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The triangle diagrams Z-. cF- yy* and Z- 68 - yy* are evaluated in analytic form and utilized 
to study the decays Z+ yY and Z-, yY in the dispersion-relations approach. A study of the sum 
rules for the amplitude and its derivative lead naturally to the estimates BR(Z+ yJ/Y) - lo--' 
and BR(Z- yY ( 1s)  ) - lop5, which are larger by two orders of magnitude than those expected 
in the quark model. We discuss the pole in the axial anomaly. We show that the anomalous pole 
arises only in the limit of massless fermions and only for real photons. 

1. INTRODUCTION 

The purpose of this work is to study the Z-  yY and yY 
decays in the dispersion approach.' In addition I have the 
temerity to consider once more the question of the axial 

whose treatment seems to me to be to this day 
not as clear as is worthy of such a classic. For example, in a 
respectable textbook4 it is asserted that the pole in the axial 
anomaly5 is always present, i.e., even when the quark mass 
satisfies m, #O. This assertion is, at the very least, strange. It 
is hard to imagine that the invariant amplitudes which are 
free of kinematic singularities and are determined by the tri- 
angle diagrams, should have poles corresponding to a mass- 
less particle when m, # O  holds. 

In Sec. 2, I evaluate in analytic form the invariant am- 
plitudes of the triangle diagrams describing the transition 
axial-vector current -qQ- y(k,)  y* (k,), k = 0, kZ2 #O. 
To my knowledge this has not been done before. I show that 
for m, # O  the invariant amplitudes have no singularities 
other than the dynamic cuts due to the intermediate qij 
states. Moreover, for kz2#0, the pole for 
M2 = (k ,  + k212 = 0 is absent also for m, -0. Only for 
kz2 = 0 and m, - 0 does an anomalous pole arise for M = 0. 

Section 3 is devoted to the 2- yY and Z- yT decays. 
Here I study sum rules for the amplitude Z-c'E (or 
b$) + yy* and its derivative. I discuss two assumptions: in 

which is also larger by nearly two orders of magnitude than 
quark-model predictions. 

Simultaneous saturation by resonances of the sum rules 
for the amplitude and its derivative gives provocative results 
for the lower bounds: 

When these are satisfied we have 

Saturation of the sum rule for the derivative of the amplitude 
by low-lying resonances is better founded than that for the 
amplitude itself, because the sum rule for the derivative con- 
verges more rapidly. It is interesting that if the contribution 
of the resonances to the sum rule for the amplitude is alto- 
gether absent, i.e., the sum rule is saturated by the contin- 
uous spectrum, the result differs insignificantly from the 
case in which the two sum rules are saturated simultaneous- 
ly: 

and 
Sec. 3.1 it is assumed that the resonances saturate the sum 
rule for the amvlitude and in Sec. 3.2 it is assumed that they BR(Z--yJ/Y)=1,3.10-" BR(Z-+yY ( IS)) =5,610-" 

saturate the sum rule for the derivative of the amplitude. In when the equalities hold. ~ f ,  while the resonances saturate 
the general case these are different assumptions. In the dis- the sum rule for the derivative their contribution to the sum 
cussion under the second assumption 1 consider various pos- rule for the amplitude is viewed as a free parameter, the 
sibilities for the contribution of the resonances to the sum smallest lower bounds 
rule for the amplitude, including the case where that contri- 
bution is absent. Saturation of the sum rule for the amplitude  BE (z-~IP)  >lo-6. ~ n ( ~ - y ~ ) 2 4 , 4 1 0 - ~  
by the ground states J / Y  and T ( 1s)  gives 

