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For the optical transitions jg = 3/2 +je = 1/2, jg = 2 +je = 1, classes of resonant field 
configurations are identged in which there are nonuniform stationary coherent states that do not 
interact with radiation: V(r) I$(r)) = 0,jj21$(r)) = el$(r)). Theseare thestates responsible for 
the effect of coherent trapping of populations (CTP), which makes it possible to produce 1-D, 2- 
D, and 3-D superdeep cooling of the atoms. 

1. INTRODUCTION eigenfunctions of the kinetic energy operator of the atom. 
Aspect et al.' reported the detection of 1-D resonance With the exception of a few cases (see Sec. 5 below), the 

cooling of atoms below the recoil energy, k T< ( f i k )2 /2~ ,  momentum distribution in SCS describes the localization of 

inoppositely directed (alongthezaxis) orthogonally polar- atoms On a sphere in mOmentum space: p2 = (fikl2 

ized waves (the a + - a-  field configuration) in the j, ( k  = 27~/il, where k is the wave vector of the field). 

= 1 - + j ,  = 1 transition (the 23sl +23pl transition in a beam 
of metastable 4He atoms). A theoretical analysis of this ef- 
fect was proposed in Ref. 2. According to Ref. 2, as a result of 
radiation relaxation processes, the atoms accumulate in a 
state that does not interact with the electromagnetic field, 
i.e., coherent trapping of populations takes place. In the 
a+ -0- configuration, which is a special case of a field 
with nonuniform polarization, the atomic state which does 
not react with the field proves to be selective in velocities- 
the distribution over the z component of momentum consists 
of two S functions located at the points + fik. It was shown 
in Ref. 2 that the "temperature" T, defined as the square of 
the halfwidth of the peaks in the momentum distribution, 
tends to zero in inverse proportion to the time t of interaction 
of the atoms with the field, T a t  - I .  The possibility of 1-D 
superdeep cooling by means of the jg = 3/2+je = 1/2 and 
jg = 2 -je = 1 transitions in a a + - (T - field was dis- 
cussed in Ref. 3. Various schemes of 2-D superdeep cooling 
by means of the jg = 1 -j ,  = 1 transition were proposed in 
Refs. 2 and 3. Recently, on the basis of an analysis of the 
problem in the coordinate representation, Ol'shanyi and 
Minegin4 obtained a field configuration, viz., six counter- 
propoagating (along the coordinate axes) orthogonally po- 
larized waves (a  superposition of three a + - a-  configu- 
rations), that induced 3-D superdeep cooling on the 
jg = 1 -je = 0, and jg = 1 -je = 1 transitions. 

On the other hand, it was shown in Ref. 5 that for atoms 
with angular momenta j = j = j - 1 and 
jg = j ' -+je = j (j ' being an integer), in a resonance field 
with an arbitrary uniform elliptical polarization, there exist 
stationary coherent states (SCS) that do not interact with 
the field. The SCS constitute a coherent superposition of the 
wave functions of the Zeeman sublevels of the ground state 
and hence, have a zero natural width. 

In the present work, for the transitions jg = 3/ 
2 -j ,  = 1/2 and jg = 2 -+je = 1, we have found nonuniform 
stationary coherent states which extend SCS to the case of a 
field with nonuniform polarization (i.e., changing over dis- 
tances on the order of a wavelength A ) .  Below, to avoid in- 
troducing new abbreviations, we shall also use SCS in the 
case of a nonuniformly polarized field. These SCS do not 
interact with the field, have a zero natural width, and are the 

2. STATEMENT OFTHE PROBLEM 

We consider atoms with angular momenta jg in the 
ground state and je in the excited state, which interact reson- 
antly with a monochromatic electromagnetic field 

E (r, t )  =e-'"'e (r) + C.C. (1)  

When the scattered field is neglected, the complex vector 
amplitude e ( r )  satisfies the free wave equation and transver- 
sality condition: 

(~\+k')e (r) =0, k=dc,  
(2)  

( V  e (r) ) =O. 
Here the field polarization, which is determined by the unit 
vector e ( r ) / (  le(r) 1') 'I2, can change from one point to an- 
other in an arbitrary fashion (provided Eqs. (2) are satis- 
fied), i.e., the configuration of the field is not yet fixed. 

