
Heating of a dense plasma by an ultrashort laser pulse in the anomalous 
skin-effect regime 

A. A. Andreev, E. G. Gamalii, V. N. Novikov, A. N. Semakhin, and V. T. Tikhonchuk 

P. N. Lebedev Physics Institute, Russian Academy ofsciences 
(Submitted 12 December 1992) 
Zh. Eksp. Teor. Fiz. 101,1808-1825 (June 1992) 

The absorption of laser light in an overdense plasma with a sharp boundary and the heating of the 
plasma under conditions corresponding to the anomalous skin effect are studied. Heat transfer 
from the absorption region near the surface into the interior of the plasma is studied in the kinetic 
approximation. At high intensities of the laser pulse, the electron distribution function is 
deformed, and the plasma is heated at a rate tens of times that predicted by classical heat-transfer 
theory, because of the severe limitation on thermal conductivity. The anisotropy of the electron 
distribution function in the skin layer leads to an increase in the absorption coefficient. The 
angular distribution and the polarization dependence of the absorption coefficient are discussed. 

1. INTRODUCTION 

Since laser pulses of ultrashort length (less than 1 ps) 
and extremely high power (above 10 TW) have become 
available, much interest has been attracted to the use of these 
pulses to produce plasmas and to heat them to high tempera- 
tures. A qualitatively distinguishing feature of such short 
pulses is seen in their interaction with condensed targets, in 
which case a plasma with an electron density up to 
cm-3 arises in the surface layer. The laser pulse is so short 
that the ions are effectively immobile. The plasma boundary 
is therefore sharp, and the radiant energy is transferred ex- 
clusively to the electrons. In this regard, the case of subpico- 
second pulses differs from the case (which has received more 
study) in which nanosecond laser pulses are applied to a 
target. In that case, the outflow of plasma results in the for- 
mation of a smooth density profile, with a length scale 
greater than the laser wavelength. The energy is deposited in 
a comparatively low-density plasma, with an electron den- 
sity below the critical value 

( m  and e are the mass and charge of an electron, w, is the 
laser frequency, and A,,, is the laser wavelength in mi- 
crons). Because of this distinguishing feature of subpicose- 
cond laser pulses, one would expect that plasmas of high 
density and simultaneously high temperature could be pro- 
duced by them.' Such a capability might prove useful in 
several practical applications. It would also be of indepen- 
dent interest for research on the behavior of matter under 
extreme conditions. 

In experiments currently being carried out, plasmas 
with electron temperatures up to 300 eV are produced at 
laser pulse intensities up to 10'4-10'5 W/cm2 and at laser 
pulse lengths of 0.3-0.5 ps (Refs. 2-5). The energy is ab- 
sorbed under normal-skin-effect conditions, with the elec- 
tron mean free path shorter than the depth to which the field 
penetrates into the plasma. Theoretical  estimate^"^" indi- 
cate that it would be possible to raise the plasma heating rate 
substantially at high intensities of the laser pulse, such that 
anomalous-skin-effect conditions hold. Because of the colli- 
sionless nature of the absorption and the nonclassical energy 
transport in the plasma, some distinctly nonlinear effects 
might be seen. 

In this paper we are reporting a study of the absorption 
of light and of plasma heating under anomalous-skin-effect 
conditions. We will first discuss the heating of a plasma on 
which the laser light is incident normally. The heating rate is 
determined by a balance struck between the rate of energy 
deposition (which is determined by the absorption coeffi- 
cient) and the rate at which energy is lost from the absorp- 
tion region (primarily because of electron thermal conduc- 
tivity). Because of the collisionless nature of the electron 
motion near the absorption region, the heat transfer should 
in general be described kinetically. Noting that the skin layer 
is thin in comparison with the electron mean free path, and 
noting the results of Refs. 6 and 7, we describe the absorption 
of the laser light by means of a special type of boundary 
condition on the electron distribution function in a semi- 
infinite plasma. This approach simplifies the analysis of the 
heating process, since it does not require a detailed descrip- 
tion of the electron distribution function at the scale of the 
skin thickness. This approach is particularly convenient for 
a numerical solution of the corresponding kinetic equation, 
since the latter equation does not contain the electromagnet- 
ic scale. 

The results of the numerical solution of the kinetic 
equation which are reported below will be compared with 
estimates of the heating rate found previously in the case in 
which there is absolutely no 1 0 s ~ ' ~ ~  (a maximum estimate) 
and in the case of a classical (collisional) thermal conductiv- 
ity' (a  minimum estimate). We will see that the electrons 
acquire a non-Maxwellian anisotropic distribution function 
in the course of the heating. The heat flux turns out to be well 
below the classical value, and the calculated heating rate 
exceeds the minimum estimate by a factor of tens. 

