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The solution of the dimer problem on a plane lattice can be reduced to finding the fermion 
spectrum on the same lattice in a special magnetic field. We find the possible critical indices for 
phase transitions in dimer systems. We note that in a second-order phase transition point the 
system in general does not have conformal symmetry. 

1. INTRODUCTION 

An object occupying two neighboring lattice sites is 
called a dimer. A dimer covering is a distribution of dimers 
such that one and only one dimer starts from each lattice 
site. If we assign to each link in the lattice a well defined 
statistical weight the weight of a dimer covering is the prod- 
uct of the weights of all links occupied by dimers. The statis- 
tical sum of the dimer problem is thus the sum of the weights 
of all dimer coverings. In the case when the weights of all 
links are the same the problem is reduced to evaluating the 
number of possible dimer coverings of a given lattice. 

In 1961 Kasteleynl and Temperley and Fisher2 found 
independently an exact solution of the dimer problem on a 
plane lattice by reducing the calculation of the statistical 
sum to the evaluation of the Pfaffian'.2 of an antisymmetric 
matrix. In various dimer systems two phase transitions have 
been observed: an Ising type transition and a Kasteleyn type 
transition (see Ref. 3 and the references given there). In the 
next section we propose, on the basis of Ref. 4, what in our 
opinion is the most intuitive way for finding an exact solu- 
tion of the dimer problem and which is ultimately in fact 
equivalent to the Pfaffian method (see, e.g., Ref. 5). In the 
later sections we discuss possible phase transitions in dimer 
systems. 

2. DlMERS AND FERMIONS 

We consider the dimer problem on a square lattice 
where z, is the weight of the vertical links and zh is the 
weight of the horizontal links. It is obvious how to change all 
discussions which follow in this section to other cases. The 
statistical sum has the form 

The summation here is over all dimer coverings, P, and 
n, (nh ) is the number of vertical (horizontal) dimers in the 
given covering P. It is clear that we have 

where N is the total number of lattice sites (which must be 
even ) . Squaring ( 1 ) we have 

The summation in (3)  is over ordered pairs of dimer cover- 
ings (P,P '), while n, , nh and n:, nl, are the numbers of verti- 

cal and horizontal dimers in the coverings P and P', respec- 
tively. We now consider a pair of typical dimer coverings 
(see Figs. la,b). We superpose the dimer coverings of Figs. 
la,b on one another (see Fig. lc) ,  obtaining a dimer configu- 
ration and closed contours. The "ordered pair of dimer co- 
verings-dimer and closed contour configurations" corre- 
spondence is not one-to-one. To make it a one-to-one 
correspondence we assign a direction to a contour. This can, 
for instance, be done as follows. We number all lattice sites in 
an arbitrary way and then assign to each contour the direc- 
tion in which the dimer from the site with the lowest number 
on the contour starts in the first dimer covering. For in- 
stance, in the case of the numbering corresponding to Fig. 
Id, the direction of the contour is counter-clockwise. The 
summation in ( 3 )  can thus be taken over all configurations 
of closed directed contours. The weight of a configuration is 
then the product of the weights of all links occurring in the 
contours. A dimer is considered to be a directed contour 
going one way and back along the same link. Its contribution 
to the configuration weight is correspondingly the square of 
the weight of the link. We thus have 

FIG. 1. a: Example of dimer covering with n, = 4, n,, = 6; b: Example of 
dimer covering with nu = 2, n, = 8; c: Dimer and closed contour configu- 
rations obtained by superimposing the two dimer coverings of Figs. la and 
Ib; d: The closed contour has the direction corresponding to the direction 
of the dimer in Fig. la starting from the smallest number on the contour. 
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The summation here is over all configurations C of directed 
contours and the product is over the links I of the lattice 
which belong to a given contour configuration C; z, is the 
statistical weight of link I in the lattice. In the case of the 
square lattice z, is equal to z, (z, ) if the link I is a vertical 
(horizontal) one. We shall now prove that the directed con- 
tours in (4)  can be considered as closed world lines of fer- 
mions (one of the directions in the lattice plays the role of 
time, the other that of space). To do that we consider the 
following integral over the Grassmann variables gi ,  Fi ( i  
refers to the lattice sites) 

where Av is an antisymmetric matrix 

We expand the exponent in (5) in a series and use the rules 
for integration over Grassmann variables: 