BR(Z-+~J/Ur) =lo-', BR(Z-yY (1S))=3.10-', can be found. These are reached for 

which exceeds by two orders of magnitude what is expected T3R(Z+yJ111r)= ~ . ~ O - ' , I ~ R ( Z - - ~ Y  (IS)) ~ 2 . 5 .  
in quark models. Saturation of the sum rule for the ampli- 
tudes by the Y and Y families gives rise to the lower bounds which is larger than quark-model expectations by one order 

of magnitude. 
~ B R ( Z - ~ ~ Y ) ~ ~ . ~ O - ~ .  BR(Z-yY)Z1,5-iO-5, 

2. THE AXIAL-VECTOR CURRENT* qQ+ VECTOR CURRENT 
(kt), VECTOR CURRENT (k2), k,z=0,k22#0 

which are reached for 
As is well known,6 the axial-vector vertex, determined 

BR(Z+yJ/Y) =5.10-', BR(Z--yY (lS))=8.10-6, by the triangle diagrams, has the form 

/' 
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Gauge invariance of the amplitude 

kIaTa6,,=k~Taep=O (2)  

is ensured by the following relations: 

Al=k,2A4+ (klk2)A8, A2=klZAs+ (klkz)A,. (3  

In addition 

A,, A,, A ,  and A ,  are invariant amplitudes free of kinematic 
singularities and they are well-defined. For k12 = 0 (or 
k2' = 0)  they can be evaluated analytically. Let us consider 
the region 

which is convenient for the calculation of dispersion rela- 
tions in M (or E 2) .  The result of this calculation is 

where 

Note that As and A,  do not contribute directly to physical 
quantities [not through the relation (3)  1,  since k and k 2B 

in ( 1 ) are contracted either with the polarization vectors 
(kla  ea (k ,  1 )  = 0, (kZB@ (k,) ) = 0 or with the conserved 
currents (k  ',ja ( k , ) )  = 0, ( k2BjB(k2 ) )  = 0. 

In other regions M = - W2 and E = - Q the func- 
tions L ,  (Q, W) and L2 (Q, W) are analytically continued in 
the following manner:' 
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x i l+p  
(-pZ)'h+ -i p, arctg (-pZ) -'" -+ - + -In - . 

2 2 l-p 

It is seen from Eqs. (5)-(8) that (both for 
and fork : = - Q = 0)  the amplitudes Ai Q 2 =  - k 2 # 0  

contain no singularities other than the dynamic cuts for 
4m: < M 2  < w and 4m: <E < w due to the intermediate qq 
states. 

For m, 3 0  we obtain (omitting the physically irrele- 
vant A, and A , )  expressions valid for 0 < Q = - E and 
O < W 2 =  -M2 ,  

The analytic continuation to other regions of M and E 
is carried out as follows: 

Thus, in the massless limit for k # O  the invariant am- 
plitudeshavecutsforO<E2 < w andO<M2 < W .  Thelimitof 
the expressions (9 )  for W 2 - + 0  does not exist (logarithmic 
singularity), and for Q .+ 0 the amplitudes A ,  and A, acquire 
poles for M = 0: 

For k = k = 0 we can make use of the identities 

which lead to the expression 

where 
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Naturally, the second term in ( 1 3 )  is irrelevant from the 
physical point of view. 

Consequently the anomaly in the axial-vector current is 
connected with the massless pole only for m, = 0 and 
k :  = k ;  = O .  

Equations ( 9 )  and ( 10) are a good illustration of the 
insufficiently rapid decrease of the invariant amplitudes of 
the axial-vector vertex with large momenta, which is im- 
proved by the elimination of the anomaly in renormalizable 
theories. 

3. THEZ-, yY andZ+ yT DECAYS IN THE DISPERSION 
APPROACH 

I now make use of the results ( 1 )-( 8 )  of the previous 
section to evaluate the amplitude 