The development of an anisotropic distribution func- 
tion during the heating has served as the starting point for a 
further study of the absorption of the laser light. This ab- 
sorption, in a dense plasma under the conditions corre- 
sponding to the anomalous skin effect, is studied as a func- 
tion of the distribution function, the angle of incidence of the 
laser light, and the polarization of this light. We find that 
anisotropy can approximately double the absorption coeffi- 
cient in the case of normal incidence, and it can lead to essen- 
tially total absorption of p-polarized laser light at certain 
angles of incidence. 
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2. KINETIC CALCULATIONS ON THE DYNAMICS OF PLASMA 
HEATING UNDER CONDITIONS CORRESPONDING TO THE 
ANOMALOUS SKIN EFFECT, WITH LIGHT INCIDENT 
NORMALLY 

2.1. Analytic solutions 

When laser pulses, even relativistically intense pulses, 
are applied to condensed targets, the time scale of the plasma 
heating is greater than the period of the laser wave, and the 
energy acquired in one event of an interaction with the field 
is smaller than the oscillation energy in this field.'' The ab- 
sorption of laser energy can thus be described by perturba- 
tion theory. The change caused in the distribution function 
by the light is assumed to be small in comparison with the 
main part of the distribution function, which is formed over 
a time much longer than the period of the laser light. The 
absorption coefficient can then be expressed in terms of the 
main part of the distribution function, which is generally 
unkno-.vn at the outset and must be determined in a self- 
consistent fashion, with allowance for the energy deposition 
and the energy loss from the skin layer. Only after we have 
determined this main part of the distribution function can 
we calculate the plasma heating rate. 

A maximum estimate of the heating rate was found in 
Refs. 1 and 6 under the assumption that there is absolutely 
no loss of heat from the skin layer. All the absorbed laser 
energy was assumed to be transferred to the electrons of the 
skin layer, and the average energy ( E ,  ) of these electrons was 
assumed to increase in direct proportion to the heating time t  
(Ref. 1 ) :  

There is also an increase in the depth of the skin layer, 
1, a t  Here Eo is the electric field amplitude of the laser 
light in vacuum, wo is the frequency of this light, and n, is 
the electron density of the plasma. 

As the heating proceeds, the distribution function be- 
comes deformed. It deviates from a Maxwellian distribution 
in being deficient in slow and fast particles. A self-similar 
isotropic distribution function was derived in Ref. 6: 

where (u )  = ( 2 ( ~ , ) / m ) ' / ~ t  and b = [r(f ) ]  -"'. Fig- 
ure 1 shows a plot of function (2 ) ,  which has been normal- 
ized by Jdvf, ( u )  = 1. Shown for comparison by the dashed 
line is a Maxwellian function. Note that the derivative is 
positive at low velocities. This positive derivative may be 
responsible for a secondary instability of the electrons in the 
skin layer. In particular, it might lead to the excitation of ion 
acoustic t~rbulence.~' However, we will not discuss that ef- 
fect in this paper. 

The assumption that there is no loss from the skin layer 
leads to a maximum estimate of the plasma heating rate. 
This maximum estimate is not attainable in practice. To find 
a minimum estimate of the heating rate we can assume that 
the heat flux out of the skin layer is described by the classical 
heat-conduction equation. As we know, the classical formu- 
las correspond to the maximum heat flux and thus the mini- 
mum heating rate which are possible for the given plasma 
parameter values. A self-similar solution of the problem of 
the heating of a plasma with a classical thermal conductivity 
was derived in Ref. 7. It follows from that solution that the 

FIG. 1 .  Normalized electron distribution function in the skin layer ac- 
cording to Eq. ( 2 )  (a self-similar solution of the kinetic equation with 
heat transfer ignored). The dashed line is a Maxwellian distribution with 
the same average energy; the dot-dashed line is the result of a numerical 
solution of Eqs. (5) - (8)  with a = 0.5, P(O) = 0.5, and t = 83t,,. 

average electron energy in the skin layer (i.e., the tempera- 
ture, since the electron distribution was assumed to be ap- 
proximately Maxwellian in Ref. 7) increases as t  6'25: 

where T, and t ,  are characteristic parameters with the di- 
mension of an energy and a time, given by 

Here w, = (4.rre2n,/m) is the electron plasma frequency, 
u,,, = eEo/mwo is the velocity amplitude of the electron os- 
cillation in the vacuum electric field of the laser light, Z is  the 
average degree of ionization, and A is the Coulomb loga- 
rithm, which appears in the expression for the rate of elec- 
tron-ion collisions. 

The depth I, of the heated region increases considerably 
more rapidly than I,: 

Is c t  I* E t  4'5. 

2.2. Description of the kinetic model of the heat transfer 

According to Refs. 1, 6,  and 7, the interaction of laser 
pulses of subpicosecond length and high intensities 
(I> 10" W/cm2) occurs under conditions corresponding 
to the anomalous skin effect. In this case the assumption that 
the heat flux is classical is wrong near the absorption region, 
since the skin thickness is smaller than the electron mean 
free path under the conditions of the anomalous skin effect. 
To find a better description of the heat transfer out of the 
absorption region, we have carried out a numerical solution 
of the kinetic equation for the electron distribution function: 

a!. afe e af .  2 a -+~,-+-E~(z,t)-=v~,--(~i~~,~ 
at  az m av,  sin cp, acp, 

( 5 )  

where 

964 Sov. Phys. JETP 74 (6), June 1992 Andreev eta[ 964 



is the rate of electron-ion collisions, and p, is the angle be- 
tween the velocity vector u and the z axis. 

Under anomalous-skin-effect conditions the electron 
mean free path is greater than the skin thickness. To avoid 
introducing this small length scale in the problem, we solve 
the kinetic equation (5)  exclusively outside the skin layer. 
The absorption of the laser light is described as a boundary 
condition on the distribution function at the boundary z = 0: 

The right side of (6) contains the distribution function of the 
electrons moving toward the boundary; 

is the velocity component in the plane of the interface; and 
the skin thickness is expressed self-consistently in terms of 
the distribution function, as in Refs. 6 and 7: 

rn 

A boundary condition of this sort was found previously, in 
Refs. 6 and 7 by solving the kinetic equation approximately 
inside the skin layer in the quasilinear approximation, with 
collisions ignored.'' Condition (6) causes a redistribution 
of the electrons with respect to transverse velocity, but it 
does not give rise to a current along the z axis. 

