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It is shown that critical opalescence can arise near a nematic-cholesteric structural transition in a 
thin layer of a cholesteric liquid crystal, even when the orientation is strongly oriented at the 
boundaries of the sample. The geometric variational approach, previously developed by the 
authors (V. L. Golo and E. I. Kats, Pis'ma Zh. Eksp. Teor. Fiz. 55,275 ( 1992) [JETP Lett. 55, 
275 ( 1992) ] ), is used to calculate the corresponding cross section for light scattering, taking into 
account fluctuations which are nonuniform in the plane of the layer. 

1. In sufficiently thin layers of cholesteric liquid crys- 
tals a very distinctive nematic-cholesteric structural phase 
transition occurs on the boundary of the sample when the 
orientation is strongly anchored. There is an extensive litera- 
ture on the theoretical and experimental investigation of this 
transition (see, for example, Ref. 2 and the works cited 
there). Thus far, however, all investigations concerning this 
subject have been limited to polarization-optical determin- 
ation of the structure of the liquid crystal. 

In the present paper we wish to call attention to the fact 
that the scattering of light in a thin layer of a cholesteric 
liquid crystal also exhibits a number of features, and near 
this structural phase transition it increases critically, which 
leads to the critical opalescence phenomenon. 

It should be noted that anomalous enhancement of scat- 
tering (or fluctuations) in thin layers is associated not with 
fluctuations of the director, which usually occur in liquid 
crystals and which, when there is strong anchoring at the 
boundaries, are themselves significantly suppressed. Critical 
opalescence in this case is caused by the softness of the sys- 
tem near the structural phase transition. This softness is 
manifested as a quite wide "plateau" in the curve of the effec- 
tive energy versus the structural characteristic in the degen- 
eracy space, i.e., versus some anglep, which plays the role of 
the order parameter (see our work in Ref. 1; we use the same 
notation here). 

In the present paper we employ the geometric variation- 
al method, developed in Ref. 1, for calculating the intensity 
of light scattering. The crux of this method is that specially 
chosen contours in the space S 2  of the order parameter, 
which correspond to the symmetry of the system, are em- 
ployed as the trial functions. In the case of a cholesteric liq- 
uid crystal these contours are circles on the sphere S2. Of 
course, a contour must pass through a point (on the sphere) 
corresponding to strong-anchoring conditions: 

where n is the director, z is the coordinate along the normal 
to the boundaries of the sample, and L is the thickness of the 
film of liquid crystal. Without loss of generality, we can set 
no- (sin a,O, cos a ) .  

The second structural parameter characterizing our 
variational contour is determined by the unit vector m 
drawn from the center of the sphere S to the center of the 

circle (contour). This unit vector can also be parameterized 
with the help of a single angular variable 0 (see Ref. 1): 

m= (sin fi, 0' cos: 9).  
In Ref. 1 we studied a one-dimensional problem, i.e., we 

assumed that all quantities are functions of the coordinate z 
only. In this case the Frank energy, calculated on the vari- 
ational contours described above, prescribes some effective 
energy V(P), which determines all structural transforma- 
tions occurring in the film. We present the expression ob- 
tained in this manner for V(0), assuming for simplicity that 
K, = K, and K2 = xK, (where K, , , ,  are the Frank con- 
stants and ft is a dimensionless parameter) and measuring 
V(0) in units of K,L: 

V (p) =1/2 sinZ (a-P) sin2 P+'Iz ain' (a-0) sin2 P 
+cos2(a-P) sin2(a-P)cos2 @+x {[q,-t-sin~a-P) cos @I2  

+'IZ cos2(a-p) sin' (a-1) sinZ $1, (2)  

where q, is the inverse pitch of the cholesteric helix. 
2. As usual,3 in order to study scattering of light in one 

or another structure we must determine (under a prescribed 
boundary condition) the minimum of the effective potential 
V(fl) and expand the energy of the nonuniformity Eg up to 
terms of second order in the gradients. The latter energy, like 
V(fl), is obtained from the Frank energy by integrating 
along the variational contours given by the parameterfl, but 
taking into account the coordinate dependence of the param- 
eter 0 .  

A general calculation of this type would lead to compli- 
cated expressions. We shall simplify the problem. Specifical- 
ly, since we are interested only in long-wavelength fluctu- 
ations (i.e., scattering of light with small transferred wave 
vectors in the plane), we can separate the longitudinal (in 
the plane of the layer) and transverse (i.e., along the z-axis) 
degrees of freedom. On the basis of the geometry of the sys- 
tem (thin films), the transverse degrees of freedom can be 
eliminated from the analysis; i.e., we assume that the struc- 
ture is an equilibrium one along the z-axis. As concerns the 
longitudinal degrees of freedom, they must be included in 
the harmonic approximation in the energy of nonuniformi- 
tY. 

Thus our problem consists of finding the effective stiff- 
ness coefficients of the structure, i.e., the coefficients of the 
matrix C,, in the expansion of the energy of nonuniformity 
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wherep and yare longitudinal coordinates (x or y )  . We note 
that elimination of the transverse degrees of freedom in this 
manner is conceptually analogous to the approach employed 
in hydrodynamics for describing so-called shallow water.4 
In both cases the geometry of the problem makes it possible 
to take into account approximately the transverse degrees of 
freedom and to obtain the effective energy only for longitudi- 
nal degrees of freedom. - 

Even in the shallow-water approximation the two-di- 
mensional problem is still too complicated to be solved ana- 
lytically. In order formally to simplify the problem, we ex- 
amine the dependence only on one coordinate (x)  in the 
plane of the layer. We emphasize that this assumption is not 
fundamental and we employ it exclusively in order to obtain 
easily interpretable expressions. 