Z+Y (ki)yV(k2),  

due to the one-loop triangle diagram with intermediate 
heavy quarks (Z+cZ+yy* or ~ + b 8 + y y * )  for 
O<k : = E '<4m; ( k  : = 0 )  in the rest frame of the Z boson: 

where M is the mass of the Z boson, 

e ( Z )  and e(  y* ) are three-dimensional polarization vectors 
of the Z and y* in their rest frames and e ( y )  is the polariza- 
tion vector of the y quantum. The amplitude t, (E ,M)  takes 
into account three identical loops corresponding to the three 
colors, 

e33e: 
tq (E ,  AT) = a, 

4 sin 201v 
(A,+&), 

where a, = 1 ,  a, = - 1, e, = 2/3,  e, = - 1/3. 
It is seen from ( 5 ) - ( 8 )  that t, ( E , M )  satisfies a disper- 

sion relation without subtractions both in M and in E *. Con- 
sequently t, (E ,M)  is the amplitude convenient for obtain- 
ing sum rules in the E 2  channel. Since at the present time it 
appears possible to test theoretically only the resonance sat- 
uration of the sum rules evaluated below, it is most conve- 
nient to derive them with the help of the following considera- 
tion. The amplitude t, ( E , M )  describes the full amplitude in 
the region E 2<0 for Z+qij-+ yy* accurate up to higher cor- 
rections in QCD and standard electroweak theory, i.e., accu- 
rate up to corrections of order a, (4mi )/T, a, ( M  ' ) / a  and 
a / a .  On the other hand, the full amplitude for Z +  qij + yy* 
can be represented with the help of intermediate hadronic 
states in the E channel as a sum of resonance contributions 
and the continuous spectrum: 

( 1 7 )  

where 

Here Vis the (qij) vector quarkonium and T,,,, - (E,M)Ls - the 
contribution of the continuous spectrum (DD, DD *, D *D, - 
D *D * ,... orBB, BB *,BB, B *B * ,... ) . Thereisevery reason to 
suppose that in the region E 2zz0 we have 

t" (E, AJ)  =tq (E,  M) 

Equation ( 19) incorporates the fact that 2m, / M g  1. 
At the point E = 0 I consider the sum rule for the am- 

plitude 

t x  (0,  M) = t q  (0 ,  M) 

and its first derivative 

It follows from ( 18 ), ( 19),  and ( 2 0 )  that 

3aep2 .1 =T = 
2 M 3  

q-aq 2 sin 2OJv -(i---In-+-). M 2  n mq n ( 2 2 )  

An unusual feature of this sum rule is the presence on the 
right-hand side of ( 2 2 )  of the imaginary quantity that is the 
jump in the amplitude due to the intermediate qij states in the 
M channel and which accurately approximates [up to cor- 
rections of order a, ( M  ' ) / a ]  the jump due to the intermedi- 
ate hadronic states. 

It follows from ( 1 8 ) ,  ( 19),  and ( 2 1 )  that 

d i T ,  (m,, M) + - T.,,",(B. l l f )  Ii=.-D,(Res) 
, fvm."' dE2 

( 2 3 )  
In the approximation ( 19), 2 m , / M g  1 we have IrnDq = 0.  
The decay width is 
r (z-+yv) 
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To determine f 2,/4n-, I make use of the experimental 
data of Ref. 8  for 

AS a result I obtain for the VT family 

1=Y (3097), 2=Uf (3686), 3 = Y  (3770), 

4=Y (4040), 5=Y (4160), 

6= Y (4415), 

f c  : f 2  : f 3  : f l  : f 5  : f 6 = 2  : 1,6 : 4,'i : 2,9 : 2,9 : 3.7 ( 2 6 )  

and for the Y family 

1 = r  ( 0 4 6 0 ) , 2 = r  ( I O O ~ ~ ) ,  3=r (10355), 

4=y (10580), 5=Y (10860), 

6=Y (11020), 

f, : f z  : f 3  : fc : fs : Je=1 : 1,6 : 1,8 : 2,5 : 2,2 : 3,5 ( 2 7 )  

for 

f , ~ ~ / 4 n - f ~ ~ 3 0 s , , / 4 n = ~ ~ , 7 ,  

f r f ! s , /4n=fr , z s r so , /4d25 .  

3.1. Sum rule for the amplitude 

We consider the sum rule for the amplitude ( 2 2 ) .  Let us 
assume initially that the left-hand side of ( 2 2 )  is saturated 
by the ground state, i.e., 

V=l/'Fr, Y (IS). 