The electron distribution function is assumed to be axi- 
symmetric with respect to the normal to the surface (the z 
axis). The distribution function is assumed to depend only 
on the one coordinate z. These assumptions correspond to 
normal incidence of the laser light (which may be either 
unpolarized or circularly polarized) on a planez = 0 bound- 
ary. The ions are assumed to be cold and immobile, with a 
fixed density ni = n,/Z. 

An ambipolar electric field Ea (z,t) arises in the plasma 
in order to maintain quasineutrality of the plasma. To deter- 
mine this field we use the standard assumption that there is 
no electron current along the z axis: 

condition forf, (v, (0,z- cc ), which is assumed to be Max- 
wellian and isotropic. 

The algorithm used for the numerical solution of Eqs. 
(5)-( 8) is described in detail in the Appendix. At this point 
we simply note that the high dimensionality of the problem 
(there are two velocity components, u, and u,; one coordi- 
nate, z; and the time t) rules out the use of this code for 
calculations over large time or spatial intervals. In practice, 
the calculations were carried out over a distance on the order 
of ten mean free paths of a thermal electron, z,, and over 
times on the order of the mean free path to multiplied by a 
few tens (up to a hundred). These intervals were too narrow 
to see the dynamics of the heating as the temperature 
changed by a factor of a few units or more. 

To get around this difficulty we used the following tac- 
tic. Our problem, (5 )-( 8), has two independent parameters. 
It is convenient to adopt the intensity of the laser light as one 
of them; more precisely, we adopt the ratio of the electron 
oscillation energy in the field of the laser light to the rest 
energy of an electron, a = ( v , , , / ~ ) ~ .  As the second param- 
eter we adopt the coefficient fl = w , l s / ( u ~ ) " 2 ,  which is a 
measure of the extent to which the situation is anomalous 
and characterizes the average electron energy (or the tem- 
perature). During heating caused by a laser pulse of con- 
stant intensity, the first parameter, a, remains constant, 
while the second, fl, decreases. 

To study the time evolution fl(t)  at a fixed value of a, 
we carried out a series of relatively short calculations for a 
fixed value of a and various initial values offl. Each calcula- 
tion at a certain fl = f l ,  was pursued for a comparatively 
short time, until a quasisteady distribution function was 
reached. We determined the quasisteady heating rate T( T I  ), 
the degree of anisotropy A, and certain other properties. 
Then, using a different value fl = 8, (and thus a different 
temperature T2 ), we repeated the calculation, again deter- 
mining the heating rate. As a result of this series of calcula- 
tions we found a sequence of r (  T, ) values, which we were 
then able to use to get an idea of the functional dependence 
r (  T) and thus of the dynamics of the plasma heating. 

(8  
2.3. Results of the numerical calculations 

The calculations were carried out over an interval on 
This assumption is valid for describing processes which are the order of 5 or 10 mean free paths near the plasma bound- 
slow in comparison with the period of the plasma oscilla- ary. we assumed that the distribution function was initially 
tions, zw; '. This condition clearly holds in our case, since ~ ~ ~ ~ ~ l l i ~ ~  and isotropic with some given temperature T,. 
the characteristic plasma heating rate The boundary condition (6)  was imposed at the left bound- 

is high in comparison with w, I ,  and the relation w, &w, 
holds. The boundary condition in (6)  does not give rise to a 
current. We thus have E, (z = 0,t) = 0 at the boundary. The 
field Ea arises because of collisions, which change the direc- 
tion in which the electrons are moving and thus tend to make 
the distribution function isotropic. 

Equation (5)  incorporates only electron-ion collisions. 
Electron-electron collisions are ignored, under the assump- 
tion that the ionization state of the ions is large, Z >  1. The 
"Maxwellization" of the distribution function in the interior 
of the plasma is described formally by means of a boundary 

ary (the plasma-vacuum boundary), and the condition of 
free outflow of heat was imposed at the right boundary 
(which was in the interior of the plasma). Specifically, it was 
assumed that electrons moving toward this right boundary 
escaped freely from the computation region, while electrons 
returned with a Maxwellian distribution with the same aver- 
age energy and density, in such a way that there was no 
current of particles across the right boundary. ( A  boundary 
condition of this sort models electron-electron collisions in 
the interior of the plasma.) 

As the unit of energy in the calculations we adopted the 
temperature of the initial Maxwellian distribution, To. As 
the length and time scales, we used the electron mean free 
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pathz, and the time scale between electron-ion collisions, to, 
both calculated from the initial electron temperature: 

In the course of the calculations we determined the spa- 
tial and temporal behavior of the average electron energy in 
the longitudinal and transverse directions: 

We used these results to calculate the average electron ener- 
gy 

and the anisotropy parameter 

Calculations show that a quasisteady temperature profile 
and a quasisteady distribution function are formed over a 
time on the order of (20-40) to. Thereafter, the heating pro- 
ceeds without any significant change in the shape of the dis- 
tribution function or the temperature profile. 

