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We use the slow modulation method to study the breaking of a Riemann wave in dispersive 
hydrodynamics. The generalized hodograph method is used to find an exact analytical solution of 
the Whitham equations describing the dissipationless shock wave zone. We study Korteweg-de 
Vries hydrodynamics and the nonlinear Schrodinger equation. 

1. INTRODUCTION 

The breaking of a simple Riemann wave' leads in dis- 
persive hydrodynamics to the appearance of a dissipation- 
less shock wave (DSW)-a continuously expanding region 
filled with nonlinear small-scale waves. The use of the modu- 
lational Whitham equations2 which recently have attracted 
the attention of a large number of researchers (see, e.g., the 
review in Ref. 3 and the literature cited there) has turned out 
to be very efficient for describing the structure of DSW. In a 
number of important cases [Korteweg-de Vries (KdV) hy- 
drodynamics, the nonlinear Schrodinger (NLS) equation, 
the sine-Gordon equation, and so on] the modulational sys- 
tem can be written in a symmetric Riemann f ~ r m . ~ - ~  If the 
physical conditions make it possible to specify some of the 
Riemann variables, the modulational equations have analy- 
tical solutions in the shape of simple and quasisimple waves. 

Gurevich and Pitaevskii were the first to apply the 
Whitham method in Ref. 7 to the problem of a shock wave in 
dispersive hydrodynamics (Gurevich-Pitaevskii problem); 
they studied the structure of a simple DSW arising under the 
conditions of a sharp initial discontinuity, and they also gave 
a numerical analysis of the breaking of a simple hydrody- 
namic wave. Further developments of this problem were ob- 
tained in Refs. 8 and 9 where a more general class of solu- 
tions-quasisimple waves arising when a Riemann wave 
breaks at the boundary of a stationary gas-was studied. 

In the present paper we construct a general analytical 
solution of the modulational KdV and NLS equations for 
the problem of the breaking of an arbitrary monotonic pro- 
file. In principle the possibility of constructing such solu- 
tions is connected with the use of the generalized (multidi- 
mensional) hodograph method which was proposed by 
Tsarev in Ref. 10 (see also Ref. 3). A noticeable feature of 
the generalized hodograph method consists in that it enables 
one to linearize the modulational system even though the 
number of Riemann invariants ri exceeds the number of in- 
dependent variables (x and t ) .  Such a linearization turns out 
to be possible for the modulational KdV and NLS systems 
and for other systems which possess the semi-Hamiltonian 

The direct solution of this system, however, is difficult 
since for KdV and NLSE it contains rather complicated 
combinations of complete elliptical integrals. Using the po- 
tential representation for the group velocities established by 
the present authors in Ref. 11 it is possible to reduce the 
(vector) system of Tsarev equations to a linear scalar sec- 
ond-order system not containing elliptical integrals. Its deri- 
vation is given in Sec. 3. In the KdV and NLS case this set of 
equations is of the Euler-Poisson type obtained recently in 
Refs. 12 and 13 by direct calculations. In the Appendix we 
also obtain a scalar equation of a different form which de- 
scribes the slow modulations of the sine-Gordon equation. 

An important property of the generalized hodograph 
method is that any two (ij) of the Tsarev equations can be 
solved independently provided the r, (k  # i j )  invariants are 
fixed. This makes it possible during the construction of the 
three-dimensional solution in r-space to solve a two-dimen- 
sional Goursat problem at each stage, i.e., to use essentially 
the usual (x;t)-(r, ,rj ) hodograph transformation. The re- 
quired solution of the Gurevich-Pitaevskii problem is con- 
structed in Sec. 4. It contains two arbitrary functions de- 
scribing the initial monotonic hydrodynamical profile and 
has a singularity with a continuous first derivative if these 
functions are different. Quasisimple waves are briefly con- 
sidered in Sec. 5; the solutions for these are obtained by a 
simple reduction of the general formulae of Sec. 4. 