Using ( 2 9 ) ,  ( 2 8 ) ,  ( 2 4 ) ,  ( 2 2 ) ,  m ,  = 1.55 GeV, m, = 5 
GeV, M = 91.16 GeV and T, = 2.53 GeV (Ref. 8 ) ,  we ob- 
tain 

which exceeds by two orders of magnitude the predictions of 
the quark model.9 

How good is the assumption ( 2 9 )  and the result ( 3 0 ) ?  
It seems to me that only experiment can answer this ques- 
tion. The model of dominance of the vector mesons V = p, w, 
@ in the electromagnetic current of light quarks for not too 
virtual y* quanta is a generally accepted working model. 
There are examples of successful application of this model 
also in the case of the electromagnetic current of the c 
quarks. 'O 

At the present time it is not possible to completely clar- 
ify the role played by other intermediate states in the left- 
hand side of ( 2 2 ) .  However, we may attempt to estimate the 
situation by saturating the sum rule for the amplitude ( 2 2 )  
by the VT and Y families: 

We remark that this takes partially into account the contin- 
uous spectrum since four members of the VT family and three 
members of the Y family lie in the continuous spectrum of 

DB,DD *,D *B,B *D * a n d B z , ~ B  *,B *B,B *B *,respective- 
ly. 

Viewing ( 3  1  ) as a constraint and using ( 2 4 )  we obtain 

When the lower bound ( 3 2 )  is reached, 

For the T family 

min ~ I ~ R ( Z + ~ ' Y ) = ' ~ ~ I ~ - ~ .  BR (Z+TI/Y)=S.,IO-'. 

For the Y family 

m i n z  B R ( Z - + ~ + ) = ~ , ~ - ~ O - ' ,  BR(Z-yT (IS) )=8.10-'. 

By making use of the results of Sec. 2  we can verify that 
the dispersion integral for T, is determined by the region 
2m,  < E  5 M, which is hardly a low-energy region. However 
this circumstance cannot be viewed as an objection to the 
sum rule ( 3  1 ) since the hadronic spectrum should not (and 
does not) locally repeat the quark spectrum. Nevertheless it 
is useful to study the sum rule ( 2 3 )  for the first derivative. It 
is well known that in the dispersion integral for the deriva- 
tive of the amplitude the relative importance of the contribu- 
tion of the low-lying states is significantly enhanced as com- 
pared to their contribution to the amplitude itself. We 
remark that 90% of the dispersion integral for D, in ( 2 3 )  is 
determined by the region of low energies 2mq  <E<6rnq. 

3.2. The sum rule for the first derivative of the amplitude 

We consider the resonance contributions to the sum 
rule for the amplitude and its first derivative, Tq ( R e s )  and 
D, ( R e s ) ,  respectively, as two constraints and use ( 2 4 )  to 
obtain 

min ~ T ( Z - ~  V )  
v 

I T ,  (Res )  IZg+ ID, (Res) I 'a-2 Re (T,' (Res)D,(Res) )d 
X ----- 

ag-dz 

The lower limit is reached when 
1 T, (Res )  (g-d/mv2) -D, (Res )  (d-a/rnv2) T ,  = -- 

fvmvz ng-d2 
( 3 7 )  

Let us suppose that the sum rule for the derivative ( 2 3 )  
is saturated by the resonances 
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We consider various possibilities for the resonance contribu- 
tion to the amplitude Tq (Res)  . 

1 )  Let T, (Res)  = T q ,  i.e., both the sum rule for the 
derivative of the amplitude and the sum rule for the ampli- 
tude itself are saturated by the resonances. Making use of 
(381, (371, (361, (311, and ( 2 4 )  weobtainforthe\Vfamily 

min ~ B R ( Z - y ~  )=2.10-', 

B R ( Z - + ~ J I \ I ( )  -4,4- 

and for the Y family 

rnin BR(Z-yT) =2,3.10-'; 

B R ( Z + ~ I -  (1s) ) = I , ~ . I o - = .  