Figure 2 shows cross sections of the electron distribu- 
tion function at several distances from the boundary. The 
lower half of these figures (u, < 0) corresponds to electrons 
which are moving toward the boundary, and the upper half 
Tv, > 0)  to those which are moving away from the boundary. 
We find the greatest difference between f,(v, < 0 )  and 
f, (u, > 0) near the boundary. This difference is a conse- 
quence of the anisotropy of the heating in the skin layer: 

Electrons with small longitudinal velocities acquire energy 
from the field. Accordingly, the transverse electron energy 
T, is greater than the longitudinal energy T, near the bound- 
ary (Figs. 2 and 3). For the parameter values under consi- 
deration here, the anisotropy of the electron distribution is 
slight [A(z = 0)  --0.1-0.21 and depends only weakly on the 
time (Fig. 3).  The anisotropy of the electron distribution 
may, as we will see below, lead to an increase in the absorp- 
tion coefficient and to the excitation of an electromagnetic 
instability.I9 

With distance from the boundary, the electron distribu- 
tion becomes more nearly isotropic (Fig. 3) ,  and A de- 
creases, because of electron-ion collisions. At z=. 5z0, traces 
of anisotropy remain only for the fastest electrons, with 
v z 5 ( To /m) " I .  These electrons undergo essentially no 
collisions over the computation distance. The spatial depen- 
dences of A (z) remains essentially the same as time elapses. 
The implication is that the heating is quasisteady. 

Figure 4 shows examples of the average plasma tem- 
perature T profile as a function of position [see ( 1 1 ) 1.  We 
see that the shape of the T(z) profile does not change as time 
elapses; this result indicates that the heating is approximate- 
ly self-similar. The length scale of the temperature variation, 

is comparable to the electron mean free path near the bound- 
ary. We thus find L, z7zo at z z 0  from Fig. 4. However, the 
profile becomes more gently sloping even close to the bound- 
ary, and at zz6z0  we have L, =.60z,. This fact is evidence 
that the nonclassical heat transfer is manifested most notice- 

FIG. 2. Contour plots of the electron distribution function 
A. (u, ,u, ). a, d-Near the plasma boundary, z z 0 ;  b, e-at a dis- 
tance of three mean free paths, z/z, = 3; c, f-at a distance 
zz6zo .  a, b, C)  At the time t = lot,; d, e, f )  40t,,. The parameter 
values a = 0.5 and B(O) = 0.75 were used in the calculations. 
The labels i on the contour lines correspond to a value of the 
distribution function less than the maximum value bv a factor of 
exp(3i/l for each part of the figure. 
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FIG. 3. Time evolution of the parameter which serves a measure of the 
anisotropy of the distribution function at the z,-0 boundary, i.e., A ( t ) .  
The parameter values used in the calculations were the same as in Fig. 2. 

FIG. 5. Time evolution of average plasma temperature at the boundary, 
T(O,t) ,  for a = 0.5 and B(0)  = 0.75. 

ably near the boundary. At distances z=: 10zo the classical 
description of the heat transfer becomes valid essentially ev- 
erywhere except in a small region near the front of the ther- 
mal wave, where the temperature gradient again increases 
sharply. That region does not affect the plasma boundary, 
however, so we will not discuss it here. 

The heating rate can be determined from Fig. 5. We see 
that at times t<20to a self-similar regime is formed, and the 
rate of increase of T(0,t) is higher than at later times. The 
reason lies in a relaxation of the initial conditions, in particu- 
lar, the circumstance that the temperature in the layer is 
initially more nearly uniform, and the distribution function 
is Maxwellian. A steady-state heating regime then sets in. In 
particular, for Fig. 5 [a = l,P(O) = 0.751 the time scale of 
the temperature changes is T Z  170t0, while at P (0 )  = 1 it is 
T=: 50to. The heating rate thus falls off with increasing plas- 
ma temperature. The reason is that the heat flux out of the 
skin layer (which is comparable in magnitude to the free 
molecule heat flux) increases more rapidly than the absorp- 
tion coefficient with increasing temperature. 

To explicitly see the deviation from the classical ther- 
mal conductivity, we compare the results found in the pres- 
ent calculations with a self-similar solution carried out with 
the help of the classical thermal conductivity in (3).  Figure 
6 shows the plasma heating rate 7 versus the temperature at 
the boundary, T(0). According to (3),  the classical thermal 
conductivity leads to 7 m [ T(0) ] 25/6. The results of kinetic 
calculations are shown in the same figure, by the points. As 
the temperature scale and the time scale we used expressions 
(4) .  At T = T, , the anomaly parameter is P( T, ) =: 1; i.e., 
T, determines a lower boundary on the region of the anoma- 
lous skin effect. Correspondingly, the time scale t ,  deter- 
mines the heating rate 7, at T = T, according to the classi- 
cal theory.7 

FIG. 4. Profile of the average electron energy T ( z )  at various times: I- 
r = lot,; 2-20t,; 3 4 0 r , .  The parameter values are the same as in Figs. 2 
and 3.  

The kinetic calculations demonstrate an important dif- 
ference between the heating rate and the classical self-similar 
solution. With decreasing 0 ,  i.e., with increasing tempera- 
ture T, this difference becomes even greater. Although the 
data in Fig. 6 were obtained over a fairly narrow interval of 
parameter values, they can be approximated by 

This growth is considerably faster than that predicted by the 
classical theory of heat conduction:' Tcc t 0.24. 