The matrix elements of the operator describing the in- 
teraction between the atoms and the field ( 1 ) in the reso- 
nance approximation are 

(jepIP(r, t )  (jam)=-e-'"'<j.((d((j,) 

where the indices m andp label the Zeeman sublevels of the 
ground level and excited level, respectively; ( j ,  lldlbg ) is the 
reduced matrix element of the dipole moment; the angular- 
momentum selection rules are contained in the 3jm symbols 
( ) ; and e, ( r )  are the circular components of the 
vector e ( r  ) . The time dependence - e - "' is not essential in 
the subsequent discussions and will not be written out expli- 
citly. 

The statement of the problem of finding stationary 
states that do not interact with the field is clearest in the 
coordinate representation. The unknown states I $ ( r )  ) must 
meet three requirements: 

1) they must be stable in relation to radiation relaxa- 
tion, and therefore, I $(r) ) is sought in the form of a super- 
position of the wave functions of the Zeeman sublevels of the 
ground state: 
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(a)The transition jg =3 /2+  j, = 1 / 2  

2) they must not interact with the field ( 1 ) , i.e., 

which for amplitude 6, ( r )  can be written in the form5 

3) they must be the eigenstates for the kinetic energy 
operator 

P" - I )  = ( r ) ,  "p-ihv, 2M (6)  

which for the states (4)  means 

Such states are not destroyed as a result of the free motion of 
.the atom and are strictly stationary when radiative pro- 
cesses, including all the recoil effects (except for the pro- 
cesses of interatomic exchange of photons, which are not 
considered here), are taken into account. 

When the field polarization is constant in space 
e, ( r )  = f ( r ) ~ ~ ,  E~ = const, the problems of distribution of 
atoms over the internal and translational degrees of freedom 
under conditions of coherent trapping of populations sepa- 
rate: 

As was shown in Ref. 6, for the transitions jg = j-j, = j - 1 
and jg = j ' -je = j ' (j ' being an integer), the solution of the 
problem exists for an arbitrary elliptical polarization E, : the 
amplitudesfl, are independent of the light intensity and are 
completely determined by its polarization, and p ( r )  is an 
arbitrary eigenfunction of the kinetic energy operator. 
Hence, the atomic density matrix in SCS is in the form of the 
direct productp = ptran,pint , where the distribution over the 
internal degrees of freedom pin, is given by the polarization 
of the field (i, m Ip,, li, m') a fl Zfl,. and is independent of 
the space variables, and the distribution over the transla- 
tional degrees of freedom ptran, is determined by the initial 
conditions. 

In the case of nonuniform polarization, we found the 
solution of the system ( 5 ) ,  (6) for the transitions 
jg = 1-j, =0 ,  jg = l+ je  = 1, j, = 2-j, = 1, j, = 3/ 
2-je = 1/2, and this solution demonstrates a strong corre- 
lation of the internal and translational degrees of freedom of 
the atoms, which is determined by the configuration of the 
field e(r) .  We shall examine the SCS for specific types of 
transitions. 

3. SCS FOR THE TRANSITIONS j, =3 /2+  j, = 1 /2 ,  
jg =2-+ je=1  

As was noted in the introduciton, we previously found 
SCS only for the transitions jg = 1 -j, = 0, j, = 1 
+je = and therefore, the problem of finding the SCS for 
other transitions is of definite physical interest. The present 
section gives the solution of this problem for the transitions 
jg =3/2-j, = 1/2andjg =2-j, = 1. 