The appropriate equations and some important solu- 
tions of the Gurevich-Pitaevskii problem were obtained ear- 
lier by the present authors for KdV hydrodynamics in Ref. 
11. 

2. GUREVICH-PITAEVSKITPROBLEM AND GENERALIZED 
HODOGRAPH METHOD 

A simple Riemann wave is described by the equation 

which has the solution 

~ r o p e ~ t ~ . ' ~ ' ~  It is also 'erY important that the boundary where W(r) is the function which is the inverse of the initial 
ue problem for the matching of the solutions in the DSW profile = ro(x). 
region with the solutions of ordinary hydrodynamics can be 
formulated particularly simply in the generalized hodo- a. ~d~wave-breakina 
graph system. We show in sic. 2 that the nonlinear Gure- 

- 
We consider for definiteness the breaking of a simple 

vich-Pitaevskii problem with conditions on an unknown wave in dispersive KdV hydrodynamics: 
boundary can be reduced in r-space to the solution of a linear 
system with linear conditions on prescribed boundaries. dtu+ud,u+d~u=O. ( 3 )  
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Let the wave-breaking occur initially at t = 0 at the point 
x = 0, r = 0 (Fig. 1) where 

with the inverse function (Fig. lb )  

FIG. 2. Riemann invariants as functions of x in a DSW. 

The DSW region which appears after the wave (2),  (5) 
breaks is described by three functions r5(x-, t) -r-(x-, t), r2(x-, t)=ri (x-I t )  

(11) 
r,(x+, t)=r+(x+, t), rz(xf, t)=r,(x+, t )  . 

(Fig. 2)  which satisfy the modulational Whitham system 
obtained by averaging the KdV equation (3)  over the family 
of solutions of the form u(kx - a t ) ,  where k is the wave- 
number and w is the frequency. The modulational KdV sys- 
tem can be written in the Riemann form 

The hodograph transformation is found to be very effi- 
cient for solving this kind of problem; it was first applied by 
Gurevich, Krylov, and Mazur9 to the problem of a quasisim- 
ple KdV wave in which two invariants (r, and r3) were 
changing while the third one was fixed (rl-O), with the 
wave moving through an unperturbed medium. It is natural 
to study the three- (and the more-) dimensional problem 
(6),  ( 1 1 ) using the generalized hodograph method, a brief 
version of which is the following. 

The vector generalization of the Riemann solution ( 2 )  
for the system (6)  has the form 

where there is no summation over repeated indices 
( i  = 1,2,3), r r  (r,,r2,r,), and the group velocities have the 
"potential" representation" 

Here 
where N is the order of the system. However, the functions 
Wi ( r )  cannot be arbitrary but must satisfy the compatibility 
conditions 

The overdetermined system ( 13) is solvable in the KdV and 
NLS cases which have been ~ t u d i e d . ~ . ' ~  The general solution 
of the compatibility equations (13) determines all symme- 
tries, i.e., equations of the form 

are the phase velocity and the wavelength. Equation (7) is of 
a general nature and follows from the conservation law for 
the number of waves 

atk (r) +a,o (r) =0, (10) 
which commute with the original system (6)  (G':,ri 
= G'5,ri). 

In the KdV case the system ( 13) is defined in the region 
rl(r2(r3,rl <0,r3)0 between the planes r2 = r, (trailing 
edge) and r2 = r3 (leading edge) (Fig. 3).  The Gurevich- 
PitaevskiT conditions ( 11 ) in r-space take a simple form: 

wi(r i ,  0, O)=W+(rc), 

Wa(0, 0, rS)=w-(rd. (15) 

which is always satisfied under conditions of single-phase 
averaging and which is, of course, a consequence of Eqs. 
(6)  .2,'4 

The required solution which describes the evolution of a 
DSW confined between the unknown boundaries x = x- ( t )  
(trailing edge) and x = x+( t )  (front) satisfies the condi- 
tions on the curves x * ( t )  for the matching of the corre- 
sponding branches r , (x,t) of the "exterior" solution of (2)  
with the solution (rl,r2,r3) of the "interior" modulational 
equations (6)  (Fig. 2):' 

FIG. 1.  Initial data for the wave-breaking problem ( a )  and the inverse 
function ( b ) .  