Even near the boundary of the region of the anomalous 
skin effect, at T z  T, (P=: 1 ), the heating rzte is greater than 
the classical rate by nearly an order of magnitude. This dif- 
ference indicates that the deviation from the classical ther- 
mal conductivity may be significant even at lower tempera- 
tures, under conditions corresponding to the normal skin 
effect. Using the classical scaling for the temperature under 
the conditions of the normal e f f e ~ t , ~  Tcc t we would ex- 
pect that anomalies would appear in the thermal conductiv- 

FIG. 6.  Temperature dependence of the plasma heating rate under condi- 
tions corresponding to the anomalous skin effect. Solid line-Result of a 
self-similar solution under the assumption of a classical thermal conduc- 
tivity, in accordance with ( 3 )  and ( 4 ) ;  filled points-results of kinetic 
calculations with a = 0.5; open circles-the same, with a = 0.25. 
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ity, and the heating rate would rise correspondingly, at tem- 
peratures TZ (0.3-0.5) T, . 

Heating of the plasma under anomalous skin-effect con- 
ditions leads to a distinctive shape of the electron distribu- 
tion function near the boundary (Fig. 7).  In comparison 
with a Maxwellian distribution, there are deficiencies of 
electrons with low and high velocities. In addition, a positive 
derivative dfe/dv, appears. This fact suggests that ion acous- 
tic and plasma waves may be excited and that an anomalous 
(turbulent) resistance arisese2' We have not considered that 
effect in the present paper. It might lead to even greater sup- 
pression of the heat flux and, correspondingly, a heating rate 
greater than (13). The distribution function in Fig. 7 (see 
also Fig. 1 ) has qualitatively the same shape as the self-simi- 
lar distribution function in (2),  which was derived analyti- 
cally in Ref. 6 by ignoring the heat loss from the skin layer 
and by assuming an isotropic distribution function. Al- 
though neither of these assumptions is strictly correct, there 
is indeed a deficiency of slow particles. 

3. EFFECT OF AN ANISOTROPY OF THE ELECTRON 
DISTRIBUTION ON THE ABSORPTION OF ENERGY FROM A 
LASER PULSE UNDER CONDITIONS CORRESPONDING TO 
THE ANOMALOUS SKIN EFFECT 

The numerical solution described above demonstrates 
the formation of an anisotropic, non-Maxwellian distribu- 
tion near the plasma boundary. It is therefore interesting to 
take a separate look at how the absorption of laser energy 
depends on the shape of the electron distribution function. 

The problem of energy absorption under anomalous 
skin-effect condition is described in detail in Refs. 8-1 1 for a 
distribution function which is specified, which remains con- 
stant over time (differing in these regards from the distribu- 
tion function discussed in the preceding section of this pa- 
per), and which is otherwise arbitrary, and for the case of a 
monochromatic electromagnetic wave. Following the gen- 
eral theory, we can thus immediately write expressions for 
the absorption coefficient A for the energy flux for s- andp- 
polarized laser pulses:" 

I t, cos 8-1 
A , = [  - I g p - c O s O  I ' (14) 

g, cos 0+1 ' gp+cos 0 1 : 

where 0 is the angle of incidence of the light on the plasma, 
and l is the surface impedance. When laser light is applied to 

FIG. 7. Electron distribution with respect to longitudinal velocity u, and 
with respect to transverse velocity u, near the plasma boundary, with 
a = 0.5, p(0) = 0.75, and t = got,. 

targets with a smooth (polished) surface, it is natural to 
assume that the reflection of electrons from the surface is 
specular. According to Refs. 8-1 1, the relationship between 
the Fourier components of the field and the current in this 
case is the same as in an unbounded plasma. The surface 
impedances ls and 6, (for s- andp-polarized waves, respec- 
tively) can therefore be written as integrals of components of 
the dielectric tensor of an unbounded plasma, E, (o,k) .  We 
choose a coordinate system whose z axis runs along the nor- 
mal to the surface, into the plasma, whose x axis lies in the 
plane of incidence of the laser wave, and whose y axis is 
perpendicular to this plane. For an s-polarized wave (in this 
case there are the magnetic field components B, and B, and 
the electric field component E, ) we then find1' 

m 

E,,(O) ---5. 2ii; dq (15) 
g.=-- 

&(O) n qL+kL sin' 0 - k L  ' 

where 

k = ~ o l c ,  ei,=e,, (mo. K sin 8,O. q)  . 

Correspondingly, for a p-polarized wave (with the field 
components Ex, E,, and By ), we find 

P - 
Ez(O) g - - ----- 
4, (0) 

- (16) 
2ik dq 

= -  j ---- 
n , q2-kZe,-(q sill O + k ~ . e ~ ~ ) ~ / ( s i n ~  O-ezz) 

The problem of finding the absorption coefficient is thus re- 
duced to one of determining the components of the dielectric 
tensor and of evaluating the integrals in ( 15) and ( 16). In a 
dense plasma (n, % n, ), the impedance is small ( I <  I 9 1 ), so 
we can replace ( 14) by the following simpler expressions for 
the absorption coefficients: 

The second of these expressions if valid everywhere except in 
a small angular interval near r/2, where we have cos0-- I 6, I, 
where A, reaches a maximum, and where we should use the 
exact formula ( 14). 

The same small parameter, n,/n, 9 1, can be used to 
derive some comparatively simple expressions for the tensor 
components eii. For this purpose we note that the compo- 
nents ey are large: 1 6 1 ~  n,/n, ) 1. The integrals in ( 15 ) and 
( 16) are therefore dominated by large values of the z compo- 
nent of the wave vector: q z q ,  z k 161 > k. The x component 
of the wave vector can thus be ignored in the arguments of 
E ~ .  (The physical meaning here is that the length scale of the 
field variations in the skin layer, I,, is much smaller than the 
vacuum wavelength: o,l,/c< 1. ) The direction of the ani- 
sotropy axis of the distribution function thus essentially co- 
incides with the direction of the wave vector. 