We write Eqs. (5a) for atoms with angular momenta 
jg = 3/2 in the ground state and j, = 1/2 in the excited state 
in the explicit form 

3"e-, (r) balg (r) + 2 e o  (r) ba (r)+e,, (r) b-11, (r) =0, 
(7)  , , 

e-, (r) bu (r) +2'"eo (r) b-% (r)+3"eil (r) b-% (r) =O. 

We recall that Eq. (7)  follows from the fact that the proba- 
bility amplitudes of atoms in the excited li, + 1/2) states 
under conditions of coherent trapping of population are 
zero. 

The general solution of Eq. (7)  may be represented in 
the form of a superposition of linearly independent solutions 
(the quantization axis is directed along the z axis): 

In addition to Eq. (7) ,  the SCS must satisfy Eq. (6a), which 
imposes certain conditions on the functions C,(r) and 
C,(r) . The general solution (8)  enable us to distinguish two 
classes of field configuration in which SCS exist. 

I. e,(r) = 0, i.e., the local vector of field polarization 
lies in the xy plane, and (e(r)e, ) = 0 at all points of space. 
In this case, the SCS on the transition jg = 3/2-je = 1/2 
are a superposition of two orthogonal ~ t -+?s  

where C ,,, are constants related by the normalization condi- 
tion 

Here the angle brackets denote averaging over the normali- 
zation volume V: (...) = V - 'J ... d 3r. 

The solution of Eq. (9)  is fairly obvious, since for this 
field configuration, from the general scheme of interaction 
we can distinguish two simple A systems which are not cou- 
pled by induced transitions, shown in Fig. lb; for each of 
these systems there exists a solution of Eqs. (7)  which is 
linear in the field amplitudes e , , ( r ) .  

In general, this field configuration is a superposition of 
plane waves e ( r )  = 2, el exp(i k, r ), whose linear polariza- 
tions el lie in the xy plane, and whose wave vectors k, are 
directed in a fairly arbitrary manner relative to the xy plane, 
provided the orthogonality condition k, .el = 0 is satisfied 
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(see Fig. 2). It is the arbitrariness of the directions of k, that 
makes it possible to obtain 1-D, 2-D, or 3-D superdeep cool- 
ing in this field configuration. We note that in addition to the 
linearly polarized waves, the condition eo(r) = 0 is satisfied 
by two waves propagating oppositely along the z axis and 
having an arbitrary elliptical polarization (they are denoted 
by E, + ., ,E, - ., in Fig. 2).  As an example, we can examine 
the following superposition of waves (see Fig. 3 ) :  a standing 
wave of linear polarization e,, propagates along the x axis, a 
standing wave of linear polarization ex propagates along the 
y axis, and a u + - a_ wave propagates along the z axis. 

11. Another class of field configurations for which SCS 
exist on the transition j, = 3/2+je = 1/2 is distinguished 
from the general solution (8 )  by the condition 
e , , ( r ) = f ( r ) & _ , ,  where E + , , E - ,  are arbitrary con- 
stants, i.e., the circular components of the field have the 
same spatial structure and ratio e + , (r)/e - , ( r )  = E + / 
E - , = const. 

In this case, the NSCS are 

r - e+l ~ 1 3 %  1 

t 

FIG. 2.  

FIG. 1 .  a )  General scheme of induced transitions for atoms with angu- 
lar momenta j, = 3 / 2 - j ,  = 1 / 2 ,  j, = 2 - j ,  = 1 .  The quantization 
axis is directed along the z axis. Relative amplitudes of the transitions 
are given. b )  Same for e, = 0. Simple A systems are distinguished: 

{ k g ,  - 3 / 2 ) ,  k g , l / 2 ) ,  kc, - 1 / 2 ) } ,  

{ ,  - 1 ,  [j,,3/2), k e , 1 / 2 ) } ,  

k g ,  - 1 ,  kg, + 1 ,  k@,O)} .  