In the sum in (8)  i,,i,, ..., i, run through all lattice sites inde- 
pendently. Changing the order in the product in (8)  and 
using the integration rules we get from (8) 

Comparing ( 11 ) and (4)  we see that if the absolute magni- 
tudes of the Ag are equal to the weights of the ij links in the 
lattice and the phases of the Ag are chosen such that 

for all closed contours on the lattice which may arise in the 
sum in ( 1 1 ) we have 

We show that one can make the choice ( 12) for the phases in 
the case of plane lattices and that one can choose the Ag to be 
Hermitean. We choose all Ag to be purely imaginary (satis- 
fying the Hermiticity condition and (6)  simultaneously) 
and in such a way that ( 12) is satisfied for each elementary 
plaquette in the lattice. This can be done because the number 
of variables ("  + " and " - " signs on all links in the lattice) 
is equal to the number of bonds (number of elementary pla- 
quettes in the lattice). We show that it follows that ( 12) is 
satisfied for all permissible contours if ( 12) is satisfied for all 
elementary plaquettes. We consider an arbitrary closed con- 
tour (i,, ..., in ) of length n and multiply the phases of all AU 
over all counterclockwise plaquettes inside it (see Fig. 2) .  
The phases of the AU for all interior links cancel because of 
the Hermiticity of Ag and we obtain 

exp [i  Arg [A,,i,Ai,i,. . . Ahi,l I .  

On the other hand, the same phase is equal to 

exp ( i n K - t i n  ( 2 L - n ) / 2 ) .  

where K is the number of plaquettes and L the total number 
of links on and inside the contour. From Euler's theorem for 
the diagram in Fig. 2, according to which 
K - L + ( V + n)  = 1 ( V is the number of interior vertices 
of the diagram), and the fact that V is even for diagrams of 
a dimer origin, Eq. ( 12) holds for any allowable contours 
from ( 1 1 ) . The validity of ( 13 ) is thus proven and evaluat- 
ing 2, we obtain 

the weight of the link ij if ij 

IAU~ = are nearest neighbors, 
0 otherwise, 

A.. =A * 
O J l  ' 

Ai,i2Ai2il...Aini, = exp i ( a  + an/2)IAi,iZAi2i 3... Aini, 1, 
(15) 

[i,i, ... in ] is any arbitrary plaquette in the lattice. 

The summation is over the configurations C of directed 
closed contours and the product over the contours 
c = {i,, ..., in ) from each configuration C. Integrating (9)  we 
have 

Note that the antisymmetry of Ag is no longer required in 
( 15), as it follows from the gauge invariance of (4)  that ( 14) 
is completely determined by the conditions ( 15). The dimer 
problem is thus reduced to the problem of fermions on a 

We rewrite ( 10) in the form 

x n [erp [- i (n + nn/2)] Ai.,i.Ai~, - . Aini,l. 
C r E C  

c=[i ,...in] 
FIG. 2. Diagram formed by a closed contour and the plaquettes inside it. 
The arrows show the directions in which one must multiply theAU matrix 
elements. 
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lattice with a "magnetic field" with a flux @ = 77 + m / 2  
(flux quantum equal to 277) through an n-gonal plaquette. In 
concluding this section we note that our calculations are in 
fact parallel to those in Ref. 1. There is also a construction 
with a superposition of two dimer coverings upon one an- 
other in Ref. 6, albeit in another context. 