We also note that under the conditions corresponding 
to the anomalous skin effect the field penetration depth 
q *  =I., is short in comparison with the distance traveled by 
an electron over the field period, u,/w, [where 
v, = (Tz/m)"2], and also in comparison with the mean 
free path of an electron, v,/vei. In the calculation of E, we 
should thus set Iql v, )w,. Expanding 6,. in a series in 
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w/lq(v,, we find the following expressions for the imped- 
ance: 

where the quantity d = (w,l,/c)*A is proportional to the 
anisotropy parameter A, 

is the relativistic factor, and 

If relativistic effects are ignored, expression (22) for the skin 
depth becomes the expression (7 )  written above and expres- 
sion (21 ) for the anisotropy parameter becomes the same as 
( 12) for a nonrelativistic, two-temperature Maxwellian dis- 
tribution. 

The second term in (19) is smaller than the first by a 
factor of (w, l,/v, ) - "*, so we have 

The impedance 6 is small since the parameter w, l,/cg 1 is 
small. The parameter w, I,/c beside A in the expression for d 
in (20) may be greater than unity under the conditions of the 
anomalous skin effect. Consequently, even when the anisot- 
ropy parameter is small, A 4 1, the effect of this parameter on 
the impedance and thus on the absorption coefficient may be 
substantial. 

The A dependence of the impedance is described by the 
function @(d)  in (20); plots of the real and imaginary parts 
of this function are given in Fig. 8. With d = 0, the real part 
of the integral in (20) reduces to the tabulated value 

The maximum value, Re@,,, - 2.2, however, is nearly twice 
as large as Re@ (0), and it is reached at d -- 1.6. 

To illustrate the use of the general expressions given 
above, we consider a nonrelativistic, bi-Maxwellian distribu- 
tion function: 

In this case the anisotropy parameter is given by ( 12), and 
the skin depth in (22) is equal to 

The absorption is described by the real part of the im- 

FIG. 8. Real and imaginary parts of the impedance versus the degree of 
anisotropy of the distribution function according to (20). 

pedance and is correspondingly proportional to Re@. It can 
be seen from Fig. 8 that for small values of A the absorption 
increases with increasing transverse temperature. It is just 
this situation which is realized under the conditions of the 
anomalous skin effect (as we showed in the preceding sec- 
tion of this paper), because of the preferential heating of 
electrons moving at small angles with respect to the surface. 

Figure 8 shows angular distributions of the absorption 
coefficients. In accordance with (14) and (17), A, falls off 
monotonically with increasing angle of incidence. The ani- 
sotropy of the distribution function does not change the 
shape of the A, (0) curve. For ap-polarized wave and a sym- 
metric distribution function (A = O), the absorption maxi- 
mum 

is reached at the angle of incidence corresponding to 

cos e=IEl 

The anisotropy of the distribution function for A > 0 leads to 
an increase in the maximum value of A,, since the phase of 
the impedance decreases. The coordinate of the maximum 
shifts to a larger angle, since 16 I decreases. For A < 0, the 
maximum of the absorption coefficient shrinks because of 
the increase in the phase of the impedance, but the maximum 
again shifts toward large values of 13 because of the decrease 
in 16 I. Note the narrowing of the A, maximum with increas- 
ing degree of anisotropy of I A I. 

Note also that the difference between A, and A, stems 
from the work performed on the electrons by the longitudi- 
nal field component E,. Correspondingly, for p-polarized 
light the absorption of energy arises from an increase in the z 
component of the electron velocity. We would thus expect 
the longitudinal temperature T, to be higher than the trans- 
verse temperature T,. According to Fig. 9, this inverse ani- 
sotropy (the inverse of that in the case of the s polarization) 
leads to some decrease in the absorption. 
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FIG. 9. Angular distribution of the absorption coefficient for ( I )  s-polar- 
ized and (2) p-polarized electromagnetic waves under conditions corre- 
sponding to the anomalous skin effect, with n,/n, = 1W and u,=/c = 0.1. 
a-The value of the anisotropy parameter is (o, l , /c)  *A = 0; b- - 2. , C- 

5. 

The behavior of the absorption of energy from a longi- 
tudinally polarized rf electric field near a sharp boundary of 
a dense plasma was discussed several years ago in Refs. 12 
and 13. The absorption coefficient A, found above for an 
isotropic distribution function agrees with the results of Ref. 
12. The numerical simulation carried out by the particle-in- 
cell method in Ref. 13 showed that the absorption decreased 
somewhat as time elapsed, apparently because of the forma- 
tion of an anisotropic distribution function. 