FIG. 3. Definition region in r space. 
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FIG. 4. Riemann invariants of the average NLS equation as functions ofx 
for t > 0. 

Conditions (15) guarantee the matching of the solution of 
the system ( 13) with the appropriate branches of the func- 
tion W(r) [see (S)] on the fronts. Indeed, using explicit 
expressions for the velocities Vi one finds easily from Eqs. 
(13) that 

(a,+a,) w,~,,=,~=o, (a,+a,) w31 ,,=,, =o (16) 

for bounded solutions W, and W,, i.e., the values of W, are 
carried along without change from the r,-axis along the line 
r, = r, (and similarly for W, and the trailing front r, = r ,  ) . 

We have thus instead of the nonlinear problem (6) ,  
( 11) with conditions at unknown boundaries a linear system 
( 13) in r-space which satisfies the linear conditions ( 15) on 
given boundaries. 

The system (12) has an important property: it can be 
integrated independently in any r, = const plane. This 
"two-dimensional" structure makes it possible to split the 
solution of the wave-breaking problem into several stages, 
and we shall make effective use of this in what follows. 

b. NLS wave-breaking 

We can write the nonlinear Schrijdinger equation with 
defocusing 

2ia,Y+a,zY-21 Y ) 2 Y = 0  

by means of the change of variables 

Y =p" exp (icp) . cpx=v 

in the form of a hydrodynamic system:' 

at@+& (pv )  =o, (17) 

The system ( 17) describes one-dimensional flows without 
dissipation in the case of positive dispersion. 

Averaging a stationary wave over a period to a 
Riemann system of the form (6), which in contrast to the 
modulational KdV system consists of four equations for the 
invariants r,>r,>r, > r, (Fig. 4).  The characteristic veloc- 
ities are, as before, described by the general formulae (7)  in 
which 

The role of the "exterior" equations in the wave-breaking 
problem is now played by the equations of Eulerian hydro- 
dynamics with y = 2. The problem of the breaking of a sim- 
ple wave moving to the right corresponds to r, = const. In- 
troducing new variables 

and changing to a moving coordinate system, 

we arrive at a three-dimensional problem, the formulation of 
which was analyzed in the preceding subsection. 

3. SCALAR POTENTIAL AND LINEAR EQUATIONS NOT 
CONTAINING ELLIPTIC INTEGRALS 

The difficulties arising when we study directly the sys- 
tem ( 13 ) for the KdV and NLS equations are primarily con- 
nected with the presence of complete elliptic integrals on the 
right-hand sides. There is, however, a procedure which 
makes it possible to reduce the system (13) in its general 
form to a linear system of second order equations without 
elliptic integrals. 

We note first of all an important consequence of Eqs. 
( 13). Using the potential representation (7)  we can easily 
prove that 

i.e., the required functions Wi can also be written in a poten- 
tial form: 

where f is some unknown function which has the meaning of 
a generalized phase velocity. Indeed, let us consider the con- 
servation law 

which commutes with ( 10). Some of the equations (22) 
have the obvious meaning of conservation laws for the num- 
ber of waves for the higher equations of the corresponding 
hierarchy. Using ( 14) to change explicitly in (22) to the r 
variables we find Eq. (2 1 ) . 

Equations (7 ) and (2 1 ) make it possible to convert the 
compatibility equations ( 13 ) to scalar equations: instead of 
N functions Wi we have a single unknown function f satis- 
fying a combined overdetermined set of second-order equa- 
tions: 

13, ( 8jf/dj 0.) - 3i (djh/djU) 
a , j / a , u - a ~ a , u -  a i k / a i u - a j ~ / a i u 7  " j .  

