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A field-theoretical description is offered for the critical dynamics of magnetic systems with frozen 
nonmagnetic impurities. Values of the dynamic critical exponent are derived directly for three- 
dimensional systems in the two-loop approximation. The Pad&-Bore1 summation technique is 
used. The results are compared with the results found through the use of an &-expansion and with 
the values calculated for the dynamic exponent for homogeneous systems in the three-loop 
approximation. The results are also compared with results found through a Monte Carlo 
numerical simulation. The effects of the impurity on the critical behavior of two-dimensional 
magnetic materials are discussed. 

Phase transitions in homogeneous magnetic materials 
are altered when randomly distributed frozen impurities are 
added to the system or in the case of Ising magnetic materi- 
als. ' The &-expansion method makes it possible to calculate 
the critical indices for dilute magnetic materials.' However, 
the asymptotic convergence of the &-expansion series is even 
poorer in this case than for homogeneous magnetic materi- 
a l ~ . ~  The renormalization-group approach to the description 
of dilute magnetic materials, which was applied directly to 
three-dimensional systems in Ref. 4, has led to values of the 
static critical indices which agree with experimental r e~u l t s .~  

In the present paper we offer a renormalization-group 
description of the critical dynamics of dilute magnetic mate- 
rials directly for d = 3. Our model is a classical spin system 
with nonmagnetic impurity atoms frozen at lattice sites. 
This system is described by the Hamiltonian 

rity distribution from a Gaussian distribution are inconse- 
quential near the critical temperature.6 

The dynamic behavior of a magnetic material in the 
relaxation regime near the critical temperature can be de- 
scribed by a kinetic equation of the Langevin type for the 
order parameter: 

where A, is a kinetic coefficient, and q(x, t )  is a Gaussian 
random force. This force characterizes the effect of the heat 
reservoir and is specified by the distribution function 

with the normalization constant A , .  Here h(t)  is the exter- 
nal field, which is the thermodynamic conjugate of the order 
parameter. The temporal correlation function G(x,t) of the 
order parameter is found by solving Eq. (2)  with H[Q, V] as 

where, as usual, Si is an m-component spin variable; Ji, are given in ( 1 for Q [q,h, Vl , by then taking an average over the 
Gaussian random force q with the help of P, , by taking an 

the constants of the translationally invariant, short-range, 
average over the random potential of the impurity field V(x) 

ferromagnetic exchange interaction; andp, is a random vari- 
able which is described by the distribution function 

with the help of P,, and by identifying the part of the solu- 
tion which is linear in h(0). In other words, we write 

P ( P ~ ) = P ~ ( P , - ~ ) + ( ~ - P ) ~ ( P < )  6 G ( x , t ) =  - 
Sh(O) 

[ ( ~ ( x , t ) )  1 ,,.p / h=o, 

with p = 1 - c, where c is the concentration of the nonmag- 
netic impurity atoms. This model is thermodynamically with 
equivalent to the O(m)-symmetric Ginzburg-Landau-Wil- 
son model, determined by the effective Hamiltonian [ (‘#(x. t )  ) 1 tmP=B-' D{q)D{ V)‘#(X, t )PPV,  

B = j D{~ID{V)PP,. 

When we attempt to apply the standard renormalization- 
Here cp(x,t) is an m-component order parameter, V(x) is group technique to this dynamic model, we run into some 
the potential of the random impurity field, ro- T - T, (p), serious difficulties. However, it has been shown7 that for 
To, is the critical temperature of the dilute magnetic materi- homogeneous systems without any disorder caused by im- 
a1 as given by the mean-field theory, go is a positive constant, purities the critical dynamic model based on the Langevin 
and d is the dimension of the system. We specify the impurity equation is completely equivalent to an ordinary Lagrangian 
potential by means of the Gaussian distribution systems with the Lagrangian 

P, ,=A,  axp [-- (86.)-l ddzlr- (x) 1, 
where A ,  is a normalization constant, and the positive con- 
stant So is proportional to the impurity concentration and to The correlation function of the order parameter, G(x,t), for 
the square of the impurity potential. Deviations of the impu- a homogeneous system is given by 
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A generalization of this group-theoretical approach was giv- 
en by one of the present authors in a previous paper,9 which 
also gave the details of the application of this approach to the 
critical dynamics of dilute magnetic materials with frozen 
point impurities and extended defects on the basis of an E- 

expansion. 
The Feynman diagrams which determine the contribu- 

tions to the correlation function of the order parameter and 
the 4-tail vertices contain a d-dimensional integration over 
momenta. Near the critical point, they are characterized by 
an ultraviolet divergence of the pole type at large momenta q.  
To eliminate these poles, we use a dimensional regulariza- 
tion technique involving the introduction of renormalized 
quantities." We define the renormalized order parameter as 
q, = Z -'12q,,. The renormalized vertex functions then have 
the generalized form 

with renormalized coupling constants g and S, renormalized 
temperature r, and renormalized kinetic coefficient A, given 
by 