Direct calculation of the gradient energy in the approxi- 
mations described above reduces to averaging the Frank en- 
ergy over the transverse coordinate (z) . As trial functions 
we employ, as done in Ref. 1, the following parametrization 
of the director n. This parametrization corresponds to 
choosing circular contours on S ': 

n=cos(a-3) ( 1-cos z)~n-+sin z ein(a-b)i+cos zn,. ( 3 )  

where 9 is the unit vector along the y-axis, and the other 
parameters were explained above. In contrast to Ref. 1, how- 
ever, we now take into account the x-dependence of the pa- 
rameter p and include in the expansion of the energy terms 
quadratic in V,B. The corresponding calculation gives 

E,= ( Vx@)"3/2 cos2 (CL-2p) +:J'/8 cos3(a-P) sin2 f~ 
+?Is sin"-"/,, cos(a--p)sin p sin a+ Yl, cos4(a-p)sin" 

+'I2 cosZ(a-P) sin2 cos3(a-P) sin P sin a 
+'/,x [ (cos2(a-@)cos B+sin(a-2P) sin (a-P) ) 2  

+'/,(cos"(a-p) cos @+sin(a-2p) sin(a-P) 

Thus in the present case only the stiffness coefficient c , ,  
is different from zero, and its value is determined by the 
expression in brackets in Eq. (4).  Generally speaking, 
c, , -K.  As an illustration, the function c, ,  (p)  with a = 0.47 
and K = 1.6 is shown in Fig. 1. 

3. The formulas (2 )  and (4)  determine the total energy 
of the nonuniformly deformed structure of a thin cholesteric 
layer: 

For fixed values of the parameter fl (and the material 
coefficients of the liquid crystal) controlling the structural 
transition, one or another equilibrium state of the system, 
determined by the minimum of V(P), is established. The 
energy corresponding to the fluctuation deviation 

= 8 - P, of p from the minimum value p,is deteter- 
mined from Eq. ( 5  ) as 

E I = a ~ 2 C ~ t 1 (  V+B)z, ( 6 )  

where a E (6' * V/6'fl2),_. 
The correlation function (p,p ) is found in the standard 

manner from Eq. (6). In terms of the Fourier components, 
the correlation function has the form 

(6, P)=T/(a+c,,q,~). (7) 

The formula (7)  is structurally reminiscent of the expres- 
sion for the correlation function3 of the orientation of a liq- 
uid crystal in an external field, though the physical meaning 
of the coefficients a is entirely different. The cross section for 
the scattering of light is proportional to the correlation func- 
tion (7):  

O = V ( E , ~ ~ / ~ ~ C ~ ) ~ < ( S ,  6 )  (if)', 

where v is the volume of the sample, w is the frequency of 
light, cis the velocity of light, E, is the permittivity anisotro- 
py, and i and fa re  unit polarization vectors of the incident 

FIG. 1. 
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and scattered light, respectively. Important features, which 
in principle make it possible to distinguish experimentally 
the light-scattering mechanism under discussion here from 
other background mechanisms, are, first, the high permittiv- 
ity ( E ,  -0.1) and, second, the polarization factor. The first 
factor makes the scattering by fluctuations p stronger than 
scattering by density fluctuations, while the second factor 
distinguishes the scattering of interest from the usual scat- 
tering by fluctuations of the director in liquid crystak3 

We now make some estimates. It should be expected 
that c, , - K  [see Eq. (4)  1, and the parameter a depends sig- 
nificantly on the structural state of the film. Far from phase- 
transition points we have a-Kg:, and for this reason the 
long-wavelength scattering of light (q, <go) is, to a large 
extent, suppressed. 

A different situation arises near points of structural 
transformations. For example, as shown in Ref. 1, at a nema- 
tic-cholesteric transition the effective potential V(P) is al- 
most constant in a wide region ( - 30"). This corresponds to 
a very small parameter a Kg:. In the particular case a = 0 
the results of Ref. 5 lead to similar conclusions. 

It is interesting to note that the smallness of the param- 
eter a in a wide range of values of the parameter o fP  deter- 
mining the structure of the cholesteric in the thin layer is, in 
a certain sense, a numerical fact and for this reason the phe- 
nomenon of critical opalescence, corresponding to this small 

value of a, is not simply a softening of the fluctuations of the 
order parameter, as usually happens for all second-order 
transitions (incidentally, the nematic-cholesteric transition 
which we are studying can be a strong first-order transition). 
The smallness of a is determined by the presence of a plateau 
in the effective potential V ( 0 )  and for this reason it is a 
consequence of the additional degeneracy of the cholesteric 
structure in the thin layer. 

We believe that the phenomenon, which we have dis- 
covered, of anomalous degeneracy of a cholesteric near a 
structural transition could be associated with the diverse op- 
tical phenomena occurring in thin layers of liquid crystals. 
One aim of the present work was to bring these questions to 
the attention of experimentors. 

"Department of Mechanics and Mathematics, Moscow State University 

'V. L. Golo and E. I. Kats, Pis'ma Zh. Eksp. Teor. Fiz. 55, 275 (1992) 
[JETP Lett. 55,275 (1992)l. 

'M. J. Press and A. S. Arrot, J. de Phys. 37, 387 ( 1976). 
'P. G. de Gennes, The Physics ofLiquid Crystals, Clarendon, New York, 
1975. 

4L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, New 
York, 1988. 
5B. Ya. Zel'dovich and N. V. Tabiryan, Zh. Eksp. Teor. Fiz. 83, 998 
(1982). [Sov. Phys. JETP 55(1),  99 (1982)l .  

Translated by M. E. Alferieff 

982 Sov. Phys. JETP 74 (6), June 1992 V. L. Golo and E. I .  Kats 982 