4. CONCLUSION 

We have discussed several effects which accompany the 
heating of a dense plasma by an intense, ultrashort laser 
pulse. It has been shown that at high intensities of the laser 
light (according to the scaling in Ref. 7, at intensities 1>101' 
W/cm2, at a wavelength i l ~ 0 . 2 5  pm, and at a pulse length 
t, =: 100 fs) we would expect several new effects to arise: 

An increase in the plasma heating rate (and, corre- 
spondingly, an increase in the temperature), because of the 
limitation on the thermal conductivity and because of the 
transition from conditions corresponding to the normal skin 
effect to conditions corresponding to the anomalous skin ef- 
fect; 

The appearance of anisotropy of the electron distribu- 
tion function in the skin layer as the result of the additional 
absorption and, possibly, a secondary instability; 

The formation of a time-varying, nonequilibrium distri- 
bution function with deficiencies of slow and fast particles. 
The formation of a positive derivative of the electron distri- 
bution function (dfe/au > 0) may also be responsible for a 
secondary instability of the plasma, for the transition of the 
plasma to a turbulent state, for the appearance of an anoma- 
lous resistance, and for further suppression of heat transfer. 

An important condition to be met for an experimental 
observation of these effects is the presence of a sharp plasma- 
vacuum boundary. For this purpose we need a high-quality 
target surface and a high-contrast laser pulse, to avoid the 
plasma production at the target surface before the arrival of 
the main laser pulse. 

APPENDIX 

Algorithm for solving the kinetic equation 

1. Equation (5)  can be written in the general form 

D f -= a! a! y-J- -  a , ,  -+ ai2-+ a,! )  
Ut  8 " 2 ax By 

wherep = 1, x = u,, y = u, in the case of cylindrical coordi- 
nates in velocity space; orp = 2, x = cos8, y = jvl in the case 
of spherical coordinates. The transport operator is, respec- 
tively, 

where E, = E, (z , t )  is the ambipolar electric field. The coef- 
ficients in the collision operator [the right side of (A/1) 1 
may in general depend on the unknown distribution func- 
tion, the time, and the phase variables. 

Difficulties arise in attempts to numerically solve equa- 
tions like ( A l )  by finite differencing, because the coeffi- 
cients in the collision operator are rapidly varying functions 
in velocity space, because there are cross terms (mixed de- 
rivatives), and because it is necessary to carry out a multidi- 
mensional interpolation in phase space in calculating the re- 
sult of the effect of the transport operator in each time step. 

As computation time elapses, these circumstances may 
result in a buildup of numerical instabilities and errors. Be- 
low we discuss a numerical method for solving equations like 
( A l )  which is based on a transformation to some special 
curvilinear coordinates, in which the collision operator has 
no mixed derivatives, and the transport operator is fairly 
simple. For the general case in which the coefficients in the 
collision operator depend on the time, these new curvilinear 
coordinates are dynamically related to the solution. They 
generate a mesh which adapts to the solution. 

2. If we assume that the coefficients in (A1 ) are known 
functions of the phase coordinates at time t ,  then according 
to the theory of second-order particle differential equations 
a transformation 

can put the right side of (A  1 ) in canonical form, without any 
mixed derivatives. In general, however, this transformation 
may make the transport operator more complicated. 

It is not difficult to verify that the switch to a form 
without mixed derivatives can be achieved by choosing only 
one function, e.g., 6 = 6(x,y), which determines one of the 
families of coordinate lines. The second function, 
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7 = 7 (x,y), can be determined independently, from (for ex- 
ample) the requirement that the transport operator Df /Dt 
be as simple as possible in form. In the case at hand we set 
v=y. 

To determine the function 6, we associate with Eq. 
(A1 ) a first-order partial differential equation 

For a,, > 0, this equation is equivalent to one ordinary dif- 
ferential equation for the coordinate lines: 

For definiteness, we choose the boundary conditions, which 
determine g(x,y) unambiguously, in the form {(x,y*) = x, 
where y* = const. 

This method for putting elliptic equations in a form 
without mixed derivatives is also much simpler than the 
standard method, in which one is obliged to deal with com- 
plex quantities and to determine two families of coordinate 
lines. 

In the linear case, in which the coefficients a are inde- 
pendent of the time, Eq. (A1 ) in the coordinate system g, 7 
determined in this manner is divergent, and it does not con- 
tain any mixed derivatives: 

where 

To calculate the effect of the collision operator in (A4) on 
each time layer, we construct an implicit, conservative, lo- 
cally one-dimensional scheme in each time layer in the stan- 
dard way. l4 

In the nonlinear case in which the coefficients in (A1 ) 
are time-varying, the curvilinear coordinates are dynamical- 
ly related to the solution. They generate a mesh which adapts 
to the solution. Here there are two approaches which could 
be taken to construct a numerical scheme. If the coefficients 
a vary slowly in time (as they usually do for physical appli- 
cations), one can convert the distribution function into an 
evolving coordinate mesh with an interval of a few time 
steps. When a different approach is taken, the partial deriva- 
tive with respect to the time, df /at, in the transport operator 
takes the form 

where df /dt now 

The appearance of the additional convective terms in this 
case is a consequence of the time variation of the coordinates 
6 9  7. 

The latitude in the choice of coordinate systems here 
can be exploited for a variety of purposes. For example, if the 
particle transport under the influence of the operator Df /Dt 
is inconsequential, and if the inequalities 

hold (i.e., if the momentum relaxation of the distribution 
function is much faster than the energy relaxation), then it 
would be natural to replace Eq. (A3) by the equation 

This generates the transformation 

which sends the rays x = const into themselves. After the 
equation is put in the form (A4), we can ignore the curva- 
ture of the coordinates because the ratio a,, /all  is small. In 
other words, we can make the identification g = y. We then 
find a simplified equation in the original spherical coordi- 
nates: 

wherewe haveii=a, -a:,/a,,, & = a ,  -ala , , /a , l ;  and 
where a heating term v - (d  /dv) (a*df /dv) arises, where 
a* = v2 (a,, - a:,/a,, ) . This term was derived previously in 
an averaged form by reducing the two-dimensional Fokker- 
Planck equations to simplified one-dimensional equations 
for a study of (for example) the heating of electrons." 