The scale factor p is introduced to put the quantities in di- 
mensionless form. The quantity r"' in ( 3 )  corresponds to 
the inverse correlation function of the order parameter, 
G ( q , w ) ,  and rf4' corresponds to 4-tail vertex functions I'T' 
and ra) for the coupling constantsg and S, respectively. The 
2-factors are determined in each successive order of the dia- 
gram expansion of the vertex functions in g and S, on the 
basis of the requirement that the renormalized vertex func- 
tions be regular. We have implemented this scheme for regu- 
larizing the vertex functions for dilute magnetic materials in 
the two-loop approximation (Fig. 1 ). The next step in the 
field-theory approach is to determine the scaling functions 
Bl (g ,S ) ,  PZ(g,S), Y ,  ( g , S ) ,  Y? ( g y S ) ,  and YA (g ,S ) ,  which 
specify a differential renormalizatlon-group equation for the 
vertex functions: 

XI':"' (y ,  o: r .  g, 6 ,  h, p) =O. 

To pursue the discussion of the dynamic model, we need 
explicit expressions for only the functions P, and P, and 
for the dynamic scaling function y,, which are derived 
in the two-loop approximation. Using the notation 
u ,  = (m + 8)J1g/6 and v, = 16J,S, we thus find 

Here 

h (d)=D,'IJIL, f ( d )  =Dz/JiL-' / , .  $(d)=D,IJ,',  cp(d)=D,/J12 

are combinations of the single-loop integral 

FIG. 1. Feynman-diagram representation of the contributions to the vertex 
function r"'(q,o) = G - ' (q,w) in the two-loop approximation with corre- 
sponding weight factors. a-( - 4S) ,  b--( - ( m  + 2)8/18), c- 
4 ( m  + 2)gS/3, d,e-( - 16S2). In the inset, line 1 corresponds to 
G,,(q,o) = ( - iw/A + q2) - ', line 2 corresponds to C,,(q,w) = U - ' (w2/ 
A ') + q4) - I ,  vertex 3 corresponds to 2 6 6 ( o ) ,  and vertex 4 corresponds to 
g. 
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with Sd = 2rd" / ( 2 r l d  r ( d  /2) [ r (x)  is the gamma func- 
tion] and of the two-loop integrals 

The expressions for the functions /3, (u,,v,) and fl,(v,,v,) 
are the same as the corresponding functions which were de- 
rived in Ref. 4 in a description of the equilibrium critical 
behavior of dilute magnetic materials. A numerical calcula- 
tion of the integrals has yielded the values h (d  = 3) 
= 0.07408, f ( d  = 3) = 0.16665, $(d = 3) = 0.40619, and 

p ( d  = 3 )  = - 1. 
The nature of the critical point for each value of m and 

for each value of d is determined completely by the stable 
fixed point for the coupling constants (v:,~:). This point is 
found from the requirement that the functionsp, (v , ,~ , )  and 
f12(v,,v2) vanish: p, (v:,vr) = 0, PI ( v:,v$) = 0. It can be 
seen from the expressions for these functions that u: and v r  
are quantities of order 4 - d, so the expansions in u ,  and v, 
for the functionsp,, P,, and y, with d = 3 are asymptotical- 
ly converging. To sum them we use the Pad&-Bore1 meth- 
od," which we have also used for the functions o,,  o,, and 
y, . Numerical analysis of the equations for determining the 
fixed points and their stability conditions shows that in this 
case, in contrast with the &-expansion approach, there is no 
accidental degeneracy of the fixed points with m = 1 (Ref. 
2) .  Of the four fixed points, only two are of interest: the fixed 
point for homogeneous systems ( v ?  # O,v: = 0)  and the im- 
purity fixed point (u: #O,u: # 0),  which specifies new criti- 
cal properties of dilute magnetic materials. The impurity 
fixed point is stable for m < m, .  An estimate yields 
m, = 2.0114 for d = 3 (Ref. 4).  The homogeneous fixed 
point is not stable for m < m, .  The opposite situation pre- 
vails for m > m, . 

A calculation of the exponent for the specific heat, a,, 
for the three-dimensional xy model ( m  = 2; Ref. 12), which 
is the most accurate calculation to date, has shown that the 
condition a, <O holds and that, in accordance with the 
Harris criterion,' impurities do not lead to new critical be- 
havior. With regard to the value m,  = 2.01 14, one can hope 
that incorporating higher orders of the expansion in v, and v, 
for the functionsp, andfl, will reduce m,,  pulling it below 2. 
The only system in which impurities cause new critical be- 
havior is thus the Ising-like impurity with m = 1. The impu- 
rity fixed point for a three-dimensional Ising model is speci- 
fied by the values v: = 2.39631, v$ = 0.60509, while the 
homogeneous point is specified by the values v: = 1.59661, 
v: = 0. 