(23) 

We note the obvious solution f = A (which is not the same as 
the simplest solution f = U) which, however, bears no rela- 
tion to the wave-breaking problem. 

If we use Eqs. (8)  and ( 18) for U(r) we can reduce the 
set (23) for the KdV and NLS equations to the simpler set" 
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It is interesting to note that the set (24) is a consequence of 
(23) not only in the di U = const case (KdV,NLS) but also 
when the known function U(r) satisfies the same system: 

Using the integral representations ( 1 1 ) and ( 19) for R ( r )  
we find easily that for the KdV and NLS 

The required function f thus satisfies in both cases the same 
set of equations 

where 

is the Euler-Poisson operator. l5 
An important example-the sine-Gordon modulations 

for which the set (23) reduces to other equations, also with- 
out elliptic integrals-is analyzed in the Appendix. 

As before, we shall use the KdV equation as an example 
to further consider the wave-breaking problem. If we use 
( 15 ) and (2 1 ), the boundary conditions for the system (26) 
take the following form: 

4. GENERAL SOLUTION OF THE GUREVICH-PITAEVSKIT 
PROBLEM 

The general solution of the three-dimensional system 
(26) was found in 1918 by Eisenhart16 and has the form 

where the pi (x)  (i = 1,2,3) are arbitrary functions. The 
wave-breaking problem, however, has a number of features 
which require a special study. 

The integral representation (28) makes it relatively 
simple to write down the solution of the problem for the 
breaking of an antisymmetric profile characterized by a sin- 
gle function W(x) . In that case we have [see (27) ] 

The solution has the symmetric form 
7. 0 

where 

There is, however, an important difficulty: can a solu- 
tion of the Whitham equations accomplish the matching of 
two different hydrodynamic regimes, r + ( x , t )  and r - (x,t) 
[i.e., is there a solution of the wave-breaking problem with 
initial data of the general form(4) ]? The answer is: it is pos- 
sible, this matching is guaranteed by the continuity of the 
normal derivative dJ(r, = 0)  and in this case the r, = 0 
plane is a singularity and the solution on different sides of it 
has a different form. 

We first find f(r,,O,r,) and the Goursat problems (Fig. 
5a 

where the f, ( z )  are given by (27). The solution of the prob- 
lem (32) has the form 

where 

To establish the r, dependence of the solution we consider 
the function G(r,,r,) as (Goursat) data for the correspond- 
ing boundary-value problems in the r, = const (r, > 0)  and 
r, = const (r, <0 )  planes. For instance, in each 
r, = r,, = const plane (Fig. 5b; see also the hatched region 
in Fig. 3) we have the following problem: 

Ez3f (rio, rz, r3) =O, 

f (riot 0, rs)*G (ria, r3), f (rl, r, r) - is bounded. 
(35) 

The problem (35) has a unique solution: 

One can similarly construct the solution on the other side of 
the r, = 0 plane (Fig. 5c). 

Finally, the required solution has the form (we bear in 
mind that r3>0, r,<O) 
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One checks easily that dJ(r, = 0)  is continuous [this re- 
quirement follows from the continuity of ri (x,t) and Eqs. 
( 12) and (21 ) 1. Nonetheless, the r, = 0 plane is clearly a 
singularity (cf. Ref. 7) since the solutions on the two sides of 
it are described by different formulae. Such a weak discon- 
tinuity occurs always when the initial profile is nonanalyti- 
cal at the wave-breaking point. Of course, if W(r) is an ana- 
lytical monotonic function, the solutions (36) and (37) are 
the same and turn into the solution (30) obtained earlier. 
Note that the self-similar solution of the problem of "cubic" 
wave-breaking which was considered numerically in Ref. 7, 
in fact, does not contain singularities because of the analytic- 
ity of the initial data. 