We thus see that, despite the large spread in the values 
of the coefficients of the highest derivatives, this method 
makes it possible to simplify the initial equations through an 
optimum choice of curvilinear coordinates. 

3. It follows from (A2) that in the original cylindrical 
coordinates the transport operator is two-dimensional: It 
acts only along y = const planes. For the numerical imple- 
mentation of this operator, we need only a two-dimensional 
interpolation along the coordinates z and x. In spherical co- 
ordinates, in contrast, we need a three-dimensional interpo- 
lation, with a much faster change in the coefficients of the 
transport operator in phase space. In cylindrical coordi- 
nates, even in the simplest case in which there is only an 
angular diffusion [Eq. (5)] ,  the collision operator has 
mixed derivatives. There are no such mixed derivatives in 
spherical coordinates. 

When the method described above is applied to Eq. (5),  
we obtain a coordinate system consisting of a family of cylin- 
ders v = const and planes y = const, z = const (Fig. 10). In 
this coordinate system, Eq. (5)  is 

FIG. 10. System of curvilinear coordinates used in the numerical solution 
of the kinetic equation ( 5 ) .  
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The + signs appear in (A5) because the mapping 

( x ,  y) -+ (u ,  y), v =  (x2+yZ) '" ,  O=C ydv 

is double-valued. This double-valuedness does not pose any 
difficulties from the computational standpoint, since the dis- 
tribution function can always be written in the form 

where f + corresponds to particles which are moving away 
from the plasma boundary, and f - to particles moving to- 
ward the boundary. Equation (A5) is therefore a shorthand 
version of a system of equations, in which the plus sign corre- 
sponds to f + , and the minus sign to f - . 

It can be seen from (A5) that in the coordinates u, y Eq. 
(5)  has the fairly simple form of the transport operator cor- 
responding to the case of cylindrical coordinates, and at the 
same time the simple form of a collision operator as in the 
case of spherical coordinates. 

4. The method described above for solving Eq. (5)  has 
been implemented in the FPnumerical code. Let us describe 
it briefly. The volume element in the new coordinates is 

To avoid difficulties associated with the divergence of Q at 
y = v, we replace Q by the "exact" expression 

where ( v I  ,YI I,...,( u2,y2 are the nearest-node coordinate 
points. It is a simple matter to verify that Q approximates Q 
within small terms of second order. 

Using condition (8)  and Eq. (5) ,  we can determine the 
dimensionless ambipolar electric field from the formula 

where (...) means averaging with the function f, and 
u, = + ( u 2  - y2)1'2. 

The calculations show, however, that determining 
E, (z,t) on each time step from a formula of this sort results 
in the rapid development of a numerical instability associat- 
ed with the uncertainty in E, (z,t) at z = 0 (at the boundary 
of the skin layer). According to ( a ) ,  the meaning of the 
ambipolar electric field is that it supports a constant electron 
density and a zero average velocity along thezaxis. In the FP 
numerical code, after calculating the effect of the diffusion 
and transport operators along z on each time step, we first 
normalize the distribution function in such a way that the 
dimensionless electron density is equal to one everywhere in 
the computation region. We then determine the average ve- 
locity along the u, axis, i.e., u. We set 

where At is the time step. We calculate the result of the appli- 
cation of the operator 

The calculations show that to two or three decimal places, 
the field determined in this manner is the same as the field 
found from (A6) everywhere except at z = 0. 

The effect of the diffusion operator on the "flux" mesh 
(the points in Fig. 10) is evaluated by tridiagonal inversion, 
which is applied to the equation 

after this equation is approximated by a difference equation 
and after regularization of the expression (u2  - yZ)l'Z 
through the substitution 

The quantity y takes on values from 0 up to u and back, 
corresponding to points between two neighboring semicir- 
cles in Fig. 10. The effect of the transport operators along z 
and u is calculated in succession by means of one-dimension- 
a1 interpolations. 

According to (6),  direct modeling of the boundary con- 
dition at the point z = 0 generally also leads to the develop- 
ment of a numerical instability, because of the second deriva- 
tive in the expression for the jump in the distribution 
function. In the numerical simulation of the boundary con- 
dition for the distribution function at the point z = 0, we 
accordingly carry out the following regularization: We re- 
place f, on the right side of (6)  by a Maxwellian function 

(2nT)-" esp ( - u 2 / 2 T  ), 
A 

where the temperature T is found from the instantaneous 
(not the Maxwellian) electron distribution function f; at 
the point z = 0. %ere we assume f; = f: (only for this 
determination of T). 

For convenience in the calculations, the distribution 
function f =A, is stored in an n, X n, two-dimensional ar- 
ray, where n, = n, X n, (n, = n, ). We first calculate arrays 
of the quantities xi, and yi ( i  = 1, ..., n, ). The scheme for 
numbering them is illustrated in Fig. 10 (for the particular 
case n, = 16). The calculation of the corresponding mo- 
ments off is carried out in the following way: 

" Equations ( 6 )  and ( 7 )  follow directly from expressions ( 19) and (20) 
of Ref. 6, but they are slightly different from Eq. (22) of Ref. 7. There, 
the effect of the magnetic field of the laser light on the motion of elec- 
trons in the skin layer was ignored. 
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