C,  and C, being constants related by the normalization con- 
dition S($(r) l$(r) )d 3r = 1. In general, this configuration 
is a superposition 

consisting of waves polarized linearly along e,, with ampli- 
tudes El, whose wave vectors k, are arbitrarily directed in 
the xy plane, and two waves counterpropagating along the z 
axis with amplitudes E ,  , having the same elliptical polar- 
ization E (see Fig. 4) .  It should be emphasized that the spe- 
cial case in which the waves propagating along the z axis 
have circular polarization, i.e., E = e ,  , , is not suited for 
superdeep cooling, since it involves the existence of a state 
16, f 3/2) (denoted by * in Fig. 5)  that does not interact 
with the field when the atom has an arbitrary velocity. A 
simple example of a configuration inducing 3-D superdeep 
cooling is shown schematically in Fig. 6. Interestingly, for 
the configurations of 11, in contrast to case I with an arbi- 
trary elliptical polarization E, it is impossible, by selecting 
the quantization axis, to reduce the scheme of the interaction 
between the Zeeman sublevels and the field to simple A sys- 
tems. For both of the above classes of field configurations I 
and 11, SCS (9 )  and ( 10) are the eigenfunctions of the kinet- 
ic energy operator of the atom [see Eq. (6)  1. The kinetic 
energy eigenvalue is determined by the field wavelength 
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FIG. 4. 

which means that the atoms are localized in momentum 
space on a sphere: p2 = (fik12. For the specific field configu- 
rations shown in Figs. 3 and 6, we have localization of the 
atoms at the points p = + fike, ( i  = x,y,z). 

(b) The transition j, =2.-+je = 1 

For the transition j, = 2+je = 1, the system of equa- 
tions (5a) has the form 

6%e-, (r) b+2 (r) -3%eo (r) b+, (r)+e+, (r) bo (r) =0, 

3"e-, (r) b+, (r)-2ee(r) bo (r) +3'"e,, (r) b-, (r) =O. ( 13) 

e-, (r) be (r)-3'"eo (r) b-, (r) +6'"e+, (r) b-, (r) =O. 

The general solution of Eq. ( 16) is a superposition of linear- 
ly independent solutions 

As is evident from Eq. (14), the SCS on the transition 
j, = 2 +je = 1 exist for the same two classes of fields as on 
the transition j, = 3/2+je = 1/2: 

I )  in the case e, (r)  = 0 (Fig. 2),  

f c, (I) 

FIG. 6 .  

- 
eo2 (r) e+l(r) --- 
e!, (r) )-I (r) 

2%e, (r) 
e-l(r) 

6 % 

2%e0 (rj 
e+1(r) 

eo2 (9 e-1 (r) --- 

11) in the case e , ,  (r) = f(r)~* ( E ~  = const), 
which is described by the superposition ( 1 1 ) (Fig. 5) : 

- e& (r) e+i (r) 

In contrast to the transition j, = 3/2+jg = 1/2, the func- 
tion C2(r) in ( 14) is zero in both cases. The constants C, in 
Eqs. ( 15) and ( 16) are determined from the normalization 
condition. The SCS ( 15) and ( 16) describe the effects of 
localization of the atoms in the momentum space similarly 
to SCS on the transitionj, = 3/2 +j, = 1/2, which were dis- 
cussed above. 

We note in conclusion that the question of the existence 
of other field configurations for which SCS exist on the tran- 
sitions j, = 3/2 +je = 1/2 and j, = 2 -+j, = 1 remains 
open. 

Cl 
I $ (r)>= yx 

4. EXPLICIT FORM OF SCS FOR THE jQ = 1 + j, =O AND jQ 
= 1 -je = 1 TRANSITIONS 

For reference purposes, we shall reproduce in our nota- 
tion the results of Refs. 4 and 5, which obtained SCS on the 
transitions j, = 1 +je = 0 and j, = 1 +j, = 1. 

