, below 
TN = 5 K antiferromagnetic order sets in. Hence, it is natu- 
ral to assume that the vector M is distributed in direction 
with a finite correlation radius a: 

< M, ( Y )  111, (r ' )  >= '/2J1'6,, t>xl) ( 1 r-r' I / @ ) ,  ( 3 )  

where 

31 ( 2 )  = ( M ,  ( v )  . 114. (r)  ) . 131 (r) i =it2 

To obtain the effective free-energy functional we must 
average over the orientations of M. Since this averaging has 
been carried out in Ref. 10, we will not repeat it here. Calcu- 
lations show that allowing for a finite (nonzero) correlation 
length a changes the expression for em, derived in Ref. 10 in 
the following way: 

where p = T - ', and 

is the zeroth-order modified Bessel function, whose loga- 
rithm exhibits the following asymptotic behavior: 

Note that the case a - a,-, , where a - a,_, is the distance 
between neighboring uranium atoms, has been considered in 
Ref. 10. 

One easily notices that the first term in Eq. (4)  only 
lowers the temperature of the superconducting transition. 
The effect of the second term is not as clear. If a is fairly small 
(SO small that the independent variable of I, is small), the 
second term in (4)  may result in a variation in p2 in ( 1 ). 
Generally f12 > 0 (this follows, for instance, from the weak 
binding approximation), and if the coupling is fairly strong, 
the coefficient of the term proportional to 1 + 1 2  that allows 
for the interaction, p2 ,ff, may change sign: 

Then, as in the "pure" case, we have $ = ( 1,i) forb', > 0, 
but + = ( 1,O) for P2 eff < 0, where in contrast to the "pure" 
case there is another phase transition, at T :2'. The reason is 
that the function 

has a minimum if 0, ,, is negative, which follows from the 

fact that 

F ,,,,, (x) =0. x=0. 

F (.z) <:(I, .r>O ( X + O ) .  

J' ,,nl, (,r) >O.  x-co. 

Let Fim, have a minimum at point x = x,. Then, as the tem- 
perature is lowered, there first occurs a transition to state 
+ = (1,O) and then at the point I + I 2  = xO there is a transi- 
t iontothephase+= ( l , i a ) ( O < a < l )  suchthat = x 0  
(is temperature independent), with 1 + I  increasing (cf. Ref. 
10). I fa  is fairly large, we havefl, ,, < 0 in any case (see Ref. 
8),  which means that splitting of the phase transition does 
indeed occur. Note that in contrast to the theory of Machida, 
Ozaki, and Ohni,6 splitting disappears for a finite value of M, 
with the exception of the region of extremely high values of 
a. 

Note that as a -  co (i.e., in the single-domain case), 
F,,, ( I + /  ) tends to zero. This means, as can easily be seen, 
that superconductivity is not suppressed. 

Here are expressions for the jumps in specific heat: 

where the subscripts " + " and " - " refer to the "upper" 
and "lower" transitions, respectively. Note that asp,  eE var- 
ies (for instance when pressure changes; see below), the sum 
of these jumps, AC + + AC - = a2/2p,, is constant, which 
can be observed in experiments. 

According to a recent report," an increase in pressure 
reduces the splitting in the transition, 

L A  ci ---- = - (T ,+-T,- )  =- If)  m~.kbar- ' ,  
dp tip 

and it vanishes atp* = 3.7 kbar and T * = 419 mK. The kink 
in the temperature dependence of H,, also disappears: 

In this theory, for large values of a we have 

that is, the decrease in splitting is caused by the weakening in 
the coupling, which in turn leads to a decrease in H T  
- H , , specifically 

In deriving this formula we assumed that the coefficients of 
the "pure" Ginzburg-Landau functional change with in- 
creasing pressure much more slowly than the interaction 
term yM2. From (9)  it follows that 
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which generally agrees with measured values of specific heat 
jumps (8,/P, -- 2-3 1. 

3. CONCLUSION 

We have shown that in superconductors in which there 
is nontrivial pairing (with a two-component order param- 
eter) and a fairly strong anisotropic interaction (with the 
magnetic moments of the uranium atoms in UPt,), the su- 
perconducting transition splits: as the temperature drops, 
there first occurs a transition from the normal state to the 
superconducting phase I (+  = ( 1,O) ) and then a transition 
from phase 1 to phase 2(+ = ( 1,ia) ). The jumps in specific 
heat in such transitions are comparable. 

The intrinsic moment of a Cooper pair in phase 1 is zero 
while in phase 2 it is nonzero (the magnetic moment of the 
pair is p-i[++* ], and in phase 1 we have + = +*). The 
upper critical field H,, is isotropic in the basal plane, which 
also agrees with the experimental data. 

Of course, within the framework of this theory it is im- 
possible to obtain numerical results. For this one must carry 
out a consistent microscopic derivation of the interaction 
term yl M+ / and perform the averaging over vector M. 

There is also a difficulty related to the fact that the ob- 
served magnetic moment is extremely small ( p  - O.Olp, per 
uranium atom). As it happens, AT, /T, - yM ,/a, and ifp is 
very small, AT,/T, cannot be of order 0.1, which is ob- 
served in experiments ( i fp is of orderp, , then yM 2/a - 1 ). 
A possible explanation of this contradiction consists in the 
following. Consider the correlator 

h 

where Ma ( r )  is the operator of the magnetic moment of a 
uranium atom at site r. We take its frequency representation, 
KaB (rr'w). Since the magnetic transition occurs at TN = 5 
K (and T, = 0.5 K g  TN ), we assume that the K correlator 
will be the following: 

where M is the observed lattice magnetization vector (with 
M ( r )  = - M(rl )  if r and r' are the position vectors of two 
neighboring uranium atoms). Clearly, K does not vanish at 
nonzero frequencies. Hence, we must allow for the contribu- 
tions from these frequencies in the interaction term. Indeed, 
if a frequency w is low compared to T,, the vector M is 
unable to average over times T of order l/T,, and in experi- 

ments in measuring the magnetic moments the measurement 
time rm is much longer than 1/T,, which means that only 
the fraction of correlator K up to frequencies w - l / ~ ,  < T, 
gets measured. This viewpoint is supported by the fact that 
in neutron-scattering experiments the size of the correlator 
is not at all small (approximately corresponding to the mag- 
netic moment p -p, per uranium atom), and moreover, the 
correlations become ferromagnetic. l 2  

Of course, the above reasoning cannot serve as a rigor- 
ous substantiation of the validity of the given model. 

Another (but similar) splitting mechanism is also pos- 
sible. In the presence of shortwave (k  - 2k ) low-frequency 
lattice vibrations and nontrivial pairing (+ is a vector) we 
return to the results of Ref. 10 because in this situation these 
soft phonons can be considered as anisotropic impurities 
(the frequency w of these phonons is much lower than T, ). 
In addition, the large effective electron mass (m*  - lorn, ) 
may indicate a large coupling constant for the electron- 
phonon interaction in the range of these vibrations, which 
means that the interaction term in (2)  is fairly large (but 
here vector M corresponds to these vibrations rather than to 
the magnetic moment). The question of which of these two 
mechanisms is responsible for the splitting in the supercon- 
ducting transition in UPt, (low-frequency phonons or mag- 
netism) remains open. 

The author is deeply grateful to V. P. Mineev for valu- 
able discussions. 
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