3. FERMION SPECTRUM AND PHASE TRANSITIONS 

We find from ( 14) the free energy 

of the dimer system [the temperature T occurs in Z only 
through the weight of the dimers, for instance, 
z, = exp( - E,/T)]: 

apart from an unimportant constant. Having found the fer- 
mion spectrum (we assume the distribution of the weights to 
be periodic and the lattice to be infinite) we have 

The summation here is over all branches of the spectrum and 
the integration is over a Brillouin zone, and ~ ( k )  is the fer- 
mion spectrum. It is more convenient to rewrite ( 17) in the 
form 

where A (k)  is the Fourier transform of the matrix Au.  For 
instance, for the square lattice considered earlier we have 

-iz, [esp ik,-cxp(-ik,) ] z,[exp ik,+exp (-ik 
z,[exp ik2+esp (-ik,) ] iz,[exp ik,-exp(-ik,) ] 

(19) 

in the gauge corresponding to Fig. 3 and we then find for the 
free energy 

We note that the free energy ( 17) depends in a complicated 
manner on the temperature because the temperature enters 
into the shape of the spectrum through the statistical weight 
of a link. In particular, when we change the temperature one 

FIG. 3. The A, corresponding to (0) links without arrows are purely real. 
Ifthe direction ofan (0) link is the same as thearrow, we haveA,- = ilAv I ,  
and if it is in the opposite direction, we have A, = - ilAv I. 
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of the branches of the spectrum in ( 17) may touch the zero 
of the energy. The temperature dependence of F then be- 
comes singular and a phase transition occurs. We expand 
~ ( k )  near the contact point in a series in the momentum and 
in the difference between the temperature and the critical 
temperature, and for the singular part of the free energy we 
write 

Here we have chosen the simplest form of tangency, and set 
T = ( T - T, )/T,. Expression (21 ) formally diverges but 
we know that the singular part of F is determined by the 
k Z O  region and we have thus 

and for C,,, -a 'F/d$ we have 

We see that (23) is the same as the singular part of the specif- 
ic heat for the Ising model. We have a = 0 for the critical 
index. This is not by accident. We show in the next section 
that for dimer systems which are equivalent to the Ising 
model7 the singular part of the free energy is determined by 
an expression of the form (21 ). We consider a somewhat 
more general form for the singular part of R 

Changing the variables, 

we have 

and the critical index a for the specific heat is 

For n = 1 we find, of course, a = 0 as for the Ising model (to 
obtain the logarithm in (24) we must proceed more rigor- 
ously). For n = 2 we have a = $. This index corresponds to 
the ''4 order" transition or the Kasteleyn transition5 (see 
next section). It is clear from (25) that for n $. 1 the wave- 
vectors k, and k, transform according to different scaling 
laws. In fact, k, has the same dimensionality as T and k, has 
the dimensionality of TI'". This means that at second-order 
transition points, corresponding to (27) with n # 1, there is 
no conformal symmetry which usually is p r e ~ e n t . ~  This is 
connected with the pronounced anisotropy of the corre- 
sponding dimer model and thus with the different scaling 
laws along different directions in the lattice. One can, of 
course, consider also a more general form of (24). For in- 
stance, for 

we have 
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In this case only the terms which decrease most slowly as 
r- 0  remain in ( 2 8 )  in the expansion in k .  Not all values of s, 
p, q, m, and n corrrespond to different indices. For instance, 
the cases 

E ( k )  = ~ ~ + k * ~ + k z l ,  E ( k )  ~ t ~ + k ~ ~ + T k ~ ~  

give the same value of a since k, has the same scaling dimen- 
sionality in both cases. In general, ( 2 8 )  is not the most gen- 
eral formula for the singular part of F. Each term of the 
expansion in ( 2 8 )  is positive. However, the positive definite- 
ness of the spectrum can be attained also by other means. For 
instance, a spectrum of the form 

is positive definite although there are also negative terms in 
its expansion. Moreover, the spectrum ( 3  1 ) touches the 
E = 0  level for r > 0  while for r = 0  only a jump from the zero 
level can occur. An analysis of the scaling dimensionalities 
in ( 3  1 )  shows that the transition index is a = 4. It is just this 
realization of a transition with a = 4 which we deal with in a 
Kasteleyn transition (see next section). 