1 - 
e , ,  

2% E-1 eo (r) 

e+1 (r) 
0 

- e-1 (r) 
1 8-1 --- 

- 2% &+I 
eo (r) - 

a)ThejQ= 1 +j,=O transition 
As above, the SCS are sought in the form of the superpo- 

sition (4).  In this case, the amplitudes b * , ,  (r) are circular 
components of the vector field b( r ) ,  and Eq. (5a) may be 
represented in the invarient form 

(16) 

The general solution ( 17) is written as a vector product 

which can be represented explicitly as follows: FIG. 5.  
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( 18a) satisfies Eq. (6a) if Ci = const, i = 1, 2, 3. Thus, the 
SCS on this transition exist for an arbitrary field configura- 
tion. The constants Ci are related by the normalization con- 
dition ~ ( $ ( r )  I$(r))d3r = 1. 

b) The j, = 1 -j, = 1 transition 

Since the angular momenta of the ground and excited 
states are equal to 1, Eq. (5a) reduces to the form 

[e (r)  b (r) ] -0. (19) 

The general solution of Eq. (20) 

b (r) =C (r)e (r) (20) 

satisfies Eq. (6a) if C = const. 
Thus, for an arbitrary field configuration on the 

jg = 1 -je = 1 transition there exist SCS which, with 
allowance made for the normalization condition, are written 
in the form 

Some specific examples of 3-D superdeep cooling on the 
jg = 1-j = o  and j, = 1 +j, = 1 transitions are given in 
Ref. 4. 

5. UNIQUENESS OF SCS 

The SCS discussed in the preceding section are a special 
case of the general solutions (8) ,  ( 14), ( 18a), (21 ), when 
we have C, ( r )  = const. However, for certain field configu- 
rations, by selecting the functions C, ( r ) ,  one can obtain SCS 
that are different from those given above. For example, if 
there are three standing waves with complex amplitudes, 
which are directed along the coordinate axes 

e(r)  =E, cos (kx) f  E, cos(ky) +E, cos(kz), (22) 

there exist SCS ($( r ) )  different from (9), ( lo ) ,  ( 16), (15), 
( 18 ) or (2 1 ) . We represent them in the form 

)ij,(r)>=sin(lcx)sin(ky)sin(kz) ( ~ ( r ) ) ,  (23) 

where I$(r)) are any of the SCS (9),  (101, (15), (16), 
( 18a), (21 ), and each of the components of the vector 
($( r ) )  has the form of a superposition with constant coeffi- 

cients B;" (I = 1,2,3; - j ,<mGi) :  

(j,ml$ ( r ) ) = B l r n  sin (2ks)sin (ky)sin(kz) 
+BZm sin (2ky )~in(ka)sin(kz) +RSm sin(2lez)sin (kz)sin (ky). 

It is easy to %certain that the states (24) satisfy the equa- 
tions^ (5): V(r) /$ ( r ) )  = sin (kx) sin (ky) sin 
(kz) V(r) l$(r)) = 0 and (6) :  

As is evident from Eq. (25), the states /$(r)  > describe the 
localization of atoms in momentum space on a sphere: 
p2 = 6(fik)', in contrast to the SCS discussed above (9) ,  
( l o ) ,  (15), (16), (18a), (21), wherep2 = (hk)'. Finding 
the various field configurations in which SCS of type (23) 
~ $ ( r ) )  exist is a fairly intricate mathematical problem 
whose solution requires additional studies. 

6. CONCLUDING REMARKS 

For the remaining transitions of the class j, = j-j, = j, 
and j, = j '+je = j ' - 1 (j ' being an integer), the solutions 
of Eqs. (5)  depend nonlinearly on the field amplitudes e, ( r )  
and evidently are not strictly stationary. 

The SCS obtained in this work make it possible to use 
the jg = 3/2+je = 1/2 and j, = 2-je = 1 transitions not 
only for purposes of 3-D superdeep cooling, but also for cre- 
ating light-induced space lattices of atomic multipole mo- 
ments and for localizing atoms in caustics (singularities) of 
nonuniformly polarized fields by analogy with the effects 
discussed in Ref. 6. 
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