Substitution of the values of the coupling constants at 
the fixed point into the scaling function y, (u,,v2) reveals the 
dynamic critical exponent z: z = 2 + y, ( v ~ , v ~ ) .  Applying 
the PadbBorel summation method to the asymptotic series 

of the expansion of y, in powers of v, and u,, we find the 
following expression for the exponent z: 

where 

a,=2(4-d) ( m + 2 )  [q,(d) -h(d)] (u,*)'/ ( 1 n + 8 ) ~ .  

az= (4-cl) v?./4. 

and ,F,( 1,l;p) is the confluent hypergeometric function. 
When the values of the coupling constants at an impuri- 

ty fixed point are used, we find the following values of the 
exponent z for the three-dimensional Ising model: 
z:$, (d  = 3) = 2.237. The value found for z,,, in the same 
two-loop approximation by means of the &-expansion, on the 
other hand, is z!:; = 2.336. 

Evaluation of the exponent z for the homogeneous Ising 
model in the two-loop approximation does not require the 
use of a summation technique for y,, since in this case y, 
contains only a single term, proportional to u i  . As a result we 
find zkt:, ( d  = 3) = 2.125, while an &-expansion calculation 
leads to z$i, = 2.01 1. To refine the effect of the method for 
summing the asymptotic Pad&-Bore1 series, we calculated 
the function y, for homogeneous magnetic materials in the 
three-loop approximation: 

where b(d)  = D ;/J:, c(d)  = D,/J :, and D ; and D, are 
the three-loop integrals 

Numerical calculations of the integrals yield the values 
b(d = 3) = 0.09466 and c (d  = 3) = 2.12991. The Pad&- 
Bore1 method yields the following expression for y, : 

-l+a(d)v,/2+,Fo(1, 1; -a(d)u,/2) 
-h(d)l : , ( 9 )  

[u(d)  (m+8)12 

with 
4 

cc (d) = 
c ( d )  - b ( d )  - - 

$ ( d )  - h ( d )  3 

As a result, we find zb;!, = 2.014 for the Ising model, while 
the result calculated in the three-loop approximation on the 
basis of an &-expansion is zit:, = 2.025. 
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Let us compare these results with those of other studies. 
In the theoretical work on the dynamics of dilute magnetic 
materials of which we are a ~ a r e , ~ . ' ~ . ' ~  the &-expansion has 
been used. These results are automatically reproduced by 
our own results in the case d = 4 - E.  Unfortunately, we do 
not know of any papers reporting a numerical simulation of 
the dynamics of dilute magnetic materials. We are presently 
pursuing this line of research. 

With regard to the values of z,,,, for homogeneous 
magnetic materials, we do find enough data in the literature 
to make a comparison. Numerical Monte Carlo simulations 
have yielded z,,,, = 2.17f 0.06 (Ref. 14), 52.08 (Ref. 
IS), 2.11 + 0.03 (Ref. 16), and 1.99 + 0.03 (Ref. 17). The 
field-theory approach in the two-loop approximation, 
through an interpolation of the results of 1 + E and 4 - E 

expansions, has led to the value 2.02 (Ref. 18). We thus see 
that the value which we have found for the dynamic expo- 
nent, z,,,, ( d  = 3) = 2.014, agrees with only the results of 
Refs. 17 and 18. Systems of very large dimension~-128~, 
2563, and 5123-were simulated in Ref. 17 by a block proce- 
dure. There is reason to believe that the result of Ref. 17 is 
the best of the results which we have cited. We have carried 
out a simulation of the critical dynamics of a system with 
dimensions of 603 by Monte Carlo methods with a subse- 
quent block partitioning. We found z = 2.07 + 0.05. This 
result agrees well (at the lower limit) with the theoretical 
value and is surpassed only by the result of Ref. 17. 

Summarizing this analysis of the critical dynamics of 
dilute magnetic materials, we can say that an impurity-relat- 
ed disorder causes a substantial change in the critical behav- 
ior of the three-dimensional Ising model. The behavior is 
characterized by values of the dynamic exponent z,,, which 
are higher than the exponent of the homogeneous model. 
This circumstance is reflected in the anomalously long relax- 
ation times for the magnetization near the critical point: 
rrel a I T - T, 1 - Z v ,  where v is the critical exponent for the 
correlation length. As a result, there are changes in the kinet- 
ic properties of the magnetic materials. 