We give also another form of the solution of the Gure- 
vich-Pitaevskii problem. Substituting the expressions (34) 
for @ +  (7) into (36) and (37) and changing the order of 
integration we easily find the normal representation in the 
form of single integrals 

I, 

. A  

w (x) I 

,,J (r3-z)Ii2 
K ( _ )  dx, 

where 

and K ( m ) ,  the complete elliptic integral of the first kind, is 
the Riemann function for the Euler-Poisson equation. " 

The x * ( t )  curves which bound the DSW region in the 
physical plane are multiple characteristics and can be found 
from the solution ( 12) the boundaries together with the con- 
ditions 

(here V* are the multiple characteristic velocities on the 
fronts). 

We consider the important special case of the breaking 
of an antisymmetric profile 

ro (x) =- 1x1 'I' sgn 2, 

where q > 1 is an arbitrary number. The required solutions 
ri (x,t) are self-similar 

The solution in the r-plane can be found using Eqs. (36), 
(37), and (34), but it is more convenient to obtain it direct- 
ly, using the homogeneous solutions of the system (26) of 
the form 

where @(a,b;c;z) is the solution of the appropriate hyper- 
geometric equation (for details see Ref. 1 1 ). 

For odd integral values q = M (analytic profile) the 
solution takes a polynomial form: 

For M = 3 we have the solution of the "cubic" wave-break- 
ing problem, which was obtained in Ref. 18 by using meth- 
ods from algebraic geometry. If q = N is even (nonanalytic 
profile) Eq. (39), of course, does not describe a wave-break- 
ing problem. The solution is then given by the formulae 

where 
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and has a weak discontinuity with continuous derivative for 
r2 = 0. 

5. QUASISIMPLE WAVES 

The quasisimple wave concept was introduced by Gure- 
vich and Krylov in Ref. 8. It was used in Ref. 9 to describe 
the breaking of a Riemann wave propagating in an unper- 
turbed gas which corresponds to r$ (x) -0. In that case the 
DSW is described by two Whitham equations for r, and r3 
and one must put the invariant r ,  equal to zero to guarantee 
the matching at the leading front. The modulational system, 
reduced in this way, can be studied using the usual hodo- 
graph transformation ( x , t )  + ( r 2 , r 3 )  which is a special case 
of the generalized hodograph method. The required solu- 
tions can be obtained from Eqs. ( 3 6 ) ,  ( 3 7 ) ,  and ( 3 4 ) ,  which 
describe the general situation of the breaking of a monotonic 
profile. 

Putting r ,  = 0 in the general solution ( 3 6 ) ,  ( 3 7 )  we find 
at once the integral representation ( r , > r ,  ) : 

r1 

where @ ( T )  is as before given by Eq. ( 3 4 ) .  

The homogeneous solution describing the breaking of 
the profile 

has the form 

where F(a,b;c;z) is the hypergeometric function. 
For integral q = M the hypergeometric series termin- 

ates and the solution turns into a polynomial: 

The authors are grateful to S. P. Novikov and V. V. 
Khodorovskii for useful discussions. 

APPENDIX 

Equationsfor the sine-Gordon modulation without elliptic 
integrals 

The slow modulation of the sine-Gordon equation 

are described by a second-order Whitham system which can 
be written in Riemann form.5 We use the potential represen- 
tation ( 6 ) ,  ( 7 )  in which 

0 

26(r1r2) '' I dr 
h ( r )  = 

1 6 ( r r 2 ) -  I-r ( t - r , )  ( 7 - r 2 ) ] " :  ' 
( A 2 )  

I6 (r ,rz)'"+ I 
U ( r )  = -- , r ,<r2<0.  

1 6  (r ,r2)"?- I 

Substitution of ( A 2 )  and ( A 3 )  into the general system ( 2 3 )  
leads to a second-order scalar equation 

which does not contain elliptic integrals. We note that the 
variables in ( A 4 )  separate if we introduce 

instead of r ,  and r2 (cf. Ref. 1 9 ) .  
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