2)  We now suppose that the contribution of the reson- 
ances to the amplitude can be ignored, i.e., T, (Res )  = 0.  It 
then follows from ( 3 8 ) ,  ( 3 7 ) ,  ( 3 6 ) ,  and ( 2 4 )  that for the Y 
family 

min ~ B R ( Z - + ~ Y ) = ~ , ~ - I O - ~ ,  (41 

and for the Y family 

rnin B R ( Z - + ~ T ) = ~ , ? . I O - ~ ,  

BR(Z+yY (IS))=5,6.10-'. 

Unsurprisingly, the results are not substantially different in 
the two cases. 

3 )  It is very difficult to find any objections against the 
saturation by the six resonances of the rapidly convergent 
sum rule for the derivative (38 ) . We therefore clarify what is 
the contribution of the resonances to the sum rule for the 
amplitude T, (Res)  for which the lower bound ( 3 6 )  is mini- 
mal if D, (Res)  = D, [see ( 3 8 )  ]. The minimum of the 
expression ( 3 6 )  is reached when 

T, (Res) = ( d  /g)D, (Res) . 
There \ 

For D, (Res)  = D, we obtain for the \V family 

and for the Y family 

min {min ~ B R ( z - ~ T )  }=4.4.10-8, 

BR(Z--yl ' (1S))  = 2'10-6., 
( 4 6 )  

In this manner, even in the worst case, the predictions of 
the dispersion analysis exceed the expectations from the 
quark model9 by one order of magnitude. 

We note that 

T,(Res)= (d /g )D,  = 0.44Re T,,  

T,,(Res)= ( d / g ) D ,  =O,S Rc Tb. 

It is hard to imagine that Im Tq(Res) is altogether absent. 
But even if it has a small value the lower bounds ( 4 5 )  and 
( 4 6 )  are noticeably increased. For example, it follows from 
( 3 6 )  that Im T, (Res)  = 0.3 Im T, and Im Tb (Res)  = 0.08 
Im Tb [along with ( 4 7 )  for the real parts] would bring us 
back to the lower bounds ( 3 4 )  and ( 3 5 ) ,  respectively. 

4. CONCLUSION 

One might be tempted to consider the sum rule for the 
second derivative of the amplitude. It seems to us that this is 
inappropriate. The point is that radiative QCD corrections 
lead to the appearance of intermediate states of light quarks 
(d2,  uti and SF) in the E channel, which contribute to the 
second derivative an amount of relative order 
( a , / ~ ) ~ (  15/4) ( m , , / m  ,,,, )4, i.e., an amount which is not 
small. In the case of the sum rule for the first derivative this 
correction is of order ( a ,  /,rr13(3/2) (mc,b /mu,d,s ) ', i.e., in- 
significant. The masses mu,4, are, of course, constituent 
masses. 

It seems to me that this analysis shows clearly that the 
estimates B R ( Z -  yJ/ \V)  - 10- and BR(Z-+  y Y ( 1 S ) )  - 10 - arise quite naturally. I therefore do not share the 
pessimism1' regarding the possibility of observing the de- 
cays Z -  y J / Y  and Z - + y Y (  1s) with high luminosity at 
LEP. 

The expected angular distribution W ( 6 )  for the reac- 
tion e +  e -  +Z-+ yV follows from ( 1 5 )  and ( 17): 

where O is the angle between the momentum of the y quan- 
tum and the axis of the beam. 

Note that we have applied recently a similar dispersion 
approach12 to the study of the decays of heavy Higgs bosons 
H-+ yY,  y'Y, and also of the decays \V, Y -+ yH (or axion). 

Lastly, one more remark. All of the formulas obtained 
in Sec. 2 and the expression ( 1 5 )  in Sec. 3 are valid for the 
transition of an axial-vector current into two gluons 
[ g ( k ,  )g*(k2)  ] and fortheamplitudeZ-+qq-g(k, )g*(k, ) ,  
respectively. The practical consequences of this remark need 
to be considered at greater length. 
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