Of particular interest to researchers are dilute low-di- 
mension magnetic materials which can be described by the 
two-dimensional Ising model. Since the exponent for the 
specific heat in the homogeneous model is zero, the effect of 
disorder caused by an impurity becomes a secondary factor. 
A numerical analysis of the stability of the fixed points has 
shown4 that the critical dimension of the order parameter for 
two-dimensional systems is m, = 1.1937. A new critical be- 
havior could thus be induced by impurities only in the Ising 
model. However, a more detailed inspection of this c a ~ e ' ~ ' ~ ~  
has led to the conclusion that the impurity affects only the 
behavior of the specific heat, C( T) a ln(ln/ T - T, ( 1; the 
other thermodynamic and correlation functions undergo no 
change in critical behavior. As a result, the critical dynamics 
of dilute two-dimensional Ising-like magnetic materials in 
the relaxation regime is the same as the dynamics of the 
homogeneous model. We can use expression (8)  for the 
function y, in the three-loop approximation. With v: 
=2.42438, $=  1.18991, h=0.11464, b=0.15740, and 

c = 4.01356 (these figures correspond to d = 2 and m = 1 ), 
we can determine the dynamic critical exponent. We thus 
find z$ie ( d  = 2) = 2.277. 

Let us compare this result with the results of other stud- 
ies. 

Numerical simulations by Monte Carlo methods have 
yielded z = 2.13 + 0.03 (Ref. 20), 2.22 + 0.13 (Ref. 22), 
~ 2 . 2 3  (Ref. 23), 2.10 + 0.10 (Ref. 24), and 2.14 + 0.02 
(Ref. 17). 

The high-temperature expansion has led to 
z = 2.125 + 0.010 (Ref. 25). 

The field-theory approach in the two-loop approxima- 
tion, with interpolation of the results of 1 + E and 4 - E ex- 
pansions, has led to z = 2.126 (Ref. 18). 

The renormalization-group approach in real space with 
a decimation procedure has yielded z = 2.22 (Ref. 25). 

The results of Ref. 17 and those of the present paper can 
be regarded as the best of those which we have cited. In Ref. 
17, systems of very large dimensions, up to 8 1922, were simu- 
lated. We have carried out a Monte Carlo simulation of the 
critical dynamics of systems with dimensions of 3202, 3602, 
and 4002; we found the value z = 2.13 .f 0.05 for the expo- 
nent. The procedure which we have used to simulate the 
critical dynamics and to analyze the results leads to good 
values of the exponents in calculations on personal comput- 
ers of the IBM PC AT type. 

The set of results presented here suggests that the dy- 
namic exponent z which we have found by a field-theory 
approach for the two-dimensional Ising model is on the high 
side. The reason for this result is the weaker asymptotic con- 
vergence of the expansion series for the scaling functions in 
the d = 2 case. In order to find more reliable values for the 
critical exponents, it will be necessary to calculate the scal- 
ing functions in higher orders of the expansion (in the four- 
loop and five-loop approximations) and to use the PadC- 
Bore1 summation method. 

Particularly noteworthy in the critical behavior of di- 
lute magnetic materials is the region of high impurity con- 
centrations, approaching the percolation threshold. It has 
been suggested in several  place^^^-^' that scaling is violated 
when there is an impurity concentration in the percolation 
region. In particular, it has been suggested that the dynamic 
exponent for such a concentration would be of the form 
z = A log 6 + B, where {is a correlation length, andA and B 
are some nonuniversal coefficients. This form of the expo- 
nent z leads to an explanation of the anomalously large value 
which has been measured for this exponent in 
Rb2(Mgo ,, Coo,,, )F4 during neutron ~ c a t t e r i n g . ~ ~  

There are several experimental methods for checking 
the theoretical prediction regarding the effect of an impurity 
on the dynamic critical behavior of magnetic materials [the 
value of z,,, ( d  = 3) would be higher than z,,,, ( d  = 3) 1: 
inelastic neutron scattering (the linewidth would be 
w, a IT- T, 1'" in the q = 0 case and w, aq'  at T =  T,), 
the ESR and NMR magnetic-resonance methods (the 
linewidth of the resonance would be 
Awa IT- T, l 'd-2t)7-Z)V, where 77 is the Fisher index); 
measurements of the dynamic susceptibility in the case of a 
high-frequency external magnetic field [ ~ ( w )  a w - Y''v at 
T = T,, where y is the susceptibility exponent]; ultrasonic 
experiments [the acoustic attenuation coefficient would be 
a w a  IT- T,I - ( " +  "") w2g(w/lT- T, I " ' ] ;  and acoustic 
dispersion[C2(w) - C2(0)  cc IT- TcI -"f (w/lT- TcIZv]. 
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