4. KING AND KASTELEYN TRANSITIONS 

It was shown in Ref. 7 that the model of dimers on a 
lattice shown in Fig. 4  is equivalent to the Ising model with 

Calculations give for det A ( k )  

x cos k,+22, ( z t2 - -1)  cos kz. ( 3 2 )  

Expression ( 3 2 )  attains its minimum value for k  = 0  since 
z, < 1, z, < 1 hold, and we have 

[ ( 1 -  z l L )  ( I - ~ ? ' ) ) - ~ Z ~ Z ~ ~ ~  
det A (k) = 

(2+.zI2) ( l + z z L )  +2z,  ( 1  - z z Z )  +2z2(1--Zi2) 

FIG. 4. A lattice the dimer problem of which is equivalent to the Ising 
model on a square lattice. The phases is the same as for Fig. 3. The magni- 
tude ofAU is equal to 1, if (ij) is the side of a square or its diagonal, and it is 
z, (z,), if (ij) is not part of the square and it is horizontal (vertical). 
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It is clear from ( 3 3 )  that the transition point is determined 
by the equation 

One checks easily that this condition is equivalent to the well 
known condition 

We thus have near the transition point 

det A (lr) -a,t2+a,k,L+a,k,'. 

where a,, a , ,  and a ,  are constants. We have thus verified that 
( 2 1  ), indeed, corresponds to the Ising transition. 

We now consider the lattice shown in Fig. 5 .  A phase 
transition with a = 1 was observed on this lattice in Ref. 7. 
Indeed, evaluating det A ( k )  we have 

detA ( k )  =zZ+ct cosZ k,+4z cos k ,  cos k,.  ( 3 4 )  

For z>  2  ( 3 4 )  attains its minimum value for 
( k , , k , )  = ( O , a ) , ( a , O ) .  Expanding near the minimum we 
have 

8-.z 
del; A ( k )  - ( ~ - 2 ) ~ f  2 ( z - 2 )  k12 + - 6 k,&+2zk,Z. ( 3 5 )  

or, writing r = z  - 2  and retaining the main terms in r 

det A ( k )  =: ( ~ + k , ~ ) ~ - 4 k , ~ .  ( 3 6 )  

A scale analysis of ( 3 6 )  gives a = 4 but this conclusion turns 
out to be invalid because of the "enhanced symmetry" of 
( 3 6 ) .  Substitution of ( 3 6 )  into the expression for the free 
energy shows no singularity as 7- + 0 .  As r- - 0  the scale 
analysis gives the correct result. In fact, for r < 0  the spec- 
trum touches zero and the contact point moves to the points 
( O , a ) ,  (.rr,O) as r tends to zero, while for r = 0  there is a jump 
in the spectrum from the zero energy value. One should note 
that the "enhanced symmetry" of ( 3 6 )  is caused by the addi- 
tional constant of motion which occurs in the dimer problem 
on the lattice of Fig. 5  (see Ref. 3 ) .  Unfortunately at the 
present time there are no examples known of dimer systems 
with a critical behavior differing from Ising and Kasteleyn 
type transitions. The absence of such examples in the litera- 
ture indicates either the complexity of such systems or the 
existence of a rule, unknown to me, forbidding fermions on a 
lattice with the magnetic field of ( 1 5 )  to have a spectrum 
which touches the E = 0  level in an arbitrary way. 

5. CONCLUSION 

In the present paper we have given a formulation of the 
dimer problem on an arbitrary plane lattice in the language 
of fermions on the same lattice with a special magnetic field. 

FIG. 5. All A. are real. We have lAij / = z if (ij) is vertical and /Av I = 1 if 
(ij) is horizontal. 
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Finding the free energy thus reduces to finding the fermion 
spectrum. We have found the possible values of the critical 
index a for phase transitions in dimer systems. We have 
shown that for second-order phase transitions in such sys- 
tems there may not be conformal symmetry at the transition 
point. It would be interesting to find examples of critical 
behavior in dimer systems with a different from a = 0 or 
a = 4. It would also be interesting to find other critical in- 
dices which are possible in dimer